1
|
Nedomova M, Haberecht-Müller S, Möller S, Venz S, Prochazkova M, Prochazka J, Sedlak F, Chawengsaksophak K, Hammer E, Kasparek P, Adamek M, Sedlacek R, Konvalinka J, Krüger E, Grantz Saskova K. DDI2 protease controls embryonic development and inflammation via TCF11/NRF1. iScience 2024; 27:110893. [PMID: 39328932 PMCID: PMC11424978 DOI: 10.1016/j.isci.2024.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/25/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
DDI2 is an aspartic protease that cleaves polyubiquitinated substrates. Upon proteotoxic stress, DDI2 activates the transcription factor TCF11/NRF1 (NFE2L1), crucial for maintaining proteostasis in mammalian cells, enabling the expression of rescue factors, including proteasome subunits. Here, we describe the consequences of DDI2 ablation in vivo and in cells. DDI2 knock-out (KO) in mice caused embryonic lethality at E12.5 with severe developmental failure. Molecular characterization of embryos showed insufficient proteasome expression with proteotoxic stress, accumulation of high molecular weight ubiquitin conjugates and induction of the unfolded protein response (UPR) and cell death pathways. In DDI2 surrogate KO cells, proteotoxic stress activated the integrated stress response (ISR) and induced a type I interferon (IFN) signature and IFN-induced proliferative signaling, possibly ensuring survival. These results indicate an important role for DDI2 in the cell-tissue proteostasis network and in maintaining a balanced immune response.
Collapse
Affiliation(s)
- Monika Nedomova
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
- First Faculty of Medicine, Charles University in Prague, Katerinska 32, 121 08 Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25242 Vestec, Czech Republic
| | - Stefanie Haberecht-Müller
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Klinikum DZ 7, 17475 Greifswald, Germany
| | - Sophie Möller
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Klinikum DZ 7, 17475 Greifswald, Germany
| | - Simone Venz
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Klinikum DZ 7, 17475 Greifswald, Germany
| | - Michaela Prochazkova
- Department of Functional Genomics, Universitätsmedizin Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Jan Prochazka
- Department of Functional Genomics, Universitätsmedizin Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Frantisek Sedlak
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
- First Faculty of Medicine, Charles University in Prague, Katerinska 32, 121 08 Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25242 Vestec, Czech Republic
| | - Kallayanee Chawengsaksophak
- Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, BIOCEV, 25242 Vestec, Czech Republic
| | - Elke Hammer
- Department of Functional Genomics, Universitätsmedizin Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Petr Kasparek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, BIOCEV, 25242 Vestec, Czech Republic
| | - Michael Adamek
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25242 Vestec, Czech Republic
| | - Radislav Sedlacek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, BIOCEV, 25242 Vestec, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Klinikum DZ 7, 17475 Greifswald, Germany
| | - Klara Grantz Saskova
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25242 Vestec, Czech Republic
| |
Collapse
|
2
|
Hernandez-Jimenez R, Patel A, Machado-Olavarria A, Mathieu H, Wohlfahrt J, Guergues J, Stevens SM, Dharap A. Cellular resiliency and survival of Neuro-2a cells under extreme stress. Exp Cell Res 2024; 443:114275. [PMID: 39383928 DOI: 10.1016/j.yexcr.2024.114275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Stressors such as hypoxia, hypothermia, and acute toxicity often result in widespread cell death. This study investigated the outcomes of Neuro-2a (N2a; mouse neuroblastoma) cells following a cryogenic storage failure that exposed them to a combination of these stressors over a period of approximately 24-30 hours. Remarkably, a small fraction of the cells survived the event, underwent a period of dormancy, and eventually recovered to a healthy state. To understand the underlying resilience mechanisms, we created a model to replicate the dewar failure event and examined changes in phenotype, transcriptomics, proteomics, and mitochondrial activity of the surviving cells during recovery. We found that the surviving cells initially displayed a stressed morphology with irregular membranes and a clustered apperance. They showed an increased expression of proteins related to DNA repair and chromatin modification pathways as well as heightened mitochondrial function shortly after the stress event. As recovery progressed, the stress-responsive pathways, mitochondrial activity, and growth rates normalized toward that of healthy controls, indicating a return to a stable baseline state. These findings suggest that an initial robust energetic state supports key stress-responsive and repair pathways at the early stages of recovery, facilitating cell survival and resiliency after extreme stress. This work provides valuable insights into cellular resilience mechanisms with potential implications for improving cell preservation and recovery in biomedical applications and developing therapeutic strategies for conditions involving cell damage and stress.
