1
|
Sorrentino FS, Di Terlizzi P, De Rosa F, Salati C, Spadea L, Gagliano C, Musa M, Zeppieri M. New frontiers in retinal transplantation. World J Transplant 2024; 14:97690. [DOI: 10.5500/wjt.v14.i4.97690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/20/2024] Open
Abstract
New frontiers about retinal cell transplantation for retinal degenerative diseases start from the idea that acting on stem cells can help regenerate retinal layers and establish new synapses among retinal cells. Deficiency or alterations of synaptic input and neurotrophic factors result in trans-neuronal degeneration of the inner retinal cells. Thus, the disruption of photoreceptors takes place. However, even in advanced forms of retinal degeneration, a good percentage of the ganglion cells and the inner nuclear layer neurons remain intact. This phenomenon provides evidence for obtaining retinal circuitry through the transplantation of photoreceptors into the subretinal region. The eye is regarded as an optimal organ for cell transplantation because of its immunological privilege and the relatively small number of cells collaborating to carry out visual activities. The eyeball's immunological privilege, characterized by the suppression of delayed-type hypersensitivity responses in ocular tissues, is responsible for the low rate of graft rejection in transplant patients. The main discoveries highlight the capacity of embryonic stem cells (ESCs) and induced pluripotent stem cells to regenerate damaged retinal regions. Recent progress has shown significant enhancements in transplant procedures and results. The research also explores the ethical ramifications linked to the utilization of stem cells, emphasizing the ongoing issue surrounding ESCs. The analysis centers on recent breakthroughs, including the fabrication of three-dimensional retinal organoids and the innovation of scaffolding for cell transportation. Moreover, researchers are currently assessing the possibility of CRISPR and other advanced gene editing technologies to enhance the outcomes of retinal transplantation. The widespread use of universally recognized safe surgical and imaging methods enables retinal transplantation and monitoring of transplanted cell growth toward the correct location. Currently, most therapy approaches are in the first phases of development and necessitate further research, including both pre-clinical and clinical trials, to attain favorable visual results for individuals suffering from retinal degenerative illnesses.
Collapse
Affiliation(s)
| | - Patrick Di Terlizzi
- Department of Surgical Sciences, Unit of Ophthalmology, Ospedale Maggiore, Bologna 40100, Italy
| | - Francesco De Rosa
- Department of Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”, Meldola 47014, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", Enna 94100, Italy
- Eye Clinic, Catania University San Marco Hospital, Catania 95121, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor, Onitsha 434112, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
2
|
Lee YJ, Jo DH. Retinal Organoids from Induced Pluripotent Stem Cells of Patients with Inherited Retinal Diseases: A Systematic Review. Stem Cell Rev Rep 2024:10.1007/s12015-024-10802-7. [PMID: 39422807 DOI: 10.1007/s12015-024-10802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Currently, most inherited retinal diseases lack curative interventions, and available treatment modalities are constrained to symptomatic approaches. Retinal organoid technology has emerged as a method for treating inherited retinal diseases, with growing academic interest in recent years. The purpose of this review was to systematically organize the current protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal disease and to investigate the application of retinal organoids in inherited retinal disease research. METHODS Data were collected from the PubMed, Scopus, and Web of Science databases using a keyword search. The main search term used was "retinal organoid," accompanied by secondary keywords such as "optic cup," "three-dimensional," and "self-organizing." The final search was conducted on October 2, 2024. RESULTS Of the 2,129 studies retrieved, 130 were included in the qualitative synthesis. The protocols for the generation of retinal organoids in inherited retinal disease research use five major approaches, categorized into 3D and a combination of 2D/3D approaches, implemented with modifications. Disease phenotypes have been successfully reproduced via the generation of retinal organoids from the induced pluripotent stem cells of individuals with inherited retinal diseases, facilitating the progression of research into novel therapeutic developments. Cells have been obtained from retinal organoids for cell therapy, and progress toward their potential integration into clinical practice is underway. Considering their potential applications, retinal organoid technology has shown promise across various domains. CONCLUSION In this systematic review, we organized protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal diseases. Retinal organoid technology has various applications including disease modeling, screening for novel therapies, and cell replacement therapy. Further advancements would make this technology a clinically significant tool for patients with inherited retinal diseases.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Department of Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Ma SC, Xie YL, Wang Q, Fu SG, Wu HZ. Application of eye organoids in the study of eye diseases. Exp Eye Res 2024; 247:110068. [PMID: 39233304 DOI: 10.1016/j.exer.2024.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The eyes are one of the most important sensory organs in the human body. Currently, diseases such as limbal stem cell deficiency, cataract, retinitis pigmentosa and dry eye seriously threaten the quality of people's lives, and the treatment of advanced blinding eye disease and dry eye is ineffective and costly. Thus, new treatment modalities are urgently needed to improve patients' symptoms and suffering. In recent years, stem cell-derived three-dimensional structural organoids have been shown to mimic specific structures and functions similar to those of organs in the human body. Currently, 3D culture systems are used to construct organoids for different ocular growth and development models and ocular disease models to explore their physiological and pathological mechanisms. Eye organoids can also be used as a platform for drug screening. This paper reviews the latest research progress in regard to eye organoids (the cornea, lens, retina, lacrimal gland, and conjunctiva).
Collapse
Affiliation(s)
- Shi-Chao Ma
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yi-Lin Xie
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Qian Wang
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shan-Gui Fu
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hong-Ze Wu
- Department of Traditional Chinese Medicine, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, 332007, Jiangxi, China.
| |
Collapse
|
4
|
Akiba R, Tu HY, Hashiguchi T, Takahashi Y, Toyooka K, Tsukamoto Y, Baba T, Takahashi M, Mandai M. Host-Graft Synapses Form Functional Microstructures and Shape the Host Light Responses After Stem Cell-Derived Retinal Sheet Transplantation. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 39374009 PMCID: PMC11463710 DOI: 10.1167/iovs.65.12.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Retinitis pigmentosa represents a leading cause of blindness in developed countries, yet effective treatments for the disease remain unestablished. Previous studies have demonstrated the potential of stem cell-derived retinal organoid (SC-RO) sheet transplantation to form host-graft synapses and to improve light responsiveness in animal models of retinal degeneration. However, the detailed microstructures of these de novo synapses and their functional contribution have not been well elucidated. This study aims to (1) elucidate the microstructures of the host-graft synapse, and (2) investigate the overall distribution and contribution of these synapses to host retinal light responses. Methods We identified host-graft synapses using a reporter system in mouse SC-RO and rd1 mice, a well-established model of end-stage retinal degeneration. Correlative array tomography was used to reveal the microstructure of host-graft synapses. Furthermore, we developed a semi-automated algorithm that robustly detects the host-graft photoreceptor synapses in the overall grafted area using the same reporter system in flat-mount retinas. We then integrated the spatial distribution of the host-graft synapses with light responses detected by multi-electrode array recording. Results Correlative array tomography revealed that host-graft synapses recapitulate the developmental process of photoreceptor synapse formation involving horizontal cells first and then rod bipolar cells. By integrating the spatial distribution of host-graft synapse and multi-electrode array recording, we showed that the number of light-responsive host retinal ganglion cells is positively correlated with the local density of host-graft synapses. Conclusions De novo host-graft synapses recapitulate the developmental microstructure of the photoreceptor synapse, and their formation contributes to the light responsiveness after SC-RO transplantation.
Collapse
Affiliation(s)
- Ryutaro Akiba
- Chiba University Graduate School of Medicine, Department of Ophthalmology, Chuo-ku, Chiba, Japan
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Retinal Regeneration, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
| | - Hung-Ya Tu
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Retinal Regeneration, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
- Institute for Protein Research, Osaka University, Suita-shi, Osaka, Japan
| | - Tomoyo Hashiguchi
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Retinal Regeneration, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
| | - Yoshiko Takahashi
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Retinal Regeneration, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | | - Takayuki Baba
- Chiba University Graduate School of Medicine, Department of Ophthalmology, Chuo-ku, Chiba, Japan
| | - Masayo Takahashi
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Retinal Regeneration, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
- Kobe City Eye Hospital Research Center, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
| | - Michiko Mandai
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Retinal Regeneration, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
- Kobe City Eye Hospital Research Center, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
| |
Collapse
|
5
|
Oshitari T. Translational Research and Therapies for Neuroprotection and Regeneration of the Optic Nerve and Retina: A Narrative Review. Int J Mol Sci 2024; 25:10485. [PMID: 39408817 PMCID: PMC11476551 DOI: 10.3390/ijms251910485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Most retinal and optic nerve diseases pose significant threats to vision, primarily due to irreversible retinal neuronal cell death, a permanent change, which is a critical factor in their pathogenesis. Conditions such as glaucoma, retinitis pigmentosa, diabetic retinopathy, and age-related macular degeneration are the top four leading causes of blindness among the elderly in Japan. While standard treatments-including reduction in intraocular pressure, anti-vascular endothelial growth factor therapies, and retinal photocoagulation-can partially delay disease progression, their therapeutic effects remain limited. To address these shortcomings, a range of neuroprotective and regenerative therapies, aimed at preventing retinal neuronal cell loss, have been extensively studied and increasingly integrated into clinical practice over the last two decades. Several of these neuroprotective therapies have achieved on-label usage worldwide. This narrative review introduces several neuroprotective and regenerative therapies for retinal and optic nerve diseases that have been successfully translated into clinical practice, providing foundational knowledge and success stories that serve as valuable references for researchers in the field.
Collapse
Affiliation(s)
- Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan; ; Tel.: +81-43-226-2124; Fax: +81-43-224-4162
- Department of Ophthalmology, International University of Health and Welfare School of Medicine, 4-3 Kozunomori, Narita 286-8686, Japan
| |
Collapse
|
6
|
Iwama Y, Sugase-Miyamoto Y, Onoue K, Uyama H, Matsuda K, Hayashi K, Akiba R, Masuda T, Yokota S, Yonemura S, Nishida K, Takahashi M, Kurimoto Y, Mandai M. Transplantation of human pluripotent stem cell-derived retinal sheet in a primate model of macular hole. Stem Cell Reports 2024:S2213-6711(24)00264-9. [PMID: 39366379 DOI: 10.1016/j.stemcr.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
Macular hole (MH) is a retinal break involving the fovea that causes impaired vision. Although advances in vitreoretinal surgical techniques achieve >90% MH closure rate, refractory cases still exist. For such cases, autologous retinal transplantation is an optional therapy showing good anatomic success, but visual improvement is limited and peripheral visual field defects are inevitable after graft harvesting. Here, using a non-human primate model, we evaluated whether human embryonic stem cell-derived retinal organoid (RO) sheet transplantation can be an effective option for treating MH. After transplantation, MH was successfully closed by continuous filling of the MH space with the RO sheet, resulting in improved visual function, although no host-graft synaptic connections were confirmed. Mild xeno-transplantation rejection was controlled by additional focal steroid injections and rod/cone photoreceptors developed in the graft. Overall, our findings suggest pluripotent stem cell-derived RO sheet transplantation as a practical option for refractory MH treatment.
