1
|
Kumari N, Kaur E, Raghavan SC, Sengupta S. Regulation of pathway choice in DNA repair after double-strand breaks. Curr Opin Pharmacol 2024; 80:102496. [PMID: 39724838 DOI: 10.1016/j.coph.2024.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
DNA damage signaling is a highly coordinated cellular process which is required for the removal of DNA lesions. Amongst the different types of DNA damage, double-strand breaks (DSBs) are the most harmful type of lesion that attenuates cellular proliferation. DSBs are repaired by two major pathways-homologous recombination (HR), and non-homologous end-joining (NHEJ) and in some cases by microhomology-mediated end-joining (MMEJ). Preference of the pathway depends on multiple parameters including site of the DNA damage, the cell cycle phase and topology of the DNA lesion. Deregulated repair response contributes to genomic instability resulting in a plethora of diseases including cancer. This review discusses the different molecular players of HR, NHEJ, and MMEJ pathways that control the switch among the different DSB repair pathways. We also highlight the various functions of chromatin modifications in modulating repair response and how deregulated DNA damage repair response may promote oncogenic transformation.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ekjot Kaur
- Biotechnology Research and Innovation Council - National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Sagar Sengupta
- Biotechnology Research and Innovation Council - National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi 110067, India; Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani 741251, India.
| |
Collapse
|
2
|
Wang WJ, Ling YY, Shi Y, Wu XW, Su X, Li ZQ, Mao ZW, Tan CP. Identification of mitochondrial ATP synthase as the cellular target of Ru-polypyridyl- β-carboline complexes by affinity-based protein profiling. Natl Sci Rev 2024; 11:nwae234. [PMID: 39114378 PMCID: PMC11304990 DOI: 10.1093/nsr/nwae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
Ruthenium polypyridyl complexes are promising anticancer candidates, while their cellular targets have rarely been identified, which limits their clinical application. Herein, we design a series of Ru(II) polypyridyl complexes containing bioactive β-carboline derivatives as ligands for anticancer evaluation, among which Ru5 shows suitable lipophilicity, high aqueous solubility, relatively high anticancer activity and cancer cell selectivity. The subsequent utilization of a photo-clickable probe, Ru5a, serves to validate the significance of ATP synthase as a crucial target for Ru5 through photoaffinity-based protein profiling. Ru5 accumulates in mitochondria, impairs mitochondrial functions and induces mitophagy and ferroptosis. Combined analysis of mitochondrial proteomics and RNA-sequencing shows that Ru5 significantly downregulates the expression of the chloride channel protein, and influences genes related to ferroptosis and epithelial-to-mesenchymal transition. Finally, we prove that Ru5 exhibits higher anticancer efficacy than cisplatin in vivo. We firstly identify the molecular targets of ruthenium polypyridyl complexes using a photo-click proteomic method coupled with a multiomics approach, which provides an innovative strategy to elucidate the anticancer mechanisms of metallo-anticancer candidates.
Collapse
Affiliation(s)
- Wen-Jin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yu-Yi Ling
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yin Shi
- School of Pharmacy, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Xiao-Wen Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xuxian Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zheng-Qiu Li
- School of Pharmacy, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Lin HY, Mohammadhosseini M, McClatchy J, Villamor-Payà M, Jeng S, Bottomly D, Tsai CF, Posso C, Jacobson J, Adey A, Gosline S, Liu T, McWeeney S, Stracker TH, Agarwal A. The TLK-ASF1 histone chaperone pathway plays a critical role in IL-1β-mediated AML progression. Blood 2024; 143:2749-2762. [PMID: 38498025 PMCID: PMC11340594 DOI: 10.1182/blood.2023022079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Identifying and targeting microenvironment-driven pathways that are active across acute myeloid leukemia (AML) genetic subtypes should allow the development of more broadly effective therapies. The proinflammatory cytokine interleukin-1β (IL-1β) is abundant in the AML microenvironment and promotes leukemic growth. Through RNA-sequencing analysis, we identify that IL-1β-upregulated ASF1B (antisilencing function-1B), a histone chaperone, in AML progenitors compared with healthy progenitors. ASF1B, along with its paralogous protein ASF1A, recruits H3-H4 histones onto the replication fork during S-phase, a process regulated by Tousled-like kinase 1 and 2 (TLKs). Although ASF1s and TLKs are known to be overexpressed in multiple solid tumors and associated with poor prognosis, their functional roles in hematopoiesis and inflammation-driven leukemia remain unexplored. In this study, we identify that ASF1s and TLKs are overexpressed in multiple genetic subtypes of AML. We demonstrate that depletion of ASF1s significantly reduces leukemic cell growth in both in vitro and in vivo models using human cells. Using a murine model, we show that overexpression of ASF1B accelerates leukemia progression. Moreover, Asf1b or Tlk2 deletion delayed leukemia progression, whereas these proteins are dispensable for normal hematopoiesis. Through proteomics and phosphoproteomics analyses, we uncover that the TLK-ASF1 pathway promotes leukemogenesis by affecting the cell cycle and DNA damage pathways. Collectively, our findings identify the TLK1-ASF1 pathway as a novel mediator of inflammatory signaling and a promising therapeutic target for AML treatment across diverse genetic subtypes. Selective inhibition of this pathway offers potential opportunities to intervene effectively, address intratumoral heterogeneity, and ultimately improve clinical outcomes in AML.