Collapse
Affiliation(s)
- Randall Hernandez-Jimenez
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States; Byrd Alzheimer's Center & Research Institute, University of South Florida, Tampa, FL, 33613, United States
| | - Ankit Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States; Byrd Alzheimer's Center & Research Institute, University of South Florida, Tampa, FL, 33613, United States
| | - Ana Machado-Olavarria
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States; Byrd Alzheimer's Center & Research Institute, University of South Florida, Tampa, FL, 33613, United States
| | - Hailey Mathieu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States; Byrd Alzheimer's Center & Research Institute, University of South Florida, Tampa, FL, 33613, United States
| | - Jessica Wohlfahrt
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, 33620, United States
| | - Jennifer Guergues
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, 33620, United States
| | - Stanley M Stevens
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, 33620, United States
| | - Ashutosh Dharap
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States; Byrd Alzheimer's Center & Research Institute, University of South Florida, Tampa, FL, 33613, United States.
| |
Collapse
|
3
|
Franchino CA, Brughera M, Baderna V, De Ritis D, Rocco A, Seneca S, Regal L, Podini P, D’Antonio M, Toro C, Quattrini A, Scalais E, Maltecca F. Sustained OMA1-mediated integrated stress response is beneficial for spastic ataxia type 5. Brain 2024; 147:1043-1056. [PMID: 37804316 PMCID: PMC10907083 DOI: 10.1093/brain/awad340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/09/2023] Open
Abstract
AFG3L2 is a mitochondrial protease exerting protein quality control in the inner mitochondrial membrane. Heterozygous AFG3L2 mutations cause spinocerebellar ataxia type 28 (SCA28) or dominant optic atrophy type 12 (DOA12), while biallelic AFG3L2 mutations result in the rare and severe spastic ataxia type 5 (SPAX5). The clinical spectrum of SPAX5 includes childhood-onset cerebellar ataxia, spasticity, dystonia and myoclonic epilepsy. We previously reported that the absence or mutation of AFG3L2 leads to the accumulation of mitochondria-encoded proteins, causing the overactivation of the stress-sensitive protease OMA1, which over-processes OPA1, leading to mitochondrial fragmentation. Recently, OMA1 has been identified as the pivotal player communicating mitochondrial stress to the cytosol via a pathway involving the inner mitochondrial membrane protein DELE1 and the cytosolic kinase HRI, thus eliciting the integrated stress response. In general, the integrated stress response reduces global protein synthesis and drives the expression of cytoprotective genes that allow cells to endure proteotoxic stress. However, the relevance of the OMA1-DELE1-HRI axis in vivo, and especially in a human CNS disease context, has been poorly documented thus far. In this work, we demonstrated that mitochondrial proteotoxicity in the absence/mutation of AFG3L2 activates the OMA1-DELE1-HRI pathway eliciting the integrated stress response. We found enhanced OMA1-dependent processing of DELE1 upon depletion of AFG3L2. Also, in both skin fibroblasts from SPAX5 patients (including a novel case) and in the cerebellum of Afg3l2-/- mice we detected increased phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α), increased levels of ATF4 and strong upregulation of its downstream targets (Chop, Chac1, Ppp1r15a and Ffg21). Silencing of DELE1 or HRI in SPAX5 fibroblasts (where OMA1 is overactivated at basal state) reduces eIF2α phosphorylation and affects cell growth. In agreement, pharmacological potentiation of integrated stress response via Sephin-1, a drug that selectively inhibits the stress-induced eIF2alpha phosphatase GADD34 (encoded by Ppp1r15a), improved cell growth of SPAX5 fibroblasts and cell survival and dendritic arborization ex vivo in primary Afg3l2-/- Purkinje neurons. Notably, Sephin-1 treatment in vivo extended the lifespan of Afg3l2-/- mice, improved Purkinje neuron morphology, mitochondrial ultrastructure and respiratory capacity. These data indicate that activation of the OMA1-DELE1-HRI pathway is protective in the context of SPAX5. Pharmacological tuning of the integrated stress response may represent a future therapeutic strategy for SPAX5 and other cerebellar ataxias caused by impaired mitochondrial proteostasis.
