1
|
Pawar AS, Somers P, Alex A, George SS, Antony C, Verner R, White-Brown SK, Khera M, Mendoza-Figueroa MS, Liu KF, Morrissette JJD, Paralkar VR. Leukemia-mutated proteins PHF6 and PHIP form a chromatin complex that represses acute myeloid leukemia stemness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.625909. [PMID: 39677666 PMCID: PMC11642813 DOI: 10.1101/2024.11.29.625909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Myeloid leukemias are heterogeneous cancers with diverse mutations, sometimes in genes with unclear roles and unknown functional partners. PHF6 and PHIP are two poorly-understood chromatin-binding proteins recurrently mutated in acute myeloid leukemia (AML). PHF6 mutations are associated with poorer outcomes, while PHIP was recently identified as the most common selective mutation in Black patients in AML. Here, we show that PHF6 is a transcriptional repressor that suppresses a stemness gene network, and that PHF6 missense mutations, classified by current clinical algorithms as variants of unknown significance, produce unstable or non-functional protein. We present multiple lines of evidence converging on a critical mechanistic connection between PHF6 and PHIP. We show that PHIP loss phenocopies PHF6 loss, and that PHF6 requires PHIP to occupy chromatin and exert its downstream transcriptional program. Our work unifies PHF6 and PHIP, two disparate leukemia-mutated proteins, into a common functional complex that suppresses AML stemness.
Collapse
Affiliation(s)
- Aishwarya S Pawar
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Biomedical Graduate Studies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Patrick Somers
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Aleena Alex
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Subin S George
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Charles Antony
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Roman Verner
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sanese K White-Brown
- Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mohit Khera
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - María Saraí Mendoza-Figueroa
- Department of Biochemistry & Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry & Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jennifer J D Morrissette
- Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vikram R Paralkar
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Colicino-Murbach E, Hathaway C, Dungrawala H. Replication fork stalling in late S-phase elicits nascent strand degradation by DNA mismatch repair. Nucleic Acids Res 2024; 52:10999-11013. [PMID: 39180395 PMCID: PMC11472054 DOI: 10.1093/nar/gkae721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/03/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
Eukaryotic chromosomal replication occurs in a segmented, temporal manner wherein open euchromatin and compact heterochromatin replicate during early and late S-phase respectively. Using single molecule DNA fiber analyses coupled with cell synchronization, we find that newly synthesized strands remain stable at perturbed forks in early S-phase. Unexpectedly, stalled forks are susceptible to nucleolytic digestion during late replication resulting in defective fork restart. This inherent vulnerability to nascent strand degradation is dependent on fork reversal enzymes and resection nucleases MRE11, DNA2 and EXO1. Inducing chromatin compaction elicits digestion of nascent DNA in response to fork stalling due to reduced association of RAD51 with nascent DNA. Furthermore, RAD51 occupancy at stalled forks in late S-phase is diminished indicating that densely packed chromatin limits RAD51 accessibility to mediate replication fork protection. Genetic analyses reveal that susceptibility of late replicating forks to nascent DNA digestion is dependent on EXO1 via DNA mismatch repair (MMR) and that the BRCA2-mediated replication fork protection blocks MMR from degrading nascent DNA. Overall, our findings illustrate differential regulation of fork protection between early and late replication and demonstrate nascent strand degradation as a critical determinant of heterochromatin instability in response to replication stress.
Collapse
Affiliation(s)
| | - Caitlin Hathaway
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Huzefa Dungrawala
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
3
|
de Fallois J, Sieckmann T, Schönauer R, Petzold F, Münch J, Pauly M, Vasileiou G, Findeisen C, Kampmeier A, Kuechler A, Reis A, Decker E, Bergmann C, Platzer K, Tasic V, Kirschner KM, Shril S, Hildebrandt F, Chung WK, Halbritter J. Pathogenic PHIP Variants are Variably Associated With CAKUT. Kidney Int Rep 2024; 9:2484-2497. [PMID: 39156152 PMCID: PMC11328576 DOI: 10.1016/j.ekir.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney disease in children. Although only 20% of cases can be genetically explained, the majority remain without an identified underlying etiology. The neurodevelopmental disorder Chung-Jansen syndrome (CHUJANS) is caused by haploinsufficiency of Pleckstrin homology domain-interacting protein (PHIP) and was previously associated with genital malformations. Anecdotal coincidence of CHUJANS and CAKUT prompted us to investigate whether urorenal malformations are part of the phenotypic spectrum of CHUJANS. Methods Analysis of existing CHUJANS and CAKUT cohorts, consulting matchmaking platforms, and systematic literature review to look for additional patients with both CHUJANS and CAKUT. Prenatal expression studies in murine and human renal tissues to investigate the role for PHIP in kidney development. Results We identified 4 novel and 8 published cases, indicating variable expressivity with a urorenogenital trait frequency of 5% to 35%. The prenatal expression studies supported a role for PHIP in normal kidney and urinary tract development. Conclusion Pathogenic PHIP gene variants should be considered as causative in patients with syndromal CAKUT. Conversely, patients with CHUJANS should be clinically evaluated for urorenogenital manifestations. Because neurodevelopmental disorders are often associated with kidney phenotypes, an interdisciplinary re-evaluation offers promise in identifying incompletely penetrant kidney associations and uncovering novel molecular mechanisms of disturbed nephrogenesis.