Collapse
Affiliation(s)
- Yasuaki Iwama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yasuko Sugase-Miyamoto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Kenta Onoue
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hirofumi Uyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan
| | - Keiji Matsuda
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Kazuko Hayashi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Ryutaro Akiba
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Tomohiro Masuda
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan
| | - Satoshi Yokota
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Cell Biology, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan
| | - Yasuo Kurimoto
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
7
|
Akiba R, Lind Boniec S, Knecht S, Uyama H, Tu HY, Baba T, Takahashi M, Mandai M, Wong RO. Cellular and circuit remodeling of the primate foveal midget pathway after acute photoreceptor loss. Proc Natl Acad Sci U S A 2024; 121:e2413104121. [PMID: 39231211 PMCID: PMC11406236 DOI: 10.1073/pnas.2413104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024] Open
Abstract
The retinal fovea in human and nonhuman primates is essential for high acuity and color vision. Within the fovea lies specialized circuitry in which signals from a single cone photoreceptor are largely conveyed to one ON and one OFF type midget bipolar cell (MBC), which in turn connect to a single ON or OFF midget ganglion cell (MGC), respectively. Restoring foveal vision requires not only photoreceptor replacement but also appropriate reconnection with surviving ON and OFF MBCs and MGCs. However, our current understanding of the effects of cone loss on the remaining foveal midget pathway is limited. We thus used serial block-face electron microscopy to determine the degree of plasticity and potential remodeling of this pathway in adult Macaca fascicularis several months after acute photoreceptor loss upon photocoagulation. We reconstructed MBC structure and connectivity within and adjacent to the region of cone loss. We found that MBC dendrites within the scotoma retracted and failed to reach surviving cones to form new connections. However, both surviving cones and ON and OFF MBC dendrites at the scotoma border exhibited remodeling, suggesting that these neurons can demonstrate plasticity and rewiring at maturity. At six months postlesion, disconnected OFF MBCs clearly lost output ribbon synapses with their postsynaptic partners, whereas the majority of ON MBCs maintained their axonal ribbon numbers, suggesting differential timing or extent in ON and OFF midget circuit remodeling after cone loss. Our findings raise rewiring considerations for cell replacement approaches in the restoration of foveal vision.
Collapse
Affiliation(s)
- Ryutaro Akiba
- Department of Biological Structure, University of Washington, Seattle, WA 98195
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Department of Ophthalmology and Visual Sciences, Chiba University Graduate School of Medicine, Chiba 260-8677, Japan
| | - Shane Lind Boniec
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| | - Sharm Knecht
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| | - Hirofumi Uyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hung-Ya Tu
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Takayuki Baba
- Department of Ophthalmology and Visual Sciences, Chiba University Graduate School of Medicine, Chiba 260-8677, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Research Center, Kobe City Eye Hospital Research Center, Kobe, Hyogo 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Research Center, Kobe City Eye Hospital Research Center, Kobe, Hyogo 650-0047, Japan
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| |
Collapse
|
8
|
Liu H, Lu S, Chen M, Gao N, Yang Y, Hu H, Ren Q, Liu X, Chen H, Zhu Q, Li S, Su J. Towards Stem/Progenitor Cell-Based Therapies for Retinal Degeneration. Stem Cell Rev Rep 2024; 20:1459-1479. [PMID: 38809490 DOI: 10.1007/s12015-024-10740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Retinal degeneration (RD) is a leading cause of blindness worldwide and includes conditions such as retinitis pigmentosa (RP), age-related macular degeneration (AMD), and Stargardt's disease (STGD). These diseases result in the permanent loss of vision due to the progressive and irreversible degeneration of retinal cells, including photoreceptors (PR) and the retinal pigment epithelium (RPE). The adult human retina has limited abilities to regenerate and repair itself, making it challenging to achieve complete self-replenishment and functional repair of retinal cells. Currently, there is no effective clinical treatment for RD. Stem cell therapy, which involves transplanting exogenous stem cells such as retinal progenitor cells (RPCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs), or activating endogenous stem cells like Müller Glia (MG) cells, holds great promise for regenerating and repairing retinal cells in the treatment of RD. Several preclinical and clinical studies have shown the potential of stem cell-based therapies for RD. However, the clinical translation of these therapies for the reconstruction of substantial vision still faces significant challenges. This review provides a comprehensive overview of stem/progenitor cell-based therapy strategies for RD, summarizes recent advances in preclinical studies and clinical trials, and highlights the major challenges in using stem/progenitor cell-based therapies for RD.
Collapse
Affiliation(s)
- Hui Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuaiyan Lu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ming Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Na Gao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuhe Yang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Huijuan Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qing Ren
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyu Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hongxu Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qunyan Zhu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China
| | - Shasha Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, China.
| | - Jianzhong Su
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, China.
| |
Collapse
|
9
|
Lan X, Jiang H, Wang Q, Shiqi Q, Xiong Y. The application of retinal organoids in ophthalmic regenerative medicine: A mini-review. Regen Ther 2024; 26:382-386. [PMID: 39050551 PMCID: PMC11266866 DOI: 10.1016/j.reth.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Retinal organoids are three-dimensional (3D) microscopic tissues that are induced and differentiated from stem cells or progenitor cells in vitro and have a highly similar structure to the retina. With the optimization and development of 3D retinal culture system and the improvement of induced differentiation technology, retinal organoids have broad application prospects in retinal development, regenerative medicine, biomaterial evaluation, disease mechanism investigation, and drug screening. In this review we summarize recent development of retinal organoids and their applications in ophthalmic regenerative medicine. In particular, we highlight the promise and challenges in the use of retinal organoids in disease modeling and drug discovery.
Collapse
Affiliation(s)
| | | | - Qian Wang
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Qin Shiqi
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yu Xiong
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| |
Collapse
|
10
|
Ashworth KE, Weisbrod J, Ballios BG. Inherited Retinal Diseases and Retinal Organoids as Preclinical Cell Models for Inherited Retinal Disease Research. Genes (Basel) 2024; 15:705. [PMID: 38927641 PMCID: PMC11203130 DOI: 10.3390/genes15060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Inherited retinal diseases (IRDs) are a large group of genetically and clinically diverse blinding eye conditions that result in progressive and irreversible photoreceptor degeneration and vision loss. To date, no cures have been found, although strides toward treatments for specific IRDs have been made in recent years. To accelerate treatment discovery, retinal organoids provide an ideal human IRD model. This review aims to give background on the development and importance of retinal organoids for the human-based in vitro study of the retina and human retinogenesis and retinal pathologies. From there, we explore retinal pathologies in the context of IRDs and the current landscape of IRD treatment discovery. We discuss the usefulness of retinal organoids in this context (as a patient-derived cell model for IRDs) to precisely understand the pathogenesis and potential mechanisms behind a specific IRD-causing variant of interest. Finally, we discuss the importance and promise of retinal organoids in treatment discovery for IRDs, now and in the future.
Collapse
Affiliation(s)
- Kristen E. Ashworth
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3H2, Canada;
- Donald K. Johnson Eye Institute, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada;
| | - Jessica Weisbrod
- Donald K. Johnson Eye Institute, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada;
| | - Brian G. Ballios
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3H2, Canada;
- Donald K. Johnson Eye Institute, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada;
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| |
Collapse
|
11
|
Seidemann S, Salomon F, Hoffmann KB, Kurth T, Sbalzarini IF, Haase R, Ader M. Automated quantification of photoreceptor outer segments in developing and degenerating retinas on microscopy images across scales. Front Mol Neurosci 2024; 17:1398447. [PMID: 38854587 PMCID: PMC11157083 DOI: 10.3389/fnmol.2024.1398447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/17/2024] [Indexed: 06/11/2024] Open
Abstract
The functionality of photoreceptors, rods, and cones is highly dependent on their outer segments (POS), a cellular compartment containing highly organized membranous structures that generate biochemical signals from incident light. While POS formation and degeneration are qualitatively assessed on microscopy images, reliable methodology for quantitative analyses is still limited. Here, we developed methods to quantify POS (QuaPOS) maturation and quality on retinal sections using automated image analyses. POS formation was examined during the development and in adulthood of wild-type mice via light microscopy (LM) and transmission electron microscopy (TEM). To quantify the number, size, shape, and fluorescence intensity of POS, retinal cryosections were immunostained for the cone POS marker S-opsin. Fluorescence images were used to train the robust classifier QuaPOS-LM based on supervised machine learning for automated image segmentation. Characteristic features of segmentation results were extracted to quantify the maturation of cone POS. Subsequently, this quantification method was applied to characterize POS degeneration in "cone photoreceptor function loss 1" mice. TEM images were used to establish the ultrastructural quantification method QuaPOS-TEM for the alignment of POS membranes. Images were analyzed using a custom-written MATLAB code to extract the orientation of membranes from the image gradient and their alignment (coherency). This analysis was used to quantify the POS morphology of wild-type and two inherited retinal degeneration ("retinal degeneration 19" and "rhodopsin knock-out") mouse lines. Both automated analysis technologies provided robust characterization and quantification of POS based on LM or TEM images. Automated image segmentation by the classifier QuaPOS-LM and analysis of the orientation of membrane stacks by QuaPOS-TEM using fluorescent or TEM images allowed quantitative evaluation of POS formation and quality. The assessments showed an increase in POS number, volume, and membrane coherency during wild-type postnatal development, while a decrease in all three observables was detected in different retinal degeneration mouse models. All the code used for the presented analysis is open source, including example datasets to reproduce the findings. Hence, the QuaPOS quantification methods are useful for in-depth characterization of POS on retinal sections in developmental studies, for disease modeling, or after therapeutic interventions affecting photoreceptors.
Collapse
Affiliation(s)
- Suse Seidemann
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Florian Salomon
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Karl B. Hoffmann
- Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Thomas Kurth
- Core Facility Electron Microscopy and Histology, Technology Platform, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Ivo F. Sbalzarini
- Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- DFG Cluster of Excellence “Physics of Life”, Technische Universität Dresden, Dresden, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig University, Leipzig, Germany
| | - Robert Haase
- DFG Cluster of Excellence “Physics of Life”, Technische Universität Dresden, Dresden, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig University, Leipzig, Germany
| | - Marius Ader
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Ho MT, Kawai K, Abdo D, Comanita L, Ortin-Martinez A, Ueno Y, Tsao E, Rastgar-Moghadam A, Xue C, Cui H, Wallace VA, Shoichet MS. Transplanted human photoreceptors transfer cytoplasmic material but not to the recipient mouse retina. Stem Cell Res Ther 2024; 15:79. [PMID: 38486269 PMCID: PMC10941468 DOI: 10.1186/s13287-024-03679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND The discovery of material transfer between transplanted and host mouse photoreceptors has expanded the possibilities for utilizing transplanted photoreceptors as potential vehicles for delivering therapeutic cargo. However, previous research has not directly explored the capacity for human photoreceptors to engage in material transfer, as human photoreceptor transplantation has primarily been investigated in rodent models of late-stage retinal disease, which lack host photoreceptors. METHODS In this study, we transplanted human stem-cell derived photoreceptors purified from human retinal organoids at different ontological ages (weeks 10, 14, or 20) into mouse models with intact photoreceptors and assessed transfer of human proteins and organelles to mouse photoreceptors. RESULTS Unexpectedly, regardless of donor age or mouse recipient background, human photoreceptors did not transfer material in the mouse retina, though a rare subset of donor cells (< 5%) integrated into the mouse photoreceptor cell layer. To investigate the possibility that a species barrier impeded transfer, we used a flow cytometric assay to examine material transfer in vitro. Interestingly, dissociated human photoreceptors transferred fluorescent protein with each other in vitro, yet no transfer was detected in co-cultures of human and mouse photoreceptors, suggesting that material transfer is species specific. CONCLUSIONS While xenograft models are not a tractable system to study material transfer of human photoreceptors, these findings demonstrate that human retinal organoid-derived photoreceptors are competent donors for material transfer and thus may be useful to treat retinal degenerative disease.