Collapse
Affiliation(s)
- Camilla Aurora Franchino
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Martina Brughera
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Valentina Baderna
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Daniele De Ritis
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Alessandra Rocco
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Sara Seneca
- Medical Center of Genetic, UZ-VUB, Vrije Universiteit Brussels, 1090 Brussels Jette, Belgium
| | - Luc Regal
- Pediatric Neurology and Metabolism, UZ-VUB, Vrije Universiteit Brussels, 1090 Brussels Jette, Belgium
| | - Paola Podini
- Experimental Neuropathology Unit, Division of Neuroscience and Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Maurizio D’Antonio
- Biology of Myelin Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience and Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Emmanuel Scalais
- Department of Pediatric, Division of Pediatric Neurology, Centre Hospitalier de Luxembourg, L1210 Luxembourg, Luxembourg
| | - Francesca Maltecca
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| |
Collapse
|
4
|
Podmanicky O, Gao F, Munro B, Jennings MJ, Boczonadi V, Hathazi D, Mueller JS, Horvath R. Mitochondrial aminoacyl-tRNA synthetases trigger unique compensatory mechanisms in neurons. Hum Mol Genet 2024; 33:435-447. [PMID: 37975900 PMCID: PMC10877469 DOI: 10.1093/hmg/ddad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
Mitochondrial aminoacyl-tRNA synthetase (mt-ARS) mutations cause severe, progressive, and often lethal diseases with highly heterogeneous and tissue-specific clinical manifestations. This study investigates the molecular mechanisms triggered by three different mt-ARS defects caused by biallelic mutations in AARS2, EARS2, and RARS2, using an in vitro model of human neuronal cells. We report distinct molecular mechanisms of mitochondrial dysfunction among the mt-ARS defects studied. Our findings highlight the ability of proliferating neuronal progenitor cells (iNPCs) to compensate for mitochondrial translation defects and maintain balanced levels of oxidative phosphorylation (OXPHOS) components, which becomes more challenging in mature neurons. Mutant iNPCs exhibit unique compensatory mechanisms, involving specific branches of the integrated stress response, which may be gene-specific or related to the severity of the mitochondrial translation defect. RNA sequencing revealed distinct transcriptomic profiles showing dysregulation of neuronal differentiation and protein translation. This study provides valuable insights into the tissue-specific compensatory mechanisms potentially underlying the phenotypes of patients with mt-ARS defects. Our novel in vitro model may more accurately represent the neurological presentation of patients and offer an improved platform for future investigations and therapeutic development.
Collapse
Affiliation(s)
- Oliver Podmanicky
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
| | - Fei Gao
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
| | - Benjamin Munro
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
| | - Matthew J Jennings
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
- Department of Neurology, Columbia University, 630 West 168 St, New York, NY 10032, United States
| | - Veronika Boczonadi
- Biosciences Institute, International Centre for Life, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Denisa Hathazi
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
| | - Juliane S Mueller
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
- Dubowitz Neuromuscular Centre, Department of Neuropathology, Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
| | - Rita Horvath
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
| |
Collapse
|
5
|
Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Romero-Domínguez JM, Reche-López D, López-Cabrera A, Álvarez-Córdoba M, Munuera-Cabeza M, Talaverón-Rey M, Suárez-Carrillo A, Romero-González A, Sánchez-Alcázar JA. Mitochondrial Quality Control via Mitochondrial Unfolded Protein Response (mtUPR) in Ageing and Neurodegenerative Diseases. Biomolecules 2023; 13:1789. [PMID: 38136659 PMCID: PMC10741690 DOI: 10.3390/biom13121789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondria play a key role in cellular functions, including energy production and oxidative stress regulation. For this reason, maintaining mitochondrial homeostasis and proteostasis (homeostasis of the proteome) is essential for cellular health. Therefore, there are different mitochondrial quality control mechanisms, such as mitochondrial biogenesis, mitochondrial dynamics, mitochondrial-derived vesicles (MDVs), mitophagy, or mitochondrial unfolded protein response (mtUPR). The last item is a stress response that occurs when stress is present within mitochondria and, especially, when the accumulation of unfolded and misfolded proteins in the mitochondrial matrix surpasses the folding capacity of the mitochondrion. In response to this, molecular chaperones and proteases as well as the mitochondrial antioxidant system are activated to restore mitochondrial proteostasis and cellular function. In disease contexts, mtUPR modulation holds therapeutic potential by mitigating mitochondrial dysfunction. In particular, in the case of neurodegenerative diseases, such as primary mitochondrial diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), or Friedreich's Ataxia (FA), there is a wealth of evidence demonstrating that the modulation of mtUPR helps to reduce neurodegeneration and its associated symptoms in various cellular and animal models. These findings underscore mtUPR's role as a promising therapeutic target in combating these devastating disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jose Antonio Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.); (M.Á.-C.); (M.M.-C.); (M.T.-R.); (A.S.-C.); (A.R.-G.)