Collapse
Affiliation(s)
- Jonathan de Fallois
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Tobias Sieckmann
- Institute of Translational Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ria Schönauer
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Friederike Petzold
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Johannes Münch
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Melissa Pauly
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Georgia Vasileiou
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christin Findeisen
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Antje Kampmeier
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva Decker
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | | | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Velibor Tasic
- Faculty of Medicine, University Ss. Cyril and Methodius, Skopje, North Macedonia
| | | | - Shirlee Shril
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wendy K. Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan Halbritter
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Vos N, Haghshenas S, van der Laan L, Russel PKM, Rooney K, Levy MA, Relator R, Kerkhof J, McConkey H, Maas SM, Vissers LELM, de Vries BBA, Pfundt R, Elting MW, van Hagen JM, Verbeek NE, Jongmans MCJ, Lakeman P, Rumping L, Bosch DGM, Vitobello A, Thauvin-Robinet C, Faivre L, Nambot S, Garde A, Willems M, Genevieve D, Nicolas G, Busa T, Toutain A, Gérard M, Bizaoui V, Isidor B, Merla G, Accadia M, Schwartz CE, Ounap K, Hoffer MJV, Nezarati MM, van den Boogaard MJH, Tedder ML, Rogers C, Brusco A, Ferrero GB, Spodenkiewicz M, Sidlow R, Mussa A, Trajkova S, McCann E, Mroczkowski HJ, Jansen S, Donker-Kaat L, Duijkers FAM, Stuurman KE, Mannens MMAM, Alders M, Henneman P, White SM, Sadikovic B, van Haelst MM. The detection of a strong episignature for Chung-Jansen syndrome, partially overlapping with Börjeson-Forssman-Lehmann and White-Kernohan syndromes. Hum Genet 2024; 143:761-773. [PMID: 38787418 PMCID: PMC11186873 DOI: 10.1007/s00439-024-02679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.
Collapse
Affiliation(s)
- Niels Vos
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Liselot van der Laan
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Perle K M Russel
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Saskia M Maas
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Mariet W Elting
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Johanna M van Hagen
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Marjolijn C J Jongmans
- Department of Genetics, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Phillis Lakeman
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Lynne Rumping
- Center for Medical Genetics, Antwerp University Hospital, University of Antwerp, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Danielle G M Bosch
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Antonio Vitobello
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, FHU-TRANSLAD, Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, 21000, Dijon, France
| | - Christel Thauvin-Robinet
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, FHU-TRANSLAD, Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, 21000, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Déficiences Intellectuelles de Causes Rares», FHU-TRANSLAD, Dijon, France
| | - Laurence Faivre
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs», FHU-TRANSLAD, Dijon, France
| | - Sophie Nambot
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, FHU-TRANSLAD, Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, 21000, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs», FHU-TRANSLAD, Dijon, France
| | - Aurore Garde
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Déficiences Intellectuelles de Causes Rares», FHU-TRANSLAD, Dijon, France
| | - Marjolaine Willems
- INserm U1183, Department of Clinical Genetics, Montpellier University, 34090 CHU Montpellier, Montpellier, France
| | - David Genevieve
- INserm U1183, Department of Clinical Genetics, Montpellier University, 34090 CHU Montpellier, Montpellier, France
| | - Gaël Nicolas
- Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, Univ Rouen Normandie, 76000, Rouen, France
| | - Tiffany Busa
- Department of Medical Genetics, Timone Hospital, Marseille, France
| | - Annick Toutain
- Genetics Department, University Hospital, UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | - Marion Gérard
- APHP, Department of Genetics, Robert Debré Hospital, 75019, Paris, France
| | - Varoona Bizaoui
- Clinical Genetics and Neurodevelopmental Disorders, Centre Hospitalier de L'Estran, 50170, Pontorson, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, 44000, Nantes, France
| | - Giuseppe Merla
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Foggia, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Maria Accadia
- Servizio di Genetica Medica, Ospedale Cardinale G. Panico, Tricase, LE, Italy
| | - Charles E Schwartz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Katrin Ounap
- Department of Clinical Genetics, Genetic and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Mariëtte J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjan M Nezarati