Collapse
Affiliation(s)
- Margaret T Ho
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E2, Canada
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 2S8, Canada
| | - Kotoe Kawai
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Regenerative Medicine Research and Planning Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Dhana Abdo
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E2, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Lacrimioara Comanita
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 2S8, Canada
| | - Arturo Ortin-Martinez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 2S8, Canada
| | - Yui Ueno
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E2, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Regenerative Medicine Research and Planning Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Emily Tsao
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E2, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Azam Rastgar-Moghadam
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 2S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Chang Xue
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E2, Canada
| | - Hong Cui
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E2, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Valerie A Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 2S8, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.
| | - Molly S Shoichet
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E2, Canada.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Iwama Y, Nomaru H, Masuda T, Kawamura Y, Matsumura M, Murata Y, Teranishi K, Nishida K, Ota S, Mandai M, Takahashi M. Label-free enrichment of human pluripotent stem cell-derived early retinal progenitor cells for cell-based regenerative therapies. Stem Cell Reports 2024; 19:254-269. [PMID: 38181785 PMCID: PMC10874851 DOI: 10.1016/j.stemcr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Pluripotent stem cell-based therapy for retinal degenerative diseases is a promising approach to restoring visual function. A clinical study using retinal organoid (RO) sheets was recently conducted in patients with retinitis pigmentosa. However, the graft preparation currently requires advanced skills to identify and excise suitable segments from the transplantable area of the limited number of suitable ROs. This remains a challenge for consistent clinical implementations. Herein, we enabled the enrichment of wild-type (non-reporter) retinal progenitor cells (RPCs) from dissociated ROs using a label-free ghost cytometry (LF-GC)-based sorting system, where a machine-based classifier was trained in advance with another RPC reporter line. The sorted cells reproducibly formed retinal spheroids large enough for transplantation and developed mature photoreceptors in the retinal degeneration rats. This method of enriching early RPCs with no specific surface antigens and without any reporters or chemical labeling is promising for robust preparation of graft tissues during cell-based therapy.
Collapse
Affiliation(s)
- Yasuaki Iwama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; Cell and Gene Therapy in Ophthalmology Laboratory, BZP, RIKEN, Wako, Saitama 351-0198, Japan; Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | - Tomohiro Masuda
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; Cell and Gene Therapy in Ophthalmology Laboratory, BZP, RIKEN, Wako, Saitama 351-0198, Japan.
| | | | - Michiru Matsumura
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan
| | | | | | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Sadao Ota
- ThinkCyte K.K., Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan.
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
14
|
Bai Y, He H, Ren B, Ren J, Zou T, Chen X, Liu Y. Sstr2 Defines the Cone Differentiation-Competent Late-Stage Retinal Progenitor Cells in the Developing Mouse Retina. Stem Cells Transl Med 2024; 13:83-99. [PMID: 37935630 PMCID: PMC10785222 DOI: 10.1093/stcltm/szad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Cone cell death is a characteristic shared by various retinal degenerative disorders, such as cone-rod dystrophy, Stargardt disease, achromatopsia, and retinitis pigmentosa. This leads to conditions like color blindness and permanently impaired visual acuity. Stem cell therapy focused on photoreceptor replacement holds promise for addressing these conditions. However, identifying surface markers that aid in enriching retinal progenitor cells (RPCs) capable of differentiating into cones remains a complex task. In this study, we employed single-cell RNA sequencing to scrutinize the transcriptome of developing retinas in C57BL/6J mice. This revealed the distinctive expression of somatostatin receptor 2 (Sstr2), a surface protein, in late-stage RPCs exhibiting the potential for photoreceptor differentiation. In vivo lineage tracing experiments verified that Sstr2+ cells within the late embryonic retina gave rise to cones, amacrine and horizontal cells during the developmental process. Furthermore, Sstr2+ cells that were isolated from the late embryonic mouse retina displayed RPC markers and exhibited the capability to differentiate into cones in vitro. Upon subretinal transplantation into both wild-type and retinal degeneration 10 (rd10) mice, Sstr2+ cells survived and expressed cone-specific markers. This study underscores the ability of Sstr2 to enrich late-stage RPCs primed for cone differentiation to a large extent. It proposes the utility of Sstr2 as a biomarker for RPCs capable of generating cones for transplantation purposes.
Collapse
Affiliation(s)
- Yihan Bai
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People’s Republic of China
| | - Han He
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People’s Republic of China
| | - Bangqi Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People’s Republic of China
| | - Jiayun Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People’s Republic of China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People’s Republic of China
| | - Xi Chen
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People’s Republic of China
- Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
15
|
Liang Y, Sun X, Duan C, Tang S, Chen J. Application of patient-derived induced pluripotent stem cells and organoids in inherited retinal diseases. Stem Cell Res Ther 2023; 14:340. [PMID: 38012786 PMCID: PMC10683306 DOI: 10.1186/s13287-023-03564-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Inherited retinal diseases (IRDs) can induce severe sight-threatening retinal degeneration and impose a considerable economic burden on patients and society, making efforts to cure blindness imperative. Transgenic animals mimicking human genetic diseases have long been used as a primary research tool to decipher the underlying pathogenesis, but there are still some obvious limitations. As an alternative strategy, patient-derived induced pluripotent stem cells (iPSCs), particularly three-dimensional (3D) organoid technology, are considered a promising platform for modeling different forms of IRDs, including retinitis pigmentosa, Leber congenital amaurosis, X-linked recessive retinoschisis, Batten disease, achromatopsia, and best vitelliform macular dystrophy. Here, this paper focuses on the status of patient-derived iPSCs and organoids in IRDs in recent years concerning disease modeling and therapeutic exploration, along with potential challenges for translating laboratory research to clinical application. Finally, the importance of human iPSCs and organoids in combination with emerging technologies such as multi-omics integration analysis, 3D bioprinting, or microfluidic chip platform are highlighted. Patient-derived retinal organoids may be a preferred choice for more accurately uncovering the mechanisms of human retinal diseases and will contribute to clinical practice.
Collapse
Affiliation(s)
- Yuqin Liang
- Aier Eye Institute, Changsha, 410015, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xihao Sun
- Aier Eye Institute, Changsha, 410015, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chunwen Duan
- Aier Eye Institute, Changsha, 410015, China
- Changsha Aier Eye Hospital, Changsha, 410015, China
| | - Shibo Tang
- Aier Eye Institute, Changsha, 410015, China.
- Changsha Aier Eye Hospital, Changsha, 410015, China.
| | - Jiansu Chen
- Aier Eye Institute, Changsha, 410015, China.
- Changsha Aier Eye Hospital, Changsha, 410015, China.
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
16
|
Zhang KY, Nagalingam A, Mary S, Aguzzi EA, Li W, Chetla N, Smith B, Paulaitis ME, Edwards MM, Quigley HA, Zack DJ, Johnson TV. Rare intercellular material transfer as a confound to interpreting inner retinal neuronal transplantation following internal limiting membrane disruption. Stem Cell Reports 2023; 18:2203-2221. [PMID: 37802075 PMCID: PMC10679651 DOI: 10.1016/j.stemcr.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023] Open
Abstract
Intercellular cytoplasmic material transfer (MT) occurs between transplanted and developing photoreceptors and ambiguates cell origin identification in developmental, transdifferentiation, and transplantation experiments. Whether MT is a photoreceptor-specific phenomenon is unclear. Retinal ganglion cell (RGC) replacement, through transdifferentiation or transplantation, holds potential for restoring vision in optic neuropathies. During careful assessment for MT following human stem cell-derived RGC transplantation into mice, we identified RGC xenografts occasionally giving rise to labeling of donor-derived cytoplasmic, nuclear, and mitochondrial proteins within recipient Müller glia. Critically, nuclear organization is distinct between human and murine retinal neurons, which enables unequivocal discrimination of donor from host cells. MT was greatly facilitated by internal limiting membrane disruption, which also augments retinal engraftment following transplantation. Our findings demonstrate that retinal MT is not unique to photoreceptors and challenge the isolated use of species-specific immunofluorescent markers for xenotransplant identification. Assessment for MT is critical when analyzing neuronal replacement interventions.
Collapse
Affiliation(s)
- Kevin Y Zhang
- Glaucoma Center for Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arumugam Nagalingam
- Glaucoma Center for Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stella Mary
- Glaucoma Center for Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erika A Aguzzi
- Glaucoma Center for Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weifeng Li
- Glaucoma Center for Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nitin Chetla
- Glaucoma Center for Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara Smith
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael E Paulaitis
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Malia M Edwards
- Glaucoma Center for Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harry A Quigley
- Glaucoma Center for Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald J Zack
- Glaucoma Center for Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Neuroscience, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas V Johnson
- Glaucoma Center for Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Carido M, Völkner M, Steinheuer LM, Wagner F, Kurth T, Dumler N, Ulusoy S, Wieneke S, Norniella AV, Golfieri C, Khattak S, Schönfelder B, Scamozzi M, Zoschke K, Canzler S, Hackermüller J, Ader M, Karl MO. Reliability of human retina organoid generation from hiPSC-derived neuroepithelial cysts. Front Cell Neurosci 2023; 17:1166641. [PMID: 37868194 PMCID: PMC10587494 DOI: 10.3389/fncel.2023.1166641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
The possible applications for human retinal organoids (HROs) derived from human induced pluripotent stem cells (hiPSC) rely on the robustness and transferability of the methodology for their generation. Standardized strategies and parameters to effectively assess, compare, and optimize organoid protocols are starting to be established, but are not yet complete. To advance this, we explored the efficiency and reliability of a differentiation method, called CYST protocol, that facilitates retina generation by forming neuroepithelial cysts from hiPSC clusters. Here, we tested seven different hiPSC lines which reproducibly generated HROs. Histological and ultrastructural analyses indicate that HRO differentiation and maturation are regulated. The different hiPSC lines appeared to be a larger source of variance than experimental rounds. Although previous reports have shown that HROs in several other protocols contain a rather low number of cones, HROs from the CYST protocol are consistently richer in cones and with a comparable ratio of cones, rods, and Müller glia. To provide further insight into HRO cell composition, we studied single cell RNA sequencing data and applied CaSTLe, a transfer learning approach. Additionally, we devised a potential strategy to systematically evaluate different organoid protocols side-by-side through parallel differentiation from the same hiPSC batches: In an explorative study, the CYST protocol was compared to a conceptually different protocol based on the formation of cell aggregates from single hiPSCs. Comparing four hiPSC lines showed that both protocols reproduced key characteristics of retinal epithelial structure and cell composition, but the CYST protocol provided a higher HRO yield. So far, our data suggest that CYST-derived HROs remained stable up to at least day 200, while single hiPSC-derived HROs showed spontaneous pathologic changes by day 200. Overall, our data provide insights into the efficiency, reproducibility, and stability of the CYST protocol for generating HROs, which will be useful for further optimizing organoid systems, as well as for basic and translational research applications.