| |
Collapse
|
6
|
Sherlock DN, Abdel-Hamied E, Bucktrout R, Liang Y, Miura M, Loor JJ. Postruminal choline supply during negative nutrient balance alters components of hepatic mTOR signaling and plasma amino acids in lactating Holstein cows. J Dairy Sci 2023; 106:9733-9744. [PMID: 37641280 DOI: 10.3168/jds.2023-23239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/05/2023] [Indexed: 08/31/2023]
Abstract
Choline requirements for dairy cattle are unknown. However, enhanced postruminal supply of choline may increase flux through the methionine cycle to spare Met for other functions such as protein synthesis and phosphatidylcholine (PC) synthesis during periods of negative nutrient balance (NNB). The objective was to investigate the effects of postruminal choline supply during a feed restriction-induced NNB on hepatic abundance and phosphorylation of mTOR (mechanistic target of rapamycin)-related signaling proteins, hepatic lipidome and plasma AA. Ten primiparous rumen-cannulated Holstein cows (158 ± 24 DIM) were used in a replicated 5 × 5 Latin square design with 4 d of treatment and 10 d of recovery (14 d/period). Treatments were unrestricted intake with abomasal infusion of water, restricted intake (R; 60% of net energy for lactation requirements to induce NNB) with abomasal infusion of water (R0) or restriction plus abomasal infusion of 6.25, 12.5, or 25 g/d choline ion. Liver tissue was collected via biopsy on d 5 after infusions ended and used for Western blot analysis to measure proteins involved in mTOR signaling and untargeted lipidomics. Blood was collected on d 1 to 5 for plasma AA analysis. Statistical contrasts for protein and AA data were A0 versus R0 (CONT1), R0 versus the average of choline dose (CONT2) and tests of linear and quadratic effects of choline dose. Analysis of lipidomic data were performed with the web-based metabolomic processing tool MetaboAnalyst 5.0. Ratios of p-RPS6KB1:tRPS6KB1, p-EEF2:tEEF2, and p-EIF2:tEIF2 were greater with R (CONT1). Among those, supply of choline led to decreases in p-EEF2:tEEF2 (CONT2), p-EIF2:tEIF2 and tended to decrease p-EIF4BP1:tEIF4BP1. However, the effect was quadratic only for p-EEF2:tEEF2 and p-EIF2A:tEIF2A, reaching a nadir at 6.25 to 12.5 g/d choline ion. The ratio of p-RPS6KB1:tRPS6KB1 was not affected by supply of choline and was close to 2-fold greater at 25 g/d choline versus A0. Plasma Met concentration decreased with R (CONT1), but increased linearly with choline. Restriction also increased plasma 3-methyl-histidine (CONT1). The partial least squares discriminant analysis model of liver lipids distinguished treatments, with 13.4% of lipids being modified by treatment. One-way ANOVA identified 109 lipids with a false discovery rate ≤0.05. The largest group identified was PC species; all 35 detected decreased with R versus A0, but there were few differences among choline treatments. Overall, data suggested that dephosphorylation of EEF2 and EIF2A due to enhanced choline supply potentially helped maintain or increase protein synthesis during NNB. While activation of mTOR was not altered by choline, this idea of increased protein synthesis is partly supported by the increased circulating Met. However, enhanced postruminal choline had limited effects on the species of lipid produced during a period of NNB.
Collapse
Affiliation(s)
- D N Sherlock
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801
| | - E Abdel-Hamied
- Department of Animal Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - R Bucktrout
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801
| | - Y Liang
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801
| | - M Miura
- Ajinomoto Co. Inc., Kawasaki 210-8681, Japan
| | - J J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801; Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801.
| |
Collapse
|
7
|
Schieweck R, Ciccopiedi G, Klau K, Popper B. Monosomes buffer translational stress to allow for active ribosome elongation. Front Mol Biosci 2023; 10:1158043. [PMID: 37304066 PMCID: PMC10253174 DOI: 10.3389/fmolb.2023.1158043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: The synthesis of proteins is a fundamental process in the life-span of all cells. The activation of ribosomes on transcripts is the starting signal for elongation and, in turn, the translation of an mRNA. Thereby, most mRNAs circulate between single (monosomes) and multi ribosomal particles (polysomes), a process that defines their translational activity. The interplay between monosomes and polysomes is thought to crucially impact translation rate. How monosomes and polysomes are balanced during stress remains, however, elusive. Methods: Here, we set out to investigate the monosome and polysome levels as well as their kinetics under different translational stress conditions including mTOR inhibition, downregulation of the eukaryotic elongation factor 2 (eEF2) and amino acid depletion. Results: By using a timed ribosome runoff approach in combination with polysome profiling, we found that the used translational stressors show very distinct effects on translation. However, they all had in common that the activity of monosomes was preferentially affected. This adaptation seems to be needed for sufficient translation elongation. Even under harsh conditions such as amino acid starvation, we detected active polysomes while monosomes were mostly inactive. Hence, it is plausible that cells compensate the reduced availability of essential factors during stress by adapting the levels of active monosomes to favor sufficient elongation. Discussion: These results suggest that monosome and polysome levels are balanced under stress conditions. Together, our data argue for the existence of translational plasticity that ensure sufficient protein synthesis under stress conditions, a process that is necessary for cell survival and recovery.