- Genetics Program, North York General Hospital, Toronto, ON, M2K 1E1, Canada
| | | | | | | | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
- Unit of Medical Genetics, Città Della Salute e Della Scienza Hospital, Turin, Italy
| | - Giovanni B Ferrero
- Department of Clinical and Biological Science, University of Torino, Turin, Italy
| | | | - Richard Sidlow
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA, USA
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
- Pediatric Clinical Genetics Unit, Regina Margherita Childrens' Hospital, Turin, Italy
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Emma McCann
- Liverpool Center for Genomic Medicine, Liverpool Women's Hospital, Liverpool, UK
| | - Henry J Mroczkowski
- Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, TN, USA
- Division of Genetics, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sandra Jansen
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Laura Donker-Kaat
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Floor A M Duijkers
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Kyra E Stuurman
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marcel M A M Mannens
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Mariëlle Alders
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Peter Henneman
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada.
| | - Mieke M van Haelst
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands.
- Amsterdam UMC, Department of Paediatrics, Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Xu MJ, Jordan PW. SMC5/6 Promotes Replication Fork Stability via Negative Regulation of the COP9 Signalosome. Int J Mol Sci 2024; 25:952. [PMID: 38256025 PMCID: PMC10815603 DOI: 10.3390/ijms25020952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
It is widely accepted that DNA replication fork stalling is a common occurrence during cell proliferation, but there are robust mechanisms to alleviate this and ensure DNA replication is completed prior to chromosome segregation. The SMC5/6 complex has consistently been implicated in the maintenance of replication fork integrity. However, the essential role of the SMC5/6 complex during DNA replication in mammalian cells has not been elucidated. In this study, we investigate the molecular consequences of SMC5/6 loss at the replication fork in mouse embryonic stem cells (mESCs), employing the auxin-inducible degron (AID) system to deplete SMC5 acutely and reversibly in the defined cellular contexts of replication fork stall and restart. In SMC5-depleted cells, we identify a defect in the restart of stalled replication forks, underpinned by excess MRE11-mediated fork resection and a perturbed localization of fork protection factors to the stalled fork. Previously, we demonstrated a physical and functional interaction of SMC5/6 with the COP9 signalosome (CSN), a cullin deneddylase that enzymatically regulates cullin ring ligase (CRL) activity. Employing a combination of DNA fiber techniques, the AID system, small-molecule inhibition assays, and immunofluorescence microscopy analyses, we show that SMC5/6 promotes the localization of fork protection factors to stalled replication forks by negatively modulating the COP9 signalosome (CSN). We propose that the SMC5/6-mediated modulation of the CSN ensures that CRL activity and their roles in DNA replication fork stabilization are maintained to allow for efficient replication fork restart when a replication fork stall is alleviated.
Collapse
Affiliation(s)
- Michelle J. Xu
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Philip W. Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
6
|
Tirado-Class N, Hathaway C, Nelligan A, Nguyen T, Dungrawala H. DCAF14 regulates CDT2 to promote SET8-dependent replication fork protection. Life Sci Alliance 2024; 7:e202302230. [PMID: 37940188 PMCID: PMC10631547 DOI: 10.26508/lsa.202302230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023] Open
Abstract
DDB1- and CUL4-associated factors (DCAFs) CDT2 and DCAF14 are substrate receptors for Cullin4-RING E3 ubiquitin ligase (CRL4) complexes. CDT2 is responsible for PCNA-coupled proteolysis of substrates CDT1, p21, and SET8 during S-phase of cell cycle. DCAF14 functions at stalled replication forks to promote genome stability, but the mechanism is unknown. We find that DCAF14 mediates replication fork protection by regulating CRL4CDT2 activity. Absence of DCAF14 causes increased proteasomal degradation of CDT2 substrates. When forks are challenged with replication stress, increased CDT2 function causes stalled fork collapse and impairs fork recovery in DCAF14-deficient conditions. We further show that stalled fork protection is dependent on CDT2 substrate SET8 and does not involve p21 and CDT1. Like DCAF14, SET8 blocks nuclease-mediated digestion of nascent DNA at remodeled replication forks. Thus, unregulated CDT2-mediated turnover of SET8 triggers nascent strand degradation when DCAF14 is absent. We propose that DCAF14 controls CDT2 activity at stalled replication forks to facilitate SET8 function in safeguarding genomic integrity.