Collapse
Affiliation(s)
- Madalena Carido
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Manuela Völkner
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Lisa Maria Steinheuer
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Computer Science, Leipzig University, Leipzig, Germany
| | - Felix Wagner
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Core Facility Electron Microscopy and Histology, TU Dresden, Dresden, Germany
| | - Natalie Dumler
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Selen Ulusoy
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Stephanie Wieneke
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | | | - Cristina Golfieri
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Shahryar Khattak
- Center for Molecular and Cellular Bioengineering (CMCB), Stem Cell Engineering Facility, TU Dresden, Dresden, Germany
| | - Bruno Schönfelder
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Maria Scamozzi
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Katja Zoschke
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Sebastian Canzler
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Jörg Hackermüller
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Computer Science, Leipzig University, Leipzig, Germany
| | - Marius Ader
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Mike O Karl
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| |
Collapse
|
18
|
Beaver D, Limnios IJ. A treatment within sight: challenges in the development of stem cell-derived photoreceptor therapies for retinal degenerative diseases. FRONTIERS IN TRANSPLANTATION 2023; 2:1130086. [PMID: 38993872 PMCID: PMC11235385 DOI: 10.3389/frtra.2023.1130086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/07/2023] [Indexed: 07/13/2024]
Abstract
Stem cell therapies can potentially treat various retinal degenerative diseases, including age-related macular degeneration (AMD) and inherited retinal diseases like retinitis pigmentosa. For these diseases, transplanted cells may include stem cell-derived retinal pigmented epithelial (RPE) cells, photoreceptors, or a combination of both. Although stem cell-derived RPE cells have progressed to human clinical trials, therapies using photoreceptors and other retinal cell types are lagging. In this review, we discuss the potential use of human pluripotent stem cell (hPSC)-derived photoreceptors for the treatment of retinal degeneration and highlight the progress and challenges for their efficient production and clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Davinia Beaver
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QL, Australia
| | - Ioannis Jason Limnios
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QL, Australia
| |
Collapse
|
19
|
Kramer RH. Suppressing Retinal Remodeling to Mitigate Vision Loss in Photoreceptor Degenerative Disorders. Annu Rev Vis Sci 2023; 9:131-153. [PMID: 37713276 DOI: 10.1146/annurev-vision-112122-020957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Rod and cone photoreceptors degenerate in retinitis pigmentosa and age-related macular degeneration, robbing the visual system of light-triggered signals necessary for sight. However, changes in the retina do not stop with the photoreceptors. A stereotypical set of morphological and physiological changes, known as remodeling, occur in downstream retinal neurons. Some aspects of remodeling are homeostatic, with structural or functional changes compensating for partial loss of visual inputs. However, other aspects are nonhomeostatic, corrupting retinal information processing to obscure vision mediated naturally by surviving photoreceptors or artificially by vision-restoration technologies. In this review, I consider the mechanism of remodeling and its consequences for residual and restored visual function; discuss the role of retinoic acid, a critical molecular trigger of detrimental remodeling; and discuss strategies for suppressing retinoic acid biosynthesis or signaling as therapeutic possibilities for mitigating vision loss.
Collapse
Affiliation(s)
- Richard H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, USA;
| |
Collapse
|
20
|
Wong NK, Yip SP, Huang CL. Establishing Functional Retina in a Dish: Progress and Promises of Induced Pluripotent Stem Cell-Based Retinal Neuron Differentiation. Int J Mol Sci 2023; 24:13652. [PMID: 37686457 PMCID: PMC10487913 DOI: 10.3390/ijms241713652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The human eye plays a critical role in vision perception, but various retinal degenerative diseases such as retinitis pigmentosa (RP), glaucoma, and age-related macular degeneration (AMD) can lead to vision loss or blindness. Although progress has been made in understanding retinal development and in clinical research, current treatments remain inadequate for curing or reversing these degenerative conditions. Animal models have limited relevance to humans, and obtaining human eye tissue samples is challenging due to ethical and legal considerations. Consequently, researchers have turned to stem cell-based approaches, specifically induced pluripotent stem cells (iPSCs), to generate distinct retinal cell populations and develop cell replacement therapies. iPSCs offer a novel platform for studying the key stages of human retinogenesis and disease-specific mechanisms. Stem cell technology has facilitated the production of diverse retinal cell types, including retinal ganglion cells (RGCs) and photoreceptors, and the development of retinal organoids has emerged as a valuable in vitro tool for investigating retinal neuron differentiation and modeling retinal diseases. This review focuses on the protocols, culture conditions, and techniques employed in differentiating retinal neurons from iPSCs. Furthermore, it emphasizes the significance of molecular and functional validation of the differentiated cells.
Collapse
Affiliation(s)
- Nonthaphat Kent Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
21
|
Cooke JA, Voigt AP, Collingwood MA, Stone NE, Whitmore SS, DeLuca AP, Burnight ER, Anfinson KR, Vakulskas CA, Reutzel AJ, Daggett HT, Andorf JL, Stone EM, Mullins RF, Tucker BA. Propensity of Patient-Derived iPSCs for Retinal Differentiation: Implications for Autologous Cell Replacement. Stem Cells Transl Med 2023; 12:365-378. [PMID: 37221451 PMCID: PMC10267581 DOI: 10.1093/stcltm/szad028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/26/2023] [Indexed: 05/25/2023] Open
Abstract
Prior to use, newly generated induced pluripotent stem cells (iPSC) should be thoroughly validated. While excellent validation and release testing assays designed to evaluate potency, genetic integrity, and sterility exist, they do not have the ability to predict cell type-specific differentiation capacity. Selection of iPSC lines that have limited capacity to produce high-quality transplantable cells, places significant strain on valuable clinical manufacturing resources. The purpose of this study was to determine the degree and root cause of variability in retinal differentiation capacity between cGMP-derived patient iPSC lines. In turn, our goal was to develop a release testing assay that could be used to augment the widely used ScoreCard panel. IPSCs were generated from 15 patients (14-76 years old), differentiated into retinal organoids, and scored based on their retinal differentiation capacity. Despite significant differences in retinal differentiation propensity, RNA-sequencing revealed remarkable similarity between patient-derived iPSC lines prior to differentiation. At 7 days of differentiation, significant differences in gene expression could be detected. Ingenuity pathway analysis revealed perturbations in pathways associated with pluripotency and early cell fate commitment. For example, good and poor producers had noticeably different expressions of OCT4 and SOX2 effector genes. QPCR assays targeting genes identified via RNA sequencing were developed and validated in a masked fashion using iPSCs from 8 independent patients. A subset of 14 genes, which include the retinal cell fate markers RAX, LHX2, VSX2, and SIX6 (all elevated in the good producers), were found to be predictive of retinal differentiation propensity.
Collapse
Affiliation(s)
- Jessica A Cooke
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Andrew P Voigt
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Nicholas E Stone
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - S Scott Whitmore
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adam P DeLuca
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Erin R Burnight
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kristin R Anfinson
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Austin J Reutzel
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Heather T Daggett
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jeaneen L Andorf
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Edwin M Stone
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert F Mullins
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
22
|
Yang S, Hu H, Kung H, Zou R, Dai Y, Hu Y, Wang T, Lv T, Yu J, Li F. Organoids: The current status and biomedical applications. MedComm (Beijing) 2023; 4:e274. [PMID: 37215622 PMCID: PMC10192887 DOI: 10.1002/mco2.274] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Organoids are three-dimensional (3D) miniaturized versions of organs or tissues that are derived from cells with stem potential and can self-organize and differentiate into 3D cell masses, recapitulating the morphology and functions of their in vivo counterparts. Organoid culture is an emerging 3D culture technology, and organoids derived from various organs and tissues, such as the brain, lung, heart, liver, and kidney, have been generated. Compared with traditional bidimensional culture, organoid culture systems have the unique advantage of conserving parental gene expression and mutation characteristics, as well as long-term maintenance of the function and biological characteristics of the parental cells in vitro. All these features of organoids open up new opportunities for drug discovery, large-scale drug screening, and precision medicine. Another major application of organoids is disease modeling, and especially various hereditary diseases that are difficult to model in vitro have been modeled with organoids by combining genome editing technologies. Herein, we introduce the development and current advances in the organoid technology field. We focus on the applications of organoids in basic biology and clinical research, and also highlight their limitations and future perspectives. We hope that this review can provide a valuable reference for the developments and applications of organoids.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Haijie Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Hengchung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ruiqi Zou
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yushi Dai
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yafei Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tianrun Lv
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Jun Yu
- Departments of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fuyu Li
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
23
|
Chew LA, Iannaccone A. Gene-agnostic approaches to treating inherited retinal degenerations. Front Cell Dev Biol 2023; 11:1177838. [PMID: 37123404 PMCID: PMC10133473 DOI: 10.3389/fcell.2023.1177838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Most patients with inherited retinal degenerations (IRDs) have been waiting for treatments that are "just around the corner" for decades, with only a handful of seminal breakthroughs happening in recent years. Highlighting the difficulties in the quest for curative therapeutics, Luxturna required 16 years of development before finally obtaining United States Food and Drug Administration (FDA) approval and its international equivalents. IRDs are both genetically and phenotypically heterogeneous. While this diversity offers many opportunities for gene-by-gene precision medicine-based approaches, it also poses a significant challenge. For this reason, alternative (or parallel) strategies to identify more comprehensive, across-the-board therapeutics for the genetically and phenotypically diverse IRD patient population are very appealing. Even when gene-specific approaches may be available and become approved for use, many patients may have reached a disease stage whereby these approaches may no longer be viable. Thus, alternate visual preservation or restoration therapeutic approaches are needed at these stages. In this review, we underscore several gene-agnostic approaches that are being developed as therapeutics for IRDs. From retinal supplementation to stem cell transplantation, optogenetic therapy and retinal prosthetics, these strategies would bypass at least in part the need for treating every individual gene or mutation or provide an invaluable complement to them. By considering the diverse patient population and treatment strategies suited for different stages and patterns of retinal degeneration, gene agnostic approaches are very well poised to impact favorably outcomes and prognosis for IRD patients.