Collapse
Affiliation(s)
- Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany
| | - Giuliana Ciccopiedi
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany
| | - Kenneth Klau
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany
| | - Bastian Popper
- Biomedical Center (BMC), Core Facility Animal Models, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
8
|
Bahamondes Lorca VA, Wu S. Ultraviolet Light, Unfolded Protein Response and Autophagy †. Photochem Photobiol 2023; 99:498-508. [PMID: 36591940 DOI: 10.1111/php.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023]
Abstract
The endoplasmic reticulum (ER) plays an important role in the regulation of protein synthesis. Alterations in the folding capacity of the ER induce stress, which activates three ER sensors that mediate the unfolded protein response (UPR). Components of the pathways regulated by these sensors have been shown to regulate autophagy. The last corresponds to a mechanism of self-eating and recycling important for proper cell maintenance. Ultraviolet radiation (UV) is an external damaging stimulus that is known for inducing oxidative stress, and DNA, lipid and protein damage. Many controversies exist regarding the role of UV-inducing ER stress or autophagy. However, a connection between the three of them has not been addressed. In this review, we will discuss the contradictory theories regarding the relationships between UV radiation with the induction of ER stress and autophagy, as well as hypothetic connections between UV, ER stress and autophagy.
Collapse
Affiliation(s)
- Verónica A Bahamondes Lorca
- Edison Biotechnology Institute, Ohio University, Athens, OH.,Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio University, Athens, OH.,Department of Chemistry and Biochemistry, Ohio University, Athens, OH
| |
Collapse
|
9
|
ER Stress-Induced Sphingosine-1-Phosphate Lyase Phosphorylation Potentiates the Mitochondrial Unfolded Protein Response. J Lipid Res 2022; 63:100279. [PMID: 36100091 PMCID: PMC9579414 DOI: 10.1016/j.jlr.2022.100279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
The unfolded protein response (UPR) is an elaborate signaling network that evolved to maintain proteostasis in the endoplasmic reticulum (ER) and mitochondria (mt). These organelles are functionally and physically associated, and consequently, their stress responses are often intertwined. It is unclear how these two adaptive stress responses are coordinated during ER stress. The inositol-requiring enzyme-1 (IRE1), a central ER stress sensor and proximal regulator of the UPRER, harbors dual kinase and endoribonuclease (RNase) activities. IRE1 RNase activity initiates the transcriptional layer of the UPRER, but IRE1’s kinase substrate(s) and their functions are largely unknown. Here, we discovered that sphingosine 1-phosphate (S1P) lyase (SPL), the enzyme that degrades S1P, is a substrate for the mammalian IRE1 kinase. Our data show that IRE1-dependent SPL phosphorylation inhibits SPL’s enzymatic activity, resulting in increased intracellular S1P levels. S1P has previously been shown to induce the activation of mitochondrial UPR (UPRmt) in nematodes. We determined that IRE1 kinase-dependent S1P induction during ER stress potentiates UPRmt signaling in mammalian cells. Phosphorylation of eukaryotic translation initiation factor 2α (eif2α) is recognized as a critical molecular event for UPRmt activation in mammalian cells. Our data further demonstrate that inhibition of the IRE1-SPL axis abrogates the activation of two eif2α kinases, namely double-stranded RNA-activated protein kinase (PKR) and PKR–like ER kinase upon ER stress. These findings show that the IRE1-SPL axis plays a central role in coordinating the adaptive responses of ER and mitochondria to ER stress in mammalian cells.