Collapse
Affiliation(s)
- Neysha Tirado-Class
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Caitlin Hathaway
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Anthony Nelligan
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Thuan Nguyen
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Huzefa Dungrawala
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
7
|
Jo JH, Park JU, Kim YM, Ok SM, Kim DK, Jung DH, Kim HJ, Seong HA, Cho HJ, Nah J, Kim S, Fu H, Redon CE, Aladjem MI, Jang SM. RepID represses megakaryocytic differentiation by recruiting CRL4A-JARID1A at DAB2 promoter. Cell Commun Signal 2023; 21:219. [PMID: 37612584 PMCID: PMC10463337 DOI: 10.1186/s12964-023-01246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Megakaryocytes (MKs) are platelet precursors, which arise from hematopoietic stem cells (HSCs). While MK lineage commitment and differentiation are accompanied by changes in gene expression, many factors that modulate megakaryopoiesis remain to be uncovered. Replication initiation determinant protein (RepID) which has multiple histone-code reader including bromodomain, cryptic Tudor domain and WD40 domains and Cullin 4-RING E3 ubiquitin ligase complex (CRL4) recruited to chromatin mediated by RepID have potential roles in gene expression changes via epigenetic regulations. We aimed to investigate whether RepID-CRL4 participates in transcriptional changes required for MK differentiation. METHODS The PCR array was performed using cDNAs derived from RepID-proficient or RepID-deficient K562 erythroleukemia cell lines. Correlation between RepID and DAB2 expression was examined in the Cancer Cell Line Encyclopedia (CCLE) through the CellMinerCDB portal. The acceleration of MK differentiation in RepID-deficient K562 cells was determined by estimating cell sizes as well as counting multinucleated cells known as MK phenotypes, and by qRT-PCR analysis to validate transcripts of MK markers using phorbol 12-myristate 13-acetate (PMA)-mediated MK differentiation condition. Interaction between CRL4 and histone methylation modifying enzymes were investigated using BioGRID database, immunoprecipitation and proximity ligation assay. Alterations of expression and chromatin binding affinities of RepID, CRL4 and histone methylation modifying enzymes were investigated using subcellular fractionation followed by immunoblotting. RepID-CRL4-JARID1A-based epigenetic changes on DAB2 promoter were analyzed by chromatin-immunoprecipitation and qPCR analysis. RESULTS RepID-deficient K562 cells highly expressing MK markers showed accelerated MKs differentiation exhibiting increases in cell size, lobulated nuclei together with reaching maximum levels of MK marker expression earlier than RepID-proficient K562 cells. Recovery of WD40 domain-containing RepID constructs in RepID-deficient background repressed DAB2 expression. CRL4A formed complex with histone H3K4 demethylase JARID1A in soluble nucleus and loaded to the DAB2 promoter in a RepID-dependent manner during proliferation condition. RepID, CRL4A, and JARID1A were dissociated from the chromatin during MK differentiation, leading to euchromatinization of the DAB2 promoter. CONCLUSION This study uncovered a role for the RepID-CRL4A-JARID1A pathway in the regulation of gene expression for MK differentiation, which can form the basis for the new therapeutic approaches to induce platelet production. Video Abstract.