Collapse
Affiliation(s)
- Lindsey A. Chew
- Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Alessandro Iannaccone
- Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
24
|
Barravecchia I, De Cesari C, Guadagni V, Signore G, Bertolini E, Giannelli SG, Scebba F, Martini D, Pè ME, Broccoli V, Andreazzoli M, Angeloni D, Demontis GC. Increasing cell culture density during a developmental window prevents fated rod precursors derailment toward hybrid rod-glia cells. Sci Rep 2023; 13:6025. [PMID: 37055439 PMCID: PMC10101963 DOI: 10.1038/s41598-023-32571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
In proliferating multipotent retinal progenitors, transcription factors dynamics set the fate of postmitotic daughter cells, but postmitotic cell fate plasticity driven by extrinsic factors remains controversial. Transcriptome analysis reveals the concurrent expression by postmitotic rod precursors of genes critical for the Müller glia cell fate, which are rarely generated from terminally-dividing progenitors as a pair with rod precursors. By combining gene expression and functional characterisation in single cultured rod precursors, we identified a time-restricted window where increasing cell culture density switches off the expression of genes critical for Müller glial cells. Intriguingly, rod precursors in low cell culture density maintain the expression of genes of rod and glial cell fate and develop a mixed rod/Muller glial cells electrophysiological fingerprint, revealing rods derailment toward a hybrid rod-glial phenotype. The notion of cell culture density as an extrinsic factor critical for preventing rod-fated cells diversion toward a hybrid cell state may explain the occurrence of hybrid rod/MG cells in the adult retina and provide a strategy to improve engraftment yield in regenerative approaches to retinal degenerative disease by stabilising the fate of grafted rod precursors.
Collapse
Affiliation(s)
- Ivana Barravecchia
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy
- Scuola Superiore Sant'Anna, Pisa, Italy
| | - Chiara De Cesari
- Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Giovanni Signore
- Department of Biology, University of Pisa, Pisa, Italy
- Fondazione Pisana per la Scienza, San Giuliano Terme, Italy
| | - Edoardo Bertolini
- Scuola Superiore Sant'Anna, Pisa, Italy
- Donald Danforth Plant Science Center, St. Louis, USA
| | | | | | | | | | - Vania Broccoli
- San Raffaele Hospital, Milan, Italy
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | | | | | - Gian Carlo Demontis
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy.
| |
Collapse
|
25
|
Progress of iPS cell-based transplantation therapy for retinal diseases. Jpn J Ophthalmol 2023; 67:119-128. [PMID: 36626080 DOI: 10.1007/s10384-022-00974-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/18/2022] [Indexed: 01/11/2023]
Abstract
The discovery of induced Pluripotent Stem) (iPS) cells has instigated innovation in various fields, including ophthalmology. Cell therapy has shown tremendous progress in translational research on retinal diseases, including the first-in-human transplantation of autologous iPS cell-derived retinal pigment epithelium (RPE) cells for patients with age-related macular degeneration (AMD). Cell therapy for retinitis pigmentosa (RP) has also been developed. Retinal organoid and photoreceptor cell transplantation has been shown to incorporate into the degenerated host retina, forming synapses with host neurons and resulting in functional recovery. Based on preclinical data, first-in-human transplantation of iPS cell-derived retinal sheets has been conducted. In this review, we summarize the current progress in iPS cell-based retinal cell transplantation research for retinal diseases, addressing some remaining challenges and future prospects.
Collapse
|
26
|
Mandai M. Pluripotent stem cell-derived retinal organoid/cells for retinal regeneration therapies: A review. Regen Ther 2023; 22:59-67. [PMID: 36712956 PMCID: PMC9841126 DOI: 10.1016/j.reth.2022.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
In recent decades, many researchers have attempted to restore vision via transplantation of retina/retinal cells in eyes with retinal degeneration. The advent of induced pluripotent stem cells (iPSC) and retinal organoid induction technologies has boosted research on retinal regeneration therapy. Although the recognition of functional integration of graft photoreceptor cells in the host retina from 2006 has been disputed a decade later by the newly evidenced phenomenon denoted as "material transfer," several reports support possible reconstruction of the host-graft network in the retinas of both end-stage degeneration and in progressing degeneration cases. Based on proof of concept (POC) studies in animal models, a clinical study was conducted in Kobe, Japan in 2020 and showed the feasibility of cell-based therapy using iPSC retinal organoid technology. Although the graft potency of human embryonic stem (ES)/iPS cell-derived retinal organoid/retinal cells has been suggested by previous studies, much is still unknown regarding host capability, that is, how long-standing human degenerating retinas are capable of rewiring with transplanted cells. This review summarizes past POC studies on photoreceptor replacement therapy and introduces some new challenges to maximize the possible efficacy in future human clinical studies of regenerative therapy.
Collapse
Affiliation(s)
- Michiko Mandai
- Research Center, Kobe City Eye Hospital, Minatojima Minamimachi 2-1-8, Chuo-ku, Kobe Hyogo, 650-0047, Japan
| |
Collapse
|
27
|
Tay HG, Andre H, Chrysostomou V, Adusumalli S, Guo J, Ren X, Tan WS, Tor JE, Moreno-Moral A, Plastino F, Bartuma H, Cai Z, Tun SBB, Barathi VA, Siew Wei GT, Grenci G, Chong LY, Holmgren A, Kvanta A, Crowston JG, Petretto E, Tryggvason K. Photoreceptor laminin drives differentiation of human pluripotent stem cells to photoreceptor progenitors that partially restore retina function. Mol Ther 2023; 31:825-846. [PMID: 36638800 PMCID: PMC10014235 DOI: 10.1016/j.ymthe.2022.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/12/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
Blindness caused by advanced stages of inherited retinal diseases and age-related macular degeneration are characterized by photoreceptor loss. Cell therapy involving replacement with functional photoreceptor-like cells generated from human pluripotent stem cells holds great promise. Here, we generated a human recombinant retina-specific laminin isoform, LN523, and demonstrated the role in promoting the differentiation of human embryonic stem cells into photoreceptor progenitors. This chemically defined and xenogen-free method enables reproducible production of photoreceptor progenitors within 32 days. We observed that the transplantation into rd10 mice were able to protect the host photoreceptor outer nuclear layer (ONL) up to 2 weeks post transplantation as measured by full-field electroretinogram. At 4 weeks post transplantation, the engrafted cells were found to survive, mature, and associate with the host's rod bipolar cells. Visual behavioral assessment using the water maze swimming test demonstrated visual improvement in the cell-transplanted rodents. At 20 weeks post transplantation, the maturing engrafted cells were able to replace the loss of host ONL by extensive association with host bipolar cells and synapses. Post-transplanted rabbit model also provided congruent evidence for synaptic connectivity with the degenerated host retina. The results may pave the way for the development of stem cell-based therapeutics for retina degeneration.
Collapse
Affiliation(s)
- Hwee Goon Tay
- Centre for Vision Research, Duke-NUS Medical School, Singapore; Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore.
| | - Helder Andre
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Vicki Chrysostomou
- Centre for Vision Research, Duke-NUS Medical School, Singapore; Academic Clinical Program, Duke-NUS Medical School, Singapore
| | | | - Jing Guo
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Xiaoyuan Ren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wei Sheng Tan
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Jia En Tor
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Aida Moreno-Moral
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Flavia Plastino
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Hammurabi Bartuma
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Zuhua Cai
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Sai Bo Bo Tun
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gavin Tan Siew Wei
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Gianluca Grenci
- Mechanobiology Institute (MBI) and Department of Biomedical Engineering, NUS, Singapore
| | - Li Yen Chong
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anders Kvanta
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Guy Crowston
- Centre for Vision Research, Duke-NUS Medical School, Singapore; Academic Clinical Program, Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Enrico Petretto
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Karl Tryggvason
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Division of Nephrology, Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
28
|
Paliwal H, Prajapati BG, Srichana T, Singh S, Patel RJ. Novel Approaches in the Drug Development and Delivery Systems for Age-Related Macular Degeneration. Life (Basel) 2023; 13:life13020568. [PMID: 36836923 PMCID: PMC9960288 DOI: 10.3390/life13020568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The number of patients with ocular disorders has increased due to contributing factors such as aging populations, environmental changes, smoking, genetic abnormalities, etc. Age-related macular degeneration (AMD) is one of the common ocular disorders which may advance to loss of vision in severe cases. The advanced form of AMD is classified into two types, dry (non-exudative) and wet (exudative) AMD. Although several therapeutic approaches are explored for the management of AMD, no approved therapy can substantially slow down the progression of dry AMD into the later stages. The focus of researchers in recent times has been engaged in developing targeted therapeutic products to halt the progression and maintain or improve vision in individuals diagnosed with AMD. The delivery of anti-VEGF agents using intravitreal therapy has found some success in managing AMD, and novel formulation approaches have been introduced in various studies to potentiate the efficacy. Some of the novel approaches, such as hydrogel, microspheres, polymeric nanoparticles, liposomes, implants, etc. have been discussed. Apart from this, subretinal, suprachoroidal, and port delivery systems have also been investigated for biologics and gene therapies. The unmet potential of approved therapeutic products has contributed to several patent applications in recent years. This review outlines the current treatment options, outcomes of recent research studies, and patent details around the novel drug delivery approach for the treatment of AMD.
Collapse
Affiliation(s)
- Himanshu Paliwal
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana 384012, Gujarat, India
| | - Bhupendra Gopalbhai Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana 384012, Gujarat, India
- Correspondence: or ; Tel.: +91-9429225025
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ravish J. Patel
- Ramanbhai Patel College of Pharmacy (RPCP), Charotar University of Science and Technology, Anand 388421, Gujarat, India
| |
Collapse
|
29
|
Watari K, Yamasaki S, Tu HY, Shikamura M, Kamei T, Adachi H, Tochitani T, Kita Y, Nakamura A, Ueyama K, Ono K, Morinaga C, Matsuyama T, Sho J, Nakamura M, Fujiwara M, Hori Y, Tanabe A, Hirai R, Terai O, Ohno O, Ohara H, Hayama T, Ikeda A, Nukaya D, Matsushita K, Takahashi M, Kishino A, Kimura T, Kawamata S, Mandai M, Kuwahara A. Self-organization, quality control, and preclinical studies of human iPSC-derived retinal sheets for tissue-transplantation therapy. Commun Biol 2023; 6:164. [PMID: 36765170 PMCID: PMC9918541 DOI: 10.1038/s42003-023-04543-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Three-dimensional retinal organoids (3D-retinas) are a promising graft source for transplantation therapy. We previously developed self-organizing culture for 3D-retina generation from human pluripotent stem cells (hPSCs). Here we present a quality control method and preclinical studies for tissue-sheet transplantation. Self-organizing hPSCs differentiated into both retinal and off-target tissues. Gene expression analyses identified the major off-target tissues as eye-related, cortex-like, and spinal cord-like tissues. For quality control, we developed a qPCR-based test in which each hPSC-derived neuroepithelium was dissected into two tissue-sheets: inner-central sheet for transplantation and outer-peripheral sheet for qPCR to ensure retinal tissue selection. During qPCR, tissue-sheets were stored for 3-4 days using a newly developed preservation method. In a rat tumorigenicity study, no transplant-related adverse events were observed. In retinal degeneration model rats, retinal transplants differentiated into mature photoreceptors and exhibited light responses in electrophysiology assays. These results demonstrate our rationale toward self-organizing retinal sheet transplantation therapy.