Collapse
|
10
|
Chen CW, Guan BJ, Alzahrani MR, Gao Z, Gao L, Bracey S, Wu J, Mbow CA, Jobava R, Haataja L, Zalavadia AH, Schaffer AE, Lee H, LaFramboise T, Bederman I, Arvan P, Mathews CE, Gerling IC, Kaestner KH, Tirosh B, Engin F, Hatzoglou M. Adaptation to chronic ER stress enforces pancreatic β-cell plasticity. Nat Commun 2022; 13:4621. [PMID: 35941159 PMCID: PMC9360004 DOI: 10.1038/s41467-022-32425-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic β-cells are prone to endoplasmic reticulum (ER) stress due to their role in insulin secretion. They require sustainable and efficient adaptive stress responses to cope with this stress. Whether episodes of chronic stress directly compromise β-cell identity is unknown. We show here under reversible, chronic stress conditions β-cells undergo transcriptional and translational reprogramming associated with impaired expression of regulators of β-cell function and identity. Upon recovery from stress, β-cells regain their identity and function, indicating a high degree of adaptive plasticity. Remarkably, while β-cells show resilience to episodic ER stress, when episodes exceed a threshold, β-cell identity is gradually lost. Single cell RNA-sequencing analysis of islets from type 1 diabetes patients indicates severe deregulation of the chronic stress-adaptation program and reveals novel biomarkers of diabetes progression. Our results suggest β-cell adaptive exhaustion contributes to diabetes pathogenesis.
Collapse
Affiliation(s)
- Chien-Wen Chen
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mohammed R Alzahrani
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Zhaofeng Gao
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Long Gao
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Syrena Bracey
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jing Wu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Cheikh A Mbow
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Raul Jobava
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Leena Haataja
- The Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI, 48105, USA
| | - Ajay H Zalavadia
- Lerner Research Institute, Cleveland Clinic, 9620 Carnegie Ave N Bldg, Cleveland, OH, 44106, US
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hugo Lee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Peter Arvan
- The Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI, 48105, USA
| | - Clayton E Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, US
| | - Ivan C Gerling
- Department of Medicine, University of Tennessee, Memphis, TN, US
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Boaz Tirosh
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
- The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Feyza Engin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53706, USA.
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53705, USA.
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
11
|
Pitera AP, Szaruga M, Peak‐Chew S, Wingett SW, Bertolotti A. Cellular responses to halofuginone reveal a vulnerability of the GCN2 branch of the integrated stress response. EMBO J 2022; 41:e109985. [PMID: 35466425 PMCID: PMC9156968 DOI: 10.15252/embj.2021109985] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
Halofuginone (HF) is a phase 2 clinical compound that inhibits the glutamyl-prolyl-tRNA synthetase (EPRS) thereby inducing the integrated stress response (ISR). Here, we report that halofuginone indeed triggers the predicted canonical ISR adaptations, consisting of attenuation of protein synthesis and gene expression reprogramming. However, the former is surprisingly atypical and occurs to a similar magnitude in wild-type cells, cells lacking GCN2 and those incapable of phosphorylating eIF2α. Proline supplementation rescues the observed HF-induced changes indicating that they result from inhibition of EPRS. The failure of the GCN2-to-eIF2α pathway to elicit a measurable protective attenuation of translation initiation allows translation elongation defects to prevail upon HF treatment. Exploiting this vulnerability of the ISR, we show that cancer cells with increased proline dependency are more sensitive to halofuginone. This work reveals that the consequences of EPRS inhibition are more complex than anticipated and provides novel insights into ISR signaling, as well as a molecular framework to guide the targeted development of halofuginone as a therapeutic.
Collapse
|
12
|
Oertlin C, Watt K, Ristau J, Larsson O. Anota2seq Analysis for Transcriptome-Wide Studies of mRNA Translation. Methods Mol Biol 2022; 2418:243-268. [PMID: 35119670 DOI: 10.1007/978-1-0716-1920-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
mRNA translation plays a critical role in determining proteome composition. In health, regulation of mRNA translation facilitates rapid gene expression responses to intra- and extracellular signals. Moreover, dysregulated mRNA translation is a common feature in disease states, including neurological disorders and cancer. Yet, most studies of gene expression focus on analysis of mRNA levels, leaving variations in translational efficiencies largely uncharacterized. Here, we outline procedures to identify mRNA-selective alterations in translational efficiencies on a transcriptome-wide scale using the anota2seq package. Anota2seq compares expression data originating from translated mRNA to data from matched total mRNA to identify changes in translated mRNA not paralleled by corresponding changes in total mRNA (interpreted as changes in translational efficiencies impacting protein levels), congruent changes in total and translated mRNA (interpreted as changes in transcription and/or mRNA stability), and changes in total mRNA not paralleled by corresponding alterations in translated mRNA (interpreted as translational buffering). To illustrate the functionality of the anota2seq analysis package, we demonstrate a detailed analysis using a polysome-profiling data set quantified by RNA sequencing, revealing that estrogen receptor α modulates gene expression via a type of translational buffering termed offsetting. Notably, this anota2seq analysis procedure is also applicable to ribosome-profiling (RiboSeq) data sets and can be adapted to a variety of other data types and experimental contexts. Finally, we provide guidance for extending anota2seq analysis to examine associations between untranslated regions and altered translational efficiencies as well as targeted cellular functions to gain insights into mechanisms and phenotypic consequences of altered mRNA translation. Thus, this step-by-step manual allows users to interrogate selective changes in mRNA translation on a transcriptome-wide scale using the Bioconductor package anota2seq.