Collapse
Affiliation(s)
- Jae-Hyun Jo
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jong-Uk Park
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yeong-Mu Kim
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Seon-Mi Ok
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Dong-Kyu Kim
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Dong-Hyun Jung
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hye-Ji Kim
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hyun-A Seong
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hyo Je Cho
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jihoon Nah
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Sangjune Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Sang-Min Jang
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
8
|
Jo JH, Ok SM, Kim DK, Kim YM, Park JU, Jung DH, Kim HJ, Seong HA, Cho HJ, Nah J, Kim S, Fu H, Redon CE, Aladjem MI, Jang SM. RepID represses megakaryocytic differentiation by recruiting CRL4A-JARID1A at DAB2 promoter. RESEARCH SQUARE 2023:rs.3.rs-3045396. [PMID: 37461562 PMCID: PMC10350187 DOI: 10.21203/rs.3.rs-3045396/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Background Megakaryocytes (MKs) are platelet precursors, which arise from hematopoietic stem cells (HSCs). While MK lineage commitment and differentiation are accompanied by changes in gene expression, many factors that modulate megakaryopoiesis remain to be uncovered. Replication origin binding protein (RepID) which has multiple histone-code reader including bromodomain, cryptic Tudor domain and WD40 domains and Cullin 4-RING ubiquitin ligase complex (CRL4) recruited to chromatin mediated by RepID have potential roles in gene expression changes via epigenetic regulations. We aimed to investigate whether RepID-CRL4 participates in transcriptional changes required for MK differentiation. Methods The PCR array was performed using cDNAs derived from RepID-proficient or RepID-deficient K562 erythroleukemia cell lines. Correlation between RepID and DAB2 expression was examined in the Cancer Cell Line Encyclopedia (CCLE) through the CellMinerCDB portal. The acceleration of MK differentiation in RepID-deficient K562 cells was determined by estimating cell sizes as well as counting multinucleated cells known as MK phenotypes, and by qRT-PCR analysis to validate transcripts of MK markers using phorbol 12-myristate 13-acetate (PMA)-mediated MK differentiation condition. Interaction between CRL4 and histone methylation modifying enzymes were investigated using BioGRID database, immunoprecipitation and proximity ligation assay. Alterations of expression and chromatin binding affinities of RepID, CRL4 and histone methylation modifying enzymes were investigated using subcellular fractionation followed by immunoblotting. RepID-CRL4-JARID1A-based epigenetic changes on DAB2 promoter were analyzed by chromatin-immunoprecipitation and qPCR analysis. Results RepID-deficient K562 cells highly expressing MK markers showed accelerated MKs differentiation exhibiting increases in cell size, lobulated nuclei together with reaching maximum levels of MK marker expression earlier than RepID-proficient K562 cells. Recovery of WD40 domain-containing RepID constructs in RepID-deficient background repressed DAB2 expression. CRL4A formed complex with histone H3K4 demethylase JARID1A in soluble nucleus and loaded to the DAB2 promoter in a RepID-dependent manner during proliferation condition. RepID, CRL4A, and JARID1A were dissociated from the chromatin during MK differentiation, leading to euchromatinization of the DAB2 promoter. Conclusion This study uncovered a role for the RepID-CRL4A-JARID1A pathway in the regulation of gene expression for MK differentiation, which can form the basis for the new therapeutic approaches to induce platelet production.
Collapse
|
9
|
Tirado-Class N, Hathaway C, Chung WK, Dungrawala H. PHIP variants associated with Chung-Jansen syndrome disrupt replication fork stability and genome integrity. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006212. [PMID: 35863899 PMCID: PMC9528965 DOI: 10.1101/mcs.a006212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Chung-Jansen syndrome (CJS) is a rare, autosomal dominant disorder characterized by developmental delay, intellectual disability/cognitive impairment, behavioral challenges, obesity, and dysmorphic features. CJS is associated with heterozygous variants in PHIP (Pleckstrin-Homology Interacting Protein), a gene that encodes one of several substrate receptors for Cullin4-RING (CRL4) E3 ubiquitin ligase complex. Full length PHIP, also called DCAF14, was recently identified to function as a replication stress response protein. Herein, we report the identification of two PHIP missense variants identified by exome sequencing in unrelated individuals with CJS. The variants p.D488V and p.E963G occur in different functional elements of DCAF14- WD40 repeat domain and pleckstrin homology-binding region (PBR), respectively. Using DNA fiber assays, we reveal that cells expressing either variant exhibit defective replication fork progression in conditions of replication stress. Furthermore, unlike wild type DCAF14, both variants fail to accomplish DNA replication after exposure to genotoxic stress indicating a critical role of DCAF14 in protecting stalled replication forks. Thus, we have identified replication defects associated with CJS variants and predict replication-associated genome instability with CJS syndrome.