Collapse
Affiliation(s)
- Kenji Watari
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Suguru Yamasaki
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan ,grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Hung-Ya Tu
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Masayuki Shikamura
- grid.417982.10000 0004 0623 246XResearch & Development Center for Cell Therapy, Foundation for Biomedical Research and Innovation at Kobe, Chuo-ku, Kobe 650-0047 Japan
| | - Tatsuya Kamei
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Hideki Adachi
- grid.417741.00000 0004 1797 168XPreclinical Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Konohana-ku, Osaka 554-0022 Japan
| | - Tomoaki Tochitani
- grid.417741.00000 0004 1797 168XPreclinical Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Konohana-ku, Osaka 554-0022 Japan
| | - Yasuyuki Kita
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Aya Nakamura
- grid.417741.00000 0004 1797 168XTechnology Research & Development Division, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Kazuki Ueyama
- grid.417741.00000 0004 1797 168XTechnology Research & Development Division, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Keiichi Ono
- grid.417741.00000 0004 1797 168XTechnology Research & Development Division, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Chikako Morinaga
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan ,grid.7597.c0000000094465255RIKEN Program for Drug Discovery and Medical Technology Platforms, RIKEN Cluster for Science, Technology and Innovation Hub., Saitama, 351-0198 Japan
| | - Take Matsuyama
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Junki Sho
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Miyuki Nakamura
- grid.417982.10000 0004 0623 246XResearch & Development Center for Cell Therapy, Foundation for Biomedical Research and Innovation at Kobe, Chuo-ku, Kobe 650-0047 Japan
| | - Masayo Fujiwara
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Yoriko Hori
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Anna Tanabe
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Rina Hirai
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Orie Terai
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Osamu Ohno
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Hidetaka Ohara
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Tetsuya Hayama
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Atsushi Ikeda
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Daiki Nukaya
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Keizo Matsushita
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan ,grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Masayo Takahashi
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Akiyoshi Kishino
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Toru Kimura
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Shin Kawamata
- grid.417982.10000 0004 0623 246XResearch & Development Center for Cell Therapy, Foundation for Biomedical Research and Innovation at Kobe, Chuo-ku, Kobe 650-0047 Japan
| | - Michiko Mandai
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan ,grid.7597.c0000000094465255RIKEN Program for Drug Discovery and Medical Technology Platforms, RIKEN Cluster for Science, Technology and Innovation Hub., Saitama, 351-0198 Japan
| | - Atsushi Kuwahara
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
30
|
Photoreceptor Cell Replacement Using Pluripotent Stem Cells: Current Knowledge and Remaining Questions. Cold Spring Harb Perspect Med 2023; 13:cshperspect.a041309. [PMID: 36617642 PMCID: PMC9899646 DOI: 10.1101/cshperspect.a041309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Retinal degeneration is an increasing global burden without cure for the majority of patients. Once retinal cells have degenerated, vision is permanently lost. Different strategies have been developed in recent years to prevent retinal degeneration or to restore sight (e.g., gene therapy, cell therapy, and electronic implants). Herein, we present current treatment strategies with a focus on cell therapy for photoreceptor replacement using human pluripotent stem cells. We will describe the state of the art and discuss obstacles and limitations observed in preclinical animal models as well as future directions to improve graft integration and functionality.
Collapse
|
31
|
Abstract
Inherited ocular diseases comprise a heterogeneous group of rare and complex diseases, including inherited retinal diseases (IRDs) and inherited optic neuropathies. Recent success in adeno-associated virus-based gene therapy, voretigene neparvovec (Luxturna®) for RPE65-related IRDs, has heralded rapid evolution in gene therapy platform technologies and strategies, from gene augmentation to RNA editing, as well as gene agnostic approaches such as optogenetics. This review discusses the fundamentals underlying the mode of inheritance, natural history studies and clinical trial outcomes, as well as current and emerging therapies covering gene therapy strategies, cell-based therapies and bionic vision.
Collapse
Affiliation(s)
- Hwei Wuen Chan
- Department of Ophthalmology, National University Hospital, Singapore,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Correspondence: Dr Hwei Wuen Chan, Assistant Professor, Department of Ophthalmology (Eye), Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 7, 119228, Singapore. E-mail:
| | - Jaslyn Oh
- Department of Ophthalmology, National University Hospital, Singapore
| | - Bart Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium,Department of Head and Skin, Ghent University, Ghent, Belgium,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium,Division of Ophthalmology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
32
|
Re-formation of synaptic connectivity in dissociated human stem cell-derived retinal organoid cultures. Proc Natl Acad Sci U S A 2023; 120:e2213418120. [PMID: 36598946 PMCID: PMC9926218 DOI: 10.1073/pnas.2213418120] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human pluripotent stem cell (hPSC)-derived retinal organoids (ROs) can efficiently and reproducibly generate retinal neurons that have potential for use in cell replacement strategies [Capowski et al., Development 146, dev171686 (2019)]. The ability of these lab-grown retinal neurons to form new synaptic connections after dissociation from ROs is key to building confidence in their capacity to restore visual function. However, direct evidence of reestablishment of retinal neuron connectivity via synaptic tracing has not been reported to date. The present study employs an in vitro, rabies virus-based, monosynaptic retrograde tracing assay [Wickersham et al., Neuron 53, 639-647 (2007); Sun et al., Mol. Neurodegener. 14, 8 (2019)] to identify de novo synaptic connections among early retinal cell types following RO dissociation. A reproducible, high-throughput approach for labeling and quantifying traced retinal cell types was developed. Photoreceptors and retinal ganglion cells-the primary neurons of interest for retinal cell replacement-were the two major contributing populations among the traced presynaptic cells. This system provides a platform for assessing synaptic connections in cultured retinal neurons and sets the stage for future cell replacement studies aimed at characterizing or enhancing synaptogenesis. Used in this manner, in vitro synaptic tracing is envisioned to complement traditional preclinical animal model testing, which is limited by evolutionary incompatibilities in synaptic machinery inherent to human xenografts.
Collapse
|
33
|
Kim HJ, O'Hara-Wright M, Kim D, Loi TH, Lim BY, Jamieson RV, Gonzalez-Cordero A, Yang P. Comprehensive characterization of fetal and mature retinal cell identity to assess the fidelity of retinal organoids. Stem Cell Reports 2023; 18:175-189. [PMID: 36630901 PMCID: PMC9860116 DOI: 10.1016/j.stemcr.2022.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Characterizing cell identity in complex tissues such as the human retina is essential for studying its development and disease. While retinal organoids derived from pluripotent stem cells have been widely used to model development and disease of the human retina, there is a lack of studies that have systematically evaluated the molecular and cellular fidelity of the organoids derived from various culture protocols in recapitulating their in vivo counterpart. To this end, we performed an extensive meta-atlas characterization of cellular identities of the human eye, covering a wide range of developmental stages. The resulting map uncovered previously unknown biomarkers of major retinal cell types and those associated with cell-type-specific maturation. Using our retinal-cell-identity map from the fetal and adult tissues, we systematically assessed the fidelity of the retinal organoids in mimicking the human eye, enabling us to comprehensively benchmark the current protocols for retinal organoid generation.
Collapse
Affiliation(s)
- Hani Jieun Kim
- Computational Systems Biology Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia; School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Michelle O'Hara-Wright
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Stem Cell Medicine Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Daniel Kim
- Computational Systems Biology Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - To Ha Loi
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Eye Genetics Research Unit, Children's Medical Research Institute, Sydney Children's Hospitals Network, Save Sight Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Benjamin Y Lim
- Stem Cell Medicine Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Robyn V Jamieson
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia; Eye Genetics Research Unit, Children's Medical Research Institute, Sydney Children's Hospitals Network, Save Sight Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Anai Gonzalez-Cordero
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Stem Cell Medicine Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Pengyi Yang
- Computational Systems Biology Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia; School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
34
|
John MC, Quinn J, Hu ML, Cehajic-Kapetanovic J, Xue K. Gene-agnostic therapeutic approaches for inherited retinal degenerations. Front Mol Neurosci 2023; 15:1068185. [PMID: 36710928 PMCID: PMC9881597 DOI: 10.3389/fnmol.2022.1068185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Inherited retinal diseases (IRDs) are associated with mutations in over 250 genes and represent a major cause of irreversible blindness worldwide. While gene augmentation or gene editing therapies could address the underlying genetic mutations in a small subset of patients, their utility remains limited by the great genetic heterogeneity of IRDs and the costs of developing individualised therapies. Gene-agnostic therapeutic approaches target common pathogenic pathways that drive retinal degeneration or provide functional rescue of vision independent of the genetic cause, thus offering potential clinical benefits to all IRD patients. Here, we review the key gene-agnostic approaches, including retinal cell reprogramming and replacement, neurotrophic support, immune modulation and optogenetics. The relative benefits and limitations of these strategies and the timing of clinical interventions are discussed.
Collapse
Affiliation(s)
- Molly C. John
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Joel Quinn
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Monica L. Hu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
35
|
Cheng L, Kuehn MH. Human Retinal Organoids in Therapeutic Discovery: A Review of Applications. Handb Exp Pharmacol 2023; 281:157-187. [PMID: 37608005 DOI: 10.1007/164_2023_691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Human embryonic stem cells (hESCs)- and induced pluripotent stem cells (hiPSCs)-derived retinal organoids (ROs) are three-dimensional laminar structures that recapitulate the developmental trajectory of the human retina. The ROs provide a fascinating tool for basic science research, eye disease modeling, treatment development, and biobanking for tissue/cell replacement. Here we review the previous studies that paved the way for RO technology, the two most widely accepted, standardized protocols to generate ROs, and the utilization of ROs in medical discovery. This review is conducted from the perspective of basic science research, transplantation for regenerative medicine, disease modeling, and therapeutic development for drug screening and gene therapy. ROs have opened avenues for new technologies such as assembloids, coculture with other organoids, vasculature or immune cells, microfluidic devices (organ-on-chip), extracellular vesicles for drug delivery, biomaterial engineering, advanced imaging techniques, and artificial intelligence (AI). Nevertheless, some shortcomings of ROs currently limit their translation for medical applications and pose a challenge for future research. Despite these limitations, ROs are a powerful tool for functional studies and therapeutic strategies for retinal diseases.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, IA, USA.
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, IA, USA
- Institute for Vision Research, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
36
|
Carleton M, Oesch NW. Differences in the spatial fidelity of evoked and spontaneous signals in the degenerating retina. Front Cell Neurosci 2022; 16:1040090. [PMID: 36419935 PMCID: PMC9676928 DOI: 10.3389/fncel.2022.1040090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/20/2022] [Indexed: 07/01/2024] Open
Abstract
Vision restoration strategies aim to reestablish vision by replacing the function of lost photoreceptors with optoelectronic hardware or through gene therapy. One complication to these approaches is that retinal circuitry undergoes remodeling after photoreceptor loss. Circuit remodeling following perturbation is ubiquitous in the nervous system and understanding these changes is crucial for treating neurodegeneration. Spontaneous oscillations that arise during retinal degeneration have been well-studied, however, other changes in the spatiotemporal processing of evoked and spontaneous activity have received less attention. Here we use subretinal electrical stimulation to measure the spatial and temporal spread of both spontaneous and evoked activity during retinal degeneration. We found that electrical stimulation synchronizes spontaneous oscillatory activity, over space and through time, thus leading to increased correlations in ganglion cell activity. Intriguingly, we found that spatial selectivity was maintained in rd10 retina for evoked responses, with spatial receptive fields comparable to wt retina. These findings indicate that different biophysical mechanisms are involved in mediating feed forward excitation, and the lateral spread of spontaneous activity in the rd10 retina, lending support toward the possibility of high-resolution vision restoration.