Collapse
Affiliation(s)
- Christian Oertlin
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Kathleen Watt
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Johannes Ristau
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
13
|
Krzyzosiak A, Pitera AP, Bertolotti A. An Overview of Methods for Detecting eIF2α Phosphorylation and the Integrated Stress Response. Methods Mol Biol 2022; 2428:3-18. [PMID: 35171470 DOI: 10.1007/978-1-0716-1975-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphorylation of the translation initiation factor eIF2α is an adaptive signaling event that is essential for cell and organismal survival from yeast to humans. It is central to the integrated stress response (ISR) that maintains cellular homeostasis in the face of threats ranging from viral infection, amino acid, oxygen, and heme deprivation to the accumulation of misfolded proteins in the endoplasmic reticulum. Phosphorylation of eIF2α has broad physiological, pathological, and therapeutic relevance. However, despite more than two decades of research and growing pharmacological interest, phosphorylation of eIF2α remains difficult to detect and quantify, because of its transient nature and because substoichiometric amounts of this modification are sufficient to profoundly reshape cellular physiology. This review aims to provide a roadmap for facilitating a robust evaluation of eIF2α phosphorylation and its downstream consequences in cells and organisms.
Collapse
|
14
|
Cytosolic Quality Control of Mitochondrial Protein Precursors-The Early Stages of the Organelle Biogenesis. Int J Mol Sci 2021; 23:ijms23010007. [PMID: 35008433 PMCID: PMC8745001 DOI: 10.3390/ijms23010007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
With few exceptions, proteins that constitute the proteome of mitochondria originate outside of this organelle in precursor forms. Such protein precursors follow dedicated transportation paths to reach specific parts of mitochondria, where they complete their maturation and perform their functions. Mitochondrial precursor targeting and import pathways are essential to maintain proper mitochondrial function and cell survival, thus are tightly controlled at each stage. Mechanisms that sustain protein homeostasis of the cytosol play a vital role in the quality control of proteins targeted to the organelle. Starting from their synthesis, precursors are constantly chaperoned and guided to reduce the risk of premature folding, erroneous interactions, or protein damage. The ubiquitin-proteasome system provides proteolytic control that is not restricted to defective proteins but also regulates the supply of precursors to the organelle. Recent discoveries provide evidence that stress caused by the mislocalization of mitochondrial proteins may contribute to disease development. Precursors are not only subject to regulation but also modulate cytosolic machinery. Here we provide an overview of the cellular pathways that are involved in precursor maintenance and guidance at the early cytosolic stages of mitochondrial biogenesis. Moreover, we follow the circumstances in which mitochondrial protein import deregulation disturbs the cellular balance, carefully looking for rescue paths that can restore proteostasis.
Collapse
|
15
|
Hodgson G, Andreeva A, Bertolotti A. Substrate recognition determinants of human eIF2α phosphatases. Open Biol 2021; 11:210205. [PMID: 34847777 PMCID: PMC8633803 DOI: 10.1098/rsob.210205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/21/2021] [Indexed: 01/09/2023] Open
Abstract
Phosphorylation of the translation initiation factor eIF2α is a rapid and vital cellular defence against many forms of stress. In mammals, the levels of eIF2α phosphorylation are set through the antagonistic action of four protein kinases and two heterodimeric protein phosphatases. The phosphatases are composed of the catalytic subunit PP1 and one of two related non-catalytic subunits, PPP1R15A or PPP1R15B (R15A or R15B). Here, we generated a series of R15 truncation mutants and tested their properties in mammalian cells. We show that substrate recruitment is encoded by an evolutionary conserved region in R15s, R15A325-554 and R15B340-639. G-actin, which has been proposed to confer selectivity to R15 phosphatases, does not bind these regions, indicating that it is not required for substrate binding. Fragments containing the substrate-binding regions but lacking the PP1-binding motif trapped the phospho-substrate and caused accumulation of phosphorylated eIF2α in unstressed cells. Activity assays in cells showed that R15A325-674 and R15B340-713, encompassing the substrate-binding region and the PP1-binding region, exhibit wild-type activity. This work identifies the substrate-binding region in R15s, that functions as a phospho-substrate trapping mutant, thereby defining a key region of R15s for follow up studies.