Collapse
|
10
|
Identification of replication fork-associated proteins in Drosophila embryos and cultured cells using iPOND coupled to quantitative mass spectrometry. Sci Rep 2022; 12:6903. [PMID: 35484306 PMCID: PMC9050644 DOI: 10.1038/s41598-022-10821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Replication of the eukaryotic genome requires the formation of thousands of replication forks that must work in concert to accurately replicate the genetic and epigenetic information. Defining replication fork-associated proteins is a key step in understanding how genomes are replicated and repaired in the context of chromatin to maintain genome stability. To identify replication fork-associated proteins, we performed iPOND (Isolation of Proteins on Nascent DNA) coupled to quantitative mass spectrometry in Drosophila embryos and cultured cells. We identified 76 and 278 fork-associated proteins in post-MZT embryos and Drosophila cultured S2 cells, respectively. By performing a targeted screen of a subset of these proteins, we demonstrate that BRWD3, a targeting specificity factor for the DDB1/Cul4 ubiquitin ligase complex (CRL4), functions at or in close proximity to replication forks to promote fork progression and maintain genome stability. Altogether, our work provides a valuable resource for those interested in DNA replication, repair and chromatin assembly during development.
Collapse
|
11
|
Morgan MAJ, Popova IK, Vaidya A, Burg JM, Marunde MR, Rendleman EJ, Dumar ZJ, Watson R, Meiners MJ, Howard SA, Khalatyan N, Vaughan RM, Rothbart SB, Keogh MC, Shilatifard A. A trivalent nucleosome interaction by PHIP/BRWD2 is disrupted in neurodevelopmental disorders and cancer. Genes Dev 2021; 35:1642-1656. [PMID: 34819353 PMCID: PMC8653789 DOI: 10.1101/gad.348766.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022]
Abstract
Mutations in the PHIP/BRWD2 chromatin regulator cause the human neurodevelopmental disorder Chung-Jansen syndrome, while alterations in PHIP expression are linked to cancer. Precisely how PHIP functions in these contexts is not fully understood. Here we demonstrate that PHIP is a chromatin-associated CRL4 ubiquitin ligase substrate receptor and is required for CRL4 recruitment to chromatin. PHIP binds to chromatin through a trivalent reader domain consisting of a H3K4-methyl binding Tudor domain and two bromodomains (BD1 and BD2). Using semisynthetic nucleosomes with defined histone post-translational modifications, we characterize PHIPs BD1 and BD2 as respective readers of H3K14ac and H4K12ac, and identify human disease-associated mutations in each domain and the intervening linker region that likely disrupt chromatin binding. These findings provide new insight into the biological function of this enigmatic chromatin protein and set the stage for the identification of both upstream chromatin modifiers and downstream targets of PHIP in human disease.
Collapse
Affiliation(s)
- Marc A J Morgan
- Simpson Querrey Center for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | - Anup Vaidya
- EpiCypher, Inc., Durham, North Carolina 27709, USA
| | | | | | - Emily J Rendleman
- Simpson Querrey Center for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Zachary J Dumar
- Simpson Querrey Center for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | - Natalia Khalatyan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Robert M Vaughan
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Minnesota 49503, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Minnesota 49503, USA
| | | | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
12
|
Krishnamoorthy A, Jackson J, Mohamed T, Adolph M, Vindigni A, Cortez D. RADX prevents genome instability by confining replication fork reversal to stalled forks. Mol Cell 2021; 81:3007-3017.e5. [PMID: 34107305 DOI: 10.1016/j.molcel.2021.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/02/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
RAD51 facilitates replication fork reversal and protects reversed forks from nuclease degradation. Although potentially a useful replication stress response mechanism, unregulated fork reversal can cause genome instability. Here we show that RADX, a single-strand DNA binding protein that binds to and destabilizes RAD51 nucleofilaments, can either inhibit or promote fork reversal depending on replication stress levels. RADX inhibits fork reversal at elongating forks, thereby preventing fork slowing and collapse. Paradoxically, in the presence of persistent replication stress, RADX localizes to stalled forks to generate reversed fork structures. Consequently, inactivating RADX prevents fork-reversal-dependent telomere dysfunction in the absence of RTEL1 and blocks nascent strand degradation when fork protection factors are inactivated. Addition of RADX increases SMARCAL1-dependent fork reversal in conditions in which pre-binding RAD51 to a model fork substrate is inhibitory. Thus, RADX directly interacts with RAD51 and single-strand DNA to confine fork reversal to persistently stalled forks.
Collapse
Affiliation(s)
- Archana Krishnamoorthy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Jessica Jackson
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Taha Mohamed
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Madison Adolph
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA.
| |
Collapse
|