Collapse
Affiliation(s)
- Hsin-Yun Lin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR
- Department of Oncogenic Science, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - Mona Mohammadhosseini
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR
- Department of Oncogenic Science, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - John McClatchy
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR
- Department of Oncogenic Science, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - Marina Villamor-Payà
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sophia Jeng
- Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, OR
| | - Daniel Bottomly
- Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, OR
| | - Chia-Feng Tsai
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
| | - Camilo Posso
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
| | - Jeremy Jacobson
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
| | - Andrew Adey
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
| | - Sara Gosline
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
| | - Tao Liu
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
| | - Shannon McWeeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, OR
| | - Travis H. Stracker
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR
- Department of Oncogenic Science, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| |
Collapse
|
4
|
Stixová L, Tichý V, Bártová E. RNA-related DNA damage and repair: The role of N7-methylguanosine in the cell nucleus exposed to UV light. Heliyon 2024; 10:e25599. [PMID: 38370261 PMCID: PMC10869776 DOI: 10.1016/j.heliyon.2024.e25599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Background Chemical modifications in mRNAs, tRNAs, rRNAs, and non-coding RNAs stabilize these nucleic acids and regulate their function. In addition to regulating the translation of genetic information from mRNA to proteins, it has been revealed that modifications in RNAs regulate repair processes in the genome. Methods Using local laser microirradiation, confocal microscopy, dot blots, and mass spectrometry we studied the role of N7-methylguanosine (m7G), which is co-transcriptionally installed in RNA. Results Here, we show that after UVC and UVA irradiation, the level of m7G RNA is increased initially in the cytoplasm, and after local laser microirradiation, m7G RNA is highly abundant in UVA-damaged chromatin. This process is poly(ADP-ribose) polymerase (PARP)-dependent, but not accompanied by changes in the level of m7G-writers, including methyltransferases RNMT, METTL1, and WBSCR22. We also observed that METTL1 deficiency does not affect the recruitment of m7G RNA to microirradiated chromatin. Analyzing the levels of mRNA, let-7e, and miR-203a in both the cytoplasm and the cell nucleus, we revealed that UVC irradiation changed the level of mRNA, and significantly increased the pool of both let-7e and miR-203a, which correlated with radiation-induced m7G RNA increase in the cytoplasm. Conclusions Irradiation by UV light increases the m7G RNA pool in the cytoplasm and in the microirradiated genome. Thus, epigenetically modified RNAslikely contribute to DNA damage responses or m7G signals the presence of RNA damage.
Collapse
Affiliation(s)
- Lenka Stixová
- Department of Cell Biology and Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, Brno, Czech Republic
| | - Vlastimil Tichý
- Department of Cell Biology and Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, Brno, Czech Republic
| | - Eva Bártová
- Department of Cell Biology and Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, Brno, Czech Republic
| |
Collapse
|
5
|
Gaur T, Ali A, Sharma D, Gupta SK, Gota V, Bagal B, Platzbeckar U, Mishra R, Dutt A, Khattry N, Mills K, Hassan MI, Sandur S, Hasan SK. Mitocurcumin utilizes oxidative stress to upregulate JNK/p38 signaling and overcomes Cytarabine resistance in acute myeloid leukemia. Cell Signal 2024; 114:111004. [PMID: 38048856 DOI: 10.1016/j.cellsig.2023.111004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Acute myeloid leukemia (AML) is a type of blood cancer that is characterized by the rapid growth of abnormal myeloid cells. The goal of AML treatment is to eliminate the leukemic blasts, which is accomplished through intensive chemotherapy. Cytarabine is a key component of the standard induction chemotherapy regimen for AML. However, despite a high remission rate, 70-80% of AML patients relapse and develop resistance to Cytarabine, leading to poor clinical outcomes. Mitocurcumin (MitoC), a derivative of curcumin that enters mitochondria, leading to a drop in mitochondrial membrane potential and mitophagy induction. Further, it activates oxidative stress-mediated JNK/p38 signaling to induce apoptosis. MitoC demonstrated a preferential ability to kill leukemic cells from AML cell lines and patient-derived leukemic blasts. RNA sequencing data suggests perturbation of DNA damage response and cell proliferation pathways in MitoC-treated AML. Elevated reactive oxygen species (ROS) in MitoC-treated AML cells resulted in significant DNA damage and cell cycle arrest. Further, MitoC treatment resulted in ROS-mediated enhanced levels of p21, which leads to suppression of CHK1, RAD51, Cyclin-D and c-Myc oncoproteins, potentially contributing to Cytarabine resistance. Combinatorial treatment of MitoC and Cytarabine has shown synergism, increased apoptosis, and enhanced DNA damage. Using AML xenografts, a significant reduction of hCD45+ cells was observed in AML mice bone marrow treated with MitoC (mean 0.6%; range0.04%-3.56%) compared to control (mean 38.2%; range10.1%-78%), p = 0.03. The data suggest that MitoC exploits stress-induced leukemic oxidative environment to up-regulate JNK/p38 signaling to lead to apoptosis and can potentially overcome Cytarabine resistance via ROS/p21/CHK1 axis.