Collapse
Affiliation(s)
- George Hodgson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Antonina Andreeva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
16
|
ATF4-mediated transcriptional regulation protects against β-cell loss during endoplasmic reticulum stress in a mouse model. Mol Metab 2021; 54:101338. [PMID: 34547510 PMCID: PMC8487982 DOI: 10.1016/j.molmet.2021.101338] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Activating transcription factor 4 (ATF4) is a transcriptional regulator of the unfolded protein response and integrated stress response (ISR) that promote the restoration of normal endoplasmic reticulum (ER) function. Previous reports demonstrated that dysregulation of the ISR led to development of severe diabetes. However, the contribution of ATF4 to pancreatic β-cells remains poorly understood. In this study, we aimed to analyze the effect of ISR enhancer Sephin1 and ATF4-deficient β-cells to clarify the role of ATF4 in β-cells under ER stress conditions. METHODS To examine the role of ATF4 in vivo, ISR enhancer Sephin1 (5 mg/kg body weight, p.o.) was administered daily for 21 days to Akita mice. We also established β-cell-specific Atf4 knockout (βAtf4-KO) mice that were further crossed with Akita mice. These mice were analyzed for characteristics of diabetes, β-cell function, and morphology of the islets. To identify the downstream factors of ATF4 in β-cells, the islets of βAtf4-KO mice were subjected to cDNA microarray analyses. To examine the transcriptional regulation by ATF4, we also performed in situ PCR analysis of pancreatic sections from mice and ChIP-qPCR analysis of CT215 β-cells. RESULTS Administration of the ISR enhancer Sephin1 improved glucose metabolism in Akita mice. Sephin1 also increased the insulin-immunopositive area and ATF4 expression in the pancreatic islets. Akita/βAtf4-KO mice exhibited dramatically exacerbated diabetes, shown by hyperglycemia at an early age, as well as a remarkably short lifespan owing to diabetic ketoacidosis. Moreover, the islets of Akita/βAtf4-KO mice presented increased numbers of cells stained for glucagon, somatostatin, and pancreatic polypeptide and increased expression of aldehyde dehydrogenase 1 family member 3, a marker of dedifferentiation. Using microarray analysis, we identified atonal BHLH transcription factor 8 (ATOH8) as a downstream factor of ATF4. Deletion of ATF4 in β-cells showed reduced Atoh8 expression and increased expression of undifferentiated markers, Nanog and Pou5f1. Atoh8 expression was also abolished in the islets of Akita/βAtf4-KO mice. CONCLUSIONS We conclude that transcriptional regulation by ATF4 maintains β-cell identity via ISR modulation. This mechanism provides a promising target for the treatment of diabetes.
Collapse
|
17
|
Curdy N, Lanvin O, Cadot S, Laurent C, Fournié JJ, Franchini DM. Stress Granules in the Post-transcriptional Regulation of Immune Cells. Front Cell Dev Biol 2021; 8:611185. [PMID: 33520991 PMCID: PMC7841200 DOI: 10.3389/fcell.2020.611185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Immune cell activation triggers transcriptional and translational programs eliciting cellular processes, such as differentiation or proliferation, essential for an efficient immune response. These dynamic processes require an intricate orchestration of regulatory mechanisms to control the precise spatiotemporal expression of proteins. Post-transcriptional regulation ensures the control of messenger RNA metabolism and appropriate translation. Among these post-transcriptional regulatory mechanisms, stress granules participate in the control of protein synthesis. Stress granules are ribonucleoprotein complexes that form upon stress, typically under control of the integrated stress response. Such structures assemble upon stimulation of immune cells where they control selective translational programs ensuring the establishment of accurate effector functions. In this review, we summarize the current knowledge about post-transcriptional regulation in immune cells and highlight the role of stress sensors and stress granules in such regulation.
Collapse
Affiliation(s)
- Nicolas Curdy
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS ERL 5294, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Olivia Lanvin
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS ERL 5294, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Sarah Cadot
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS ERL 5294, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Camille Laurent
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS ERL 5294, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France.,Département de Pathologie, Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
| | - Jean-Jacques Fournié
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS ERL 5294, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Don-Marc Franchini
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS ERL 5294, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| |
Collapse
|