Collapse
Affiliation(s)
- Tarang Gaur
- Hasan Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India
| | - Ahlam Ali
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Deepak Sharma
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India; Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Saurabh Kumar Gupta
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India; Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Vikram Gota
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India; Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Bhausaheb Bagal
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India; Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai 400014, India
| | - Uwe Platzbeckar
- Medical Clinic and Policlinic I, Hematology and Cellular Therapy, University Hospital Leipzig, Johannisallee 32, D-04103 Leipzig, Germany
| | - Rohit Mishra
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India; Dutt Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, India
| | - Amit Dutt
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India; Dutt Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, India
| | - Navin Khattry
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India; Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai 400014, India
| | - Ken Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Santosh Sandur
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India; Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Syed K Hasan
- Hasan Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
6
|
Stracker TH, Osagie OI, Escorcia FE, Citrin DE. Exploiting the DNA Damage Response for Prostate Cancer Therapy. Cancers (Basel) 2023; 16:83. [PMID: 38201511 PMCID: PMC10777950 DOI: 10.3390/cancers16010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancers that progress despite androgen deprivation develop into castration-resistant prostate cancer, a fatal disease with few treatment options. In this review, we discuss the current understanding of prostate cancer subtypes and alterations in the DNA damage response (DDR) that can predispose to the development of prostate cancer and affect its progression. We identify barriers to conventional treatments, such as radiotherapy, and discuss the development of new therapies, many of which target the DDR or take advantage of recurring genetic alterations in the DDR. We place this in the context of advances in understanding the genetic variation and immune landscape of CRPC that could help guide their use in future treatment strategies. Finally, we discuss several new and emerging agents that may advance the treatment of lethal disease, highlighting selected clinical trials.
Collapse
Affiliation(s)
- Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Oloruntoba I. Osagie
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Freddy E. Escorcia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E. Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| |
Collapse
|
7
|
Hunia J, Gawalski K, Szredzka A, Suskiewicz MJ, Nowis D. The potential of PARP inhibitors in targeted cancer therapy and immunotherapy. Front Mol Biosci 2022; 9:1073797. [PMID: 36533080 PMCID: PMC9751342 DOI: 10.3389/fmolb.2022.1073797] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 07/29/2023] Open
Abstract
DNA damage response (DDR) deficiencies result in genome instability, which is one of the hallmarks of cancer. Poly (ADP-ribose) polymerase (PARP) enzymes take part in various DDR pathways, determining cell fate in the wake of DNA damage. PARPs are readily druggable and PARP inhibitors (PARPi) against the main DDR-associated PARPs, PARP1 and PARP2, are currently approved for the treatment of a range of tumor types. Inhibition of efficient PARP1/2-dependent DDR is fatal for tumor cells with homologous recombination deficiencies (HRD), especially defects in breast cancer type 1 susceptibility protein 1 or 2 (BRCA1/2)-dependent pathway, while allowing healthy cells to survive. Moreover, PARPi indirectly influence the tumor microenvironment by increasing genomic instability, immune pathway activation and PD-L1 expression on cancer cells. For this reason, PARPi might enhance sensitivity to immune checkpoint inhibitors (ICIs), such as anti-PD-(L)1 or anti-CTLA4, providing a rationale for PARPi-ICI combination therapies. In this review, we discuss the complex background of the different roles of PARP1/2 in the cell and summarize the basics of how PARPi work from bench to bedside. Furthermore, we detail the early data of ongoing clinical trials indicating the synergistic effect of PARPi and ICIs. We also introduce the diagnostic tools for therapy development and discuss the future perspectives and limitations of this approach.
Collapse
Affiliation(s)
- Jaromir Hunia
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Karol Gawalski
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Lei T, Du S, Peng Z, Chen L. Multifaceted regulation and functions of 53BP1 in NHEJ‑mediated DSB repair (Review). Int J Mol Med 2022; 50:90. [PMID: 35583003 PMCID: PMC9162042 DOI: 10.3892/ijmm.2022.5145] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) is crucial for the preservation of genomic integrity and the maintenance of cellular homeostasis. Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism for any type of DNA DSB during the majority of the cell cycle. NHEJ defects regulate tumor sensitivity to ionizing radiation and anti-neoplastic agents, resulting in immunodeficiencies and developmental abnormalities in malignant cells. p53-binding protein 1 (53BP1) is a key mediator involved in DSB repair, which functions to maintain a balance in the repair pathway choices and in preserving genomic stability. 53BP1 promotes DSB repair via NHEJ and antagonizes DNA end overhang resection. At present, novel lines of evidence have revealed the molecular mechanisms underlying the recruitment of 53BP1 and DNA break-responsive effectors to DSB sites, and the promotion of NHEJ-mediated DSB repair via 53BP1, while preventing homologous recombination. In the present review article, recent advances made in the elucidation of the structural and functional characteristics of 53BP1, the mechanisms of 53BP1 recruitment and interaction with the reshaping of the chromatin architecture around DSB sites, the post-transcriptional modifications of 53BP1, and the up- and downstream pathways of 53BP1 are discussed. The present review article also focuses on the application perspectives, current challenges and future directions of 53BP1 research.
Collapse
Affiliation(s)
- Tiantian Lei
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Zhe Peng
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Lin Chen
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| |
Collapse
|
9
|
Liu Y, Ma G, Gao Z, Li J, Wang J, Zhu X, Ma R, Yang J, Zhou Y, Hu K, Zhang Y, Guo Y. Global chromosome rearrangement induced by CRISPR-Cas9 reshapes the genome and transcriptome of human cells. Nucleic Acids Res 2022; 50:3456-3474. [PMID: 35244719 PMCID: PMC8989517 DOI: 10.1093/nar/gkac153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/29/2022] [Accepted: 02/19/2022] [Indexed: 11/25/2022] Open
Abstract
Chromosome rearrangement plays important roles in development, carcinogenesis and evolution. However, its mechanism and subsequent effects are not fully understood. Large-scale chromosome rearrangement has been performed in the simple eukaryote, wine yeast, but the relative research in mammalian cells remains at the level of individual chromosome rearrangement due to technical limitations. In this study, we used CRISPR-Cas9 to target the highly repetitive human endogenous retrotransposons, LINE-1 and Alu, resulting in a large number of DNA double-strand breaks in the chromosomes. While this operation killed the majority of the cells, we eventually obtained live cell groups. Karyotype analysis and genome re-sequencing proved that we have achieved global chromosome rearrangement (GCR) in human cells. The copy number variations of the GCR genomes showed typical patterns observed in tumor genomes. The ATAC-seq and RNA-seq further revealed that the epigenetic and transcriptomic landscapes were deeply reshaped by GCR. Gene expressions related to p53 pathway, DNA repair, cell cycle and apoptosis were greatly altered to facilitate the cell survival. Our study provided a new application of CRISPR-Cas9 and a practical approach for GCR in complex mammalian genomes.
Collapse
Affiliation(s)
- Ying Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Guangwei Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zenghong Gao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiangping Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ruowu Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiawen Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yiting Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yabin Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
10
|
Molinaro C, Martoriati A, Cailliau K. Proteins from the DNA Damage Response: Regulation, Dysfunction, and Anticancer Strategies. Cancers (Basel) 2021; 13:3819. [PMID: 34359720 PMCID: PMC8345162 DOI: 10.3390/cancers13153819] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Cells respond to genotoxic stress through a series of complex protein pathways called DNA damage response (DDR). These monitoring mechanisms ensure the maintenance and the transfer of a correct genome to daughter cells through a selection of DNA repair, cell cycle regulation, and programmed cell death processes. Canonical or non-canonical DDRs are highly organized and controlled to play crucial roles in genome stability and diversity. When altered or mutated, the proteins in these complex networks lead to many diseases that share common features, and to tumor formation. In recent years, technological advances have made it possible to benefit from the principles and mechanisms of DDR to target and eliminate cancer cells. These new types of treatments are adapted to the different types of tumor sensitivity and could benefit from a combination of therapies to ensure maximal efficiency.
Collapse
Affiliation(s)
| | | | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| |
Collapse
|