Collapse
Affiliation(s)
- Maya Carleton
- Department of Psychology, University of California, San Diego, La Jolla, CA, United States
| | - Nicholas W. Oesch
- Department of Psychology, University of California, San Diego, La Jolla, CA, United States
- Department of Ophthalmology, University of California, San Diego, La Jolla, CA, United States
- The Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
37
|
Uyama H, Tu HY, Sugita S, Yamasaki S, Kurimoto Y, Matsuyama T, Shiina T, Watanabe T, Takahashi M, Mandai M. Competency of iPSC-derived retinas in MHC-mismatched transplantation in non-human primates. Stem Cell Reports 2022; 17:2392-2408. [PMID: 36306783 PMCID: PMC9669501 DOI: 10.1016/j.stemcr.2022.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Transplantation of embryonic/induced pluripotent stem cell-derived retina (ESC/iPSC-retina) restores host retinal ganglion cell light responses in end-stage retinal degeneration models with host-graft synapse formation. We studied the immunological features of iPSC-retina transplantation using major histocompatibility complex (MHC)-homozygote monkey iPSC-retinas in monkeys with laser-induced retinal degeneration in MHC-matched and -mismatched transplantation. MHC-mismatched transplantation without immune suppression showed no evident clinical signs of rejection and histologically showed graft maturation without lymphocytic infiltration, although immunological tests using peripheral blood monocytes suggested subclinical rejection in three of four MHC-mismatched monkeys. Although extensive photoreceptor rosette formation was observed on histology, evaluation of functional integration using mouse models such as mouse ESC-retina (C57BL/6) transplanted into rd1(C3H/HeJ, MHC-mismatched model) elicited light responses in the host retinal ganglion cells after transplantation but with less responsiveness than that in rd1-2J mice (C57BL/6, MHC-matched model). These results suggest the reasonable use of ESC/iPSC-retina in MHC-mismatched transplantation, albeit with caution.
Collapse
Affiliation(s)
- Hirofumi Uyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hung-Ya Tu
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Vision Care, Inc., Kobe Eye Center 5F, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Suguru Yamasaki
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Yasuo Kurimoto
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Take Matsuyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Takehito Watanabe
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Vision Care, Inc., Kobe Eye Center 5F, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Corresponding author
| |
Collapse
|
38
|
Sanjurjo-Soriano C, Erkilic N, Damodar K, Boukhaddaoui H, Diakatou M, Garita-Hernandez M, Mamaeva D, Dubois G, Jazouli Z, Jimenez-Medina C, Goureau O, Meunier I, Kalatzis V. Retinoic acid delays initial photoreceptor differentiation and results in a highly structured mature retinal organoid. Stem Cell Res Ther 2022; 13:478. [PMID: 36114559 PMCID: PMC9482314 DOI: 10.1186/s13287-022-03146-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Human-induced pluripotent stem cell-derived retinal organoids are a valuable tool for disease modelling and therapeutic development. Many efforts have been made over the last decade to optimise protocols for the generation of organoids that correctly mimic the human retina. Most protocols use common media supplements; however, protocol-dependent variability impacts data interpretation. To date, the lack of a systematic comparison of a given protocol with or without supplements makes it difficult to determine how they influence the differentiation process and morphology of the retinal organoids. METHODS A 2D-3D differentiation method was used to generate retinal organoids, which were cultured with or without the most commonly used media supplements, notably retinoic acid. Gene expression was assayed using qPCR analysis, protein expression using immunofluorescence studies, ultrastructure using electron microscopy and 3D morphology using confocal and biphoton microscopy of whole organoids. RESULTS Retinoic acid delayed the initial stages of differentiation by modulating photoreceptor gene expression. At later stages, the presence of retinoic acid led to the generation of mature retinal organoids with a well-structured stratified photoreceptor layer containing a predominant rod population. By contrast, the absence of retinoic acid led to cone-rich organoids with a less organised and non-stratified photoreceptor layer. CONCLUSIONS This study proves the importance of supplemented media for culturing retinal organoids. More importantly, we demonstrate for the first time that the role of retinoic acid goes beyond inducing a rod cell fate to enhancing the organisation of the photoreceptor layer of the mature organoid.
Collapse
Affiliation(s)
- Carla Sanjurjo-Soriano
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France.
| | - Nejla Erkilic
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, Univ Montpellier, CHU, Montpellier, France
| | - Krishna Damodar
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Hassan Boukhaddaoui
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Michalitsa Diakatou
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Marcela Garita-Hernandez
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Daria Mamaeva
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Gregor Dubois
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Zhour Jazouli
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Carla Jimenez-Medina
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Olivier Goureau
- Institut de La Vision, Sorbonne Université, Inserm, CNRS, Paris, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, Univ Montpellier, CHU, Montpellier, France
| | - Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France.
| |
Collapse
|
39
|
Ripolles-Garcia A, Dolgova N, Phillips MJ, Savina S, Ludwig AL, Stuedemann SA, Nlebedum U, Wolfe JH, Garden OA, Maminishkis A, Amaral J, Bharti K, Gamm DM, Aguirre GD, Beltran WA. Systemic immunosuppression promotes survival and integration of subretinally implanted human ESC-derived photoreceptor precursors in dogs. Stem Cell Reports 2022; 17:1824-1841. [PMID: 35905738 PMCID: PMC9391525 DOI: 10.1016/j.stemcr.2022.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022] Open
Abstract
Regenerative therapies aimed at replacing photoreceptors are a promising approach for the treatment of otherwise incurable causes of blindness. However, such therapies still face significant hurdles, including the need to improve subretinal delivery and long-term survival rate of transplanted cells, and promote sufficient integration into the host retina. Here, we successfully delivered in vitro-derived human photoreceptor precursor cells (PRPCs; also known as immature photoreceptors) to the subretinal space of seven normal and three rcd1/PDE6B mutant dogs with advanced inherited retinal degeneration. Notably, while these xenografts were rejected in dogs that were not immunosuppressed, transplants in most dogs receiving systemic immunosuppression survived up to 3-5 months postinjection. Moreover, differentiation of donor PRPCs into photoreceptors with synaptic pedicle-like structures that established contact with second-order neurons was enhanced in rcd1/PDE6B mutant dogs. Together, our findings set the stage for evaluating functional vision restoration following photoreceptor replacement in canine models of inherited retinal degeneration.
Collapse
Affiliation(s)
- Ana Ripolles-Garcia
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natalia Dolgova
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Svetlana Savina
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allison L Ludwig
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sara A Stuedemann
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Uchenna Nlebedum
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John H Wolfe
- Walter Flato Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Oliver A Garden
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arvydas Maminishkis
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Juan Amaral
- Office of Scientific Director, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - David M Gamm
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Xue Y, Lin B, Chen JT, Tang WC, Browne AW, Seiler MJ. The Prospects for Retinal Organoids in Treatment of Retinal Diseases. Asia Pac J Ophthalmol (Phila) 2022; 11:314-327. [PMID: 36041146 PMCID: PMC9966053 DOI: 10.1097/apo.0000000000000538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/22/2022] [Indexed: 12/28/2022] Open
Abstract
Retinal degeneration (RD) is a significant cause of incurable blindness worldwide. Photoreceptors and retinal pigmented epithelium are irreversibly damaged in advanced RD. Functional replacement of photoreceptors and/or retinal pigmented epithelium cells is a promising approach to restoring vision. This paper reviews the current status and explores future prospects of the transplantation therapy provided by pluripotent stem cell-derived retinal organoids (ROs). This review summarizes the status of rodent RD disease models and discusses RO culture and analytical tools to evaluate RO quality and function. Finally, we review and discuss the studies in which RO-derived cells or sheets were transplanted. In conclusion, methods to derive ROs from pluripotent stem cells have significantly improved and become more efficient in recent years. Meanwhile, more novel technologies are applied to characterize and validate RO quality. However, opportunity remains to optimize tissue differentiation protocols and achieve better RO reproducibility. In order to screen high-quality ROs for downstream applications, approaches such as noninvasive and label-free imaging and electrophysiological functional testing are promising and worth further investigation. Lastly, transplanted RO-derived tissues have allowed improvements in visual function in several RD models, showing promises for clinical applications in the future.
Collapse
Affiliation(s)
- Yuntian Xue
- Biomedical Engineering, University of California, Irvine, CA
- Stem Cell Research Center, University of California, Irvine, CA
| | - Bin Lin
- Stem Cell Research Center, University of California, Irvine, CA
| | - Jacqueline T. Chen
- Stem Cell Research Center, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
| | - William C. Tang
- Biomedical Engineering, University of California, Irvine, CA
| | - Andrew W. Browne
- Biomedical Engineering, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
- Institute for Clinical and Translational Science, University of California, Irvine, CA
| | - Magdalene J. Seiler
- Stem Cell Research Center, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA
- Department of Anatomy and Neurobiology, University of California, Irvine, CA
| |
Collapse
|
41
|
Lendahl U. 100 plus years of stem cell research-20 years of ISSCR. Stem Cell Reports 2022; 17:1248-1267. [PMID: 35705014 PMCID: PMC9213821 DOI: 10.1016/j.stemcr.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
The International Society for Stem Cell Research (ISSCR) celebrates its 20th anniversary in 2022. This review looks back at some of the key developments in stem cell research as well as the evolution of the ISSCR as part of that field. Important discoveries from stem cell research are described, and how the improved understanding of basic stem cell biology translates into new clinical therapies and insights into disease mechanisms is discussed. Finally, the birth and growth of ISSCR into a leading stem cell society and a respected voice for ethics, advocacy, education and policy in stem cell research are described.
Collapse
Affiliation(s)
- Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
42
|
Van Gelder RN, Chiang MF, Dyer MA, Greenwell TN, Levin LA, Wong RO, Svendsen CN. Regenerative and restorative medicine for eye disease. Nat Med 2022; 28:1149-1156. [PMID: 35715505 PMCID: PMC10718186 DOI: 10.1038/s41591-022-01862-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022]
Abstract
Causes of blindness differ across the globe; in higher-income countries, most blindness results from the degeneration of specific classes of cells in the retina, including retinal pigment epithelium (RPE), photoreceptors, and retinal ganglion cells. Advances over the past decade in retinal regenerative medicine have allowed each of these cell types to be produced ex vivo from progenitor stem cells. Here, we review progress in applying these technologies to cell replacement - with the goal of vision restoration in degenerative disease. We discuss the landscape of human clinical trials for RPE transplantation and advanced preclinical studies for other cell types. We also review progress toward in situ repair of retinal degeneration using endogenous progenitor cells. Finally, we provide a high-level overview of progress toward prosthetic ocular vision restoration, including advanced photovoltaic devices, opsin-based gene therapy, and small-molecule photoswitches. Progress in each of these domains is at or near the human clinical-trial stage, bringing the audacious goal of vision restoration within sight.
Collapse
Affiliation(s)
- Russell N Van Gelder
- Karalis-Johnson Retina Center, Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Pathology and Laboratory Medicine, University of Washington School of Medicine, Seattle, WA, USA.
- Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, WA, USA.
| | - Michael F Chiang
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude's Research Hospital, Memphis, TN, USA
| | - Thomas N Greenwell
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Leonard A Levin
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Rachel O Wong
- Karalis-Johnson Retina Center, Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
43
|
Rempel SK, Welch MJ, Ludwig AL, Phillips MJ, Kancherla Y, Zack DJ, Gamm DM, Gómez TM. Human photoreceptors switch from autonomous axon extension to cell-mediated process pulling during synaptic marker redistribution. Cell Rep 2022; 39:110827. [PMID: 35584680 DOI: 10.1016/j.celrep.2022.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Photoreceptors (PRs) are the primary visual sensory cells, and their loss leads to blindness that is currently incurable. Although cell replacement therapy holds promise, success is hindered by our limited understanding of PR axon growth during development and regeneration. Here, we generate retinal organoids from human pluripotent stem cells to study the mechanisms of PR process extension. We find that early-born PRs exhibit autonomous axon extension from dynamic terminals. However, as PRs age from 40 to 80 days of differentiation, they lose dynamic terminals on 2D substrata and in 3D retinal organoids. Interestingly, PRs without motile terminals are still capable of extending axons but only by process stretching via attachment to motile non-PR cells. Immobile PR terminals of late-born PRs have fewer and less organized actin filaments but more synaptic proteins compared with early-born PR terminals. These findings may help inform the development of PR transplantation therapies.
Collapse
Affiliation(s)
- Sarah K Rempel
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Madalynn J Welch
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Allison L Ludwig
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA; Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - M Joseph Phillips
- McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA; Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Yochana Kancherla
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Donald J Zack
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - David M Gamm
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA; Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Timothy M Gómez
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA.
| |
Collapse
|
44
|
Gasparini SJ, Tessmer K, Reh M, Wieneke S, Carido M, Völkner M, Borsch O, Swiersy A, Zuzic M, Goureau O, Kurth T, Busskamp V, Zeck G, Karl MO, Ader M. Transplanted human cones incorporate and function in a murine cone degeneration model. J Clin Invest 2022; 132:154619. [PMID: 35482419 PMCID: PMC9197520 DOI: 10.1172/jci154619] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Once human photoreceptors die, they do not regenerate, thus, photoreceptor transplantation has emerged as a potential treatment approach for blinding diseases. Improvements in transplant organization, donor cell maturation, and synaptic connectivity to the host will be critical in advancing this technology for use in clinical practice. Unlike the unstructured grafts of prior cell-suspension transplantations into end-stage degeneration models, we describe the extensive incorporation of induced pluripotent stem cell (iPSC) retinal organoid–derived human photoreceptors into mice with cone dysfunction. This incorporative phenotype was validated in both cone-only as well as pan-photoreceptor transplantations. Rather than forming a glial barrier, Müller cells extended throughout the graft, even forming a series of adherens junctions between mouse and human cells, reminiscent of an outer limiting membrane. Donor-host interaction appeared to promote polarization as well as the development of morphological features critical for light detection, namely the formation of inner and well-stacked outer segments oriented toward the retinal pigment epithelium. Putative synapse formation and graft function were evident at both structural and electrophysiological levels. Overall, these results show that human photoreceptors interacted readily with a partially degenerated retina. Moreover, incorporation into the host retina appeared to be beneficial to graft maturation, polarization, and function.
Collapse
Affiliation(s)
| | - Karen Tessmer
- Ader Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Miriam Reh
- Department of Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | - Stephanie Wieneke
- Karl Lab, Center for Regenerative Therapies TU Dresden and German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Madalena Carido
- Ader Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Manuela Völkner
- Karl Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Oliver Borsch
- Ader Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Anka Swiersy
- Busskamp Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Marta Zuzic
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Olivier Goureau
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Thomas Kurth
- Center for Molecular and Cellular Biology, Technische Universität (TU) Dresden, Dresden, Germany
| | - Volker Busskamp
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Günther Zeck
- Department of Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | - Mike O Karl
- Karl Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Marius Ader
- Ader Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| |
Collapse
|
45
|
Rashidi H, Leong YC, Venner K, Pramod H, Fei QZ, Jones OJR, Moulding D, Sowden JC. Generation of 3D retinal tissue from human pluripotent stem cells using a directed small molecule-based serum-free microwell platform. Sci Rep 2022; 12:6646. [PMID: 35459774 PMCID: PMC9033780 DOI: 10.1038/s41598-022-10540-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Retinal degenerative diseases are a leading cause of blindness worldwide with debilitating life-long consequences for the affected individuals. Cell therapy is considered a potential future clinical intervention to restore and preserve sight by replacing lost photoreceptors and/or retinal pigment epithelium. Development of protocols to generate retinal tissue from human pluripotent stem cells (hPSC), reliably and at scale, can provide a platform to generate photoreceptors for cell therapy and to model retinal disease in vitro. Here, we describe an improved differentiation platform to generate retinal organoids from hPSC at scale and free from time-consuming manual microdissection steps. The scale up was achieved using an agarose mould platform enabling generation of uniform self-assembled 3D spheres from dissociated hPSC in microwells. Subsequent retinal differentiation was efficiently achieved via a stepwise differentiation protocol using a number of small molecules. To facilitate clinical translation, xeno-free approaches were developed by substituting Matrigel™ and foetal bovine serum with recombinant laminin and human platelet lysate, respectively. Generated retinal organoids exhibited important features reminiscent of retinal tissue including correct site-specific localisation of proteins involved in phototransduction.
Collapse
Affiliation(s)
- Hassan Rashidi
- Stem Cells and Regenerative Medicine Section, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London and NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London, WC1N 1EH, UK
| | - Yeh Chwan Leong
- Stem Cells and Regenerative Medicine Section, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London and NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London, WC1N 1EH, UK
| | - Kerrie Venner
- UCL Institute of Neurology, Queens Square, University College London, London, UK
| | - Hema Pramod
- Stem Cells and Regenerative Medicine Section, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London and NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London, WC1N 1EH, UK
| | - Qi-Zhen Fei
- Stem Cells and Regenerative Medicine Section, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London and NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London, WC1N 1EH, UK
| | - Owen J R Jones
- Stem Cells and Regenerative Medicine Section, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London and NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London, WC1N 1EH, UK
| | - Dale Moulding
- Stem Cells and Regenerative Medicine Section, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London and NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London, WC1N 1EH, UK
| | - Jane C Sowden
- Stem Cells and Regenerative Medicine Section, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London and NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
46
|
Maeda T, Mandai M, Sugita S, Kime C, Takahashi M. Strategies of pluripotent stem cell-based therapy for retinal degeneration: update and challenges. Trends Mol Med 2022; 28:388-404. [DOI: 10.1016/j.molmed.2022.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
|
47
|
Rizzolo LJ, Nasonkin IO, Adelman RA. Retinal Cell Transplantation, Biomaterials, and In Vitro Models for Developing Next-generation Therapies of Age-related Macular Degeneration. Stem Cells Transl Med 2022; 11:269-281. [PMID: 35356975 PMCID: PMC8968686 DOI: 10.1093/stcltm/szac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022] Open
Abstract
Retinal pigment epithelium (RPE) cells grown on a scaffold, an RPE patch, have potential to ameliorate visual impairment in a limited number of retinal degenerative conditions. This tissue-replacement therapy is suited for age-related macular degeneration (AMD), and related diseases. RPE cells must be transplanted before the disease reaches a point of no return, represented by the loss of photoreceptors. Photoreceptors are specialized, terminally differentiated neurosensory cells that must interact with RPE's apical processes to be functional. Human photoreceptors are not known to regenerate. On the RPE's basal side, the RPE transplant must induce the reformation of the choriocapillaris, thereby re-establishing the outer blood-retinal barrier. Because the scaffold is positioned between the RPE and choriocapillaris, it should ideally degrade and be replaced by the natural extracellular matrix that separates these tissues. Besides biodegradable, the scaffolds need to be nontoxic, thin enough to not affect the focal length of the eye, strong enough to survive the transplant procedure, yet flexible enough to conform to the curvature of the retina. The challenge is patients with progressing AMD treasure their remaining vision and fear that a risky surgical procedure will further degrade their vision. Accordingly, clinical trials only treat eyes with severe impairment that have few photoreceptors to interact with the transplanted patch. Although safety has been demonstrated, the cell-replacement mechanism and efficacy remain difficult to validate. This review covers the structure of the retina, the pathology of AMD, the limitations of cell therapy approaches, and the recent progress in developing retinal therapies using biomaterials.
Collapse
Affiliation(s)
- Lawrence J Rizzolo
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA
- Department of Surgery, Yale University, New Haven, CT, USA
| | | | - Ron A Adelman
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA
| |
Collapse
|
48
|
Garcia-Ayuso D, Di Pierdomenico J, García-Bernal D, Vidal-Sanz M, Villegas-Pérez MP. Bone marrow-derived mononuclear stem cells in the treatment of retinal degenerations. Neural Regen Res 2022; 17:1937-1944. [PMID: 35142670 PMCID: PMC8848608 DOI: 10.4103/1673-5374.335692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Retinal degenerative diseases affecting the outer retina in its many forms (inherited, acquired or induced) are characterized by photoreceptor loss, and represent currently a leading cause of irreversible vision loss in the world. At present, there are very few treatments capable of preventing, recovering or reversing photoreceptor degeneration or the secondary retinal remodeling, which follows photoreceptor loss and can also cause the death of other retinal cells. Thus, these diseases are nowadays one of the greatest challenges in the field of ophthalmological research. Bone marrow derived-mononuclear stem cell transplantation has shown promising results for the treatment of photoreceptor degenerations. These cells may have the potential to slow down photoreceptor loss, and therefore should be applied in the early stages of photoreceptor degenerations. Furthermore, because of their possible paracrine effects, they may have a wide range of clinical applications, since they can potentially impact on several retinal cell types at once and photoreceptor degenerations can involve different cells and/or begin in one cell type and then affect adjacent cells. The intraocular injection of bone marrow derived-mononuclear stem cells also enhances the outcomes of other treatments aimed to protect photoreceptors. Therefore, it is likely that future investigations may combine bone marrow derived-mononuclear stem cell therapy with other systemic or intraocular treatments to obtain greater therapeutic effects in degenerative retinal diseases.
Collapse
Affiliation(s)
- Diego Garcia-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - David García-Bernal
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca); Servicio de Hematología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - María P Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| |
Collapse
|
49
|
Yamasaki S, Tu HY, Matsuyama T, Horiuchi M, Hashiguchi T, Sho J, Kuwahara A, Kishino A, Kimura T, Takahashi M, Mandai M. A Genetic modification that reduces ON-bipolar cells in hESC-derived retinas enhances functional integration after transplantation. iScience 2022; 25:103657. [PMID: 35024589 PMCID: PMC8733179 DOI: 10.1016/j.isci.2021.103657] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023] Open
Abstract
Pluripotent stem cell (PSC)-derived retinal sheet transplanted in vivo can form structured photoreceptor layers, contact with host bipolar cells, and transmit light signals to host retinas. However, a major concern is the presence of graft bipolar cells that may impede host-graft interaction. In this study, we used human ESC-retinas with the deletion of Islet-1 (ISL1) gene to achieve the reduced graft ON-bipolar cells after xenotransplantation into end-stage retinal degeneration model rats. Compared with wild-type graft, ISL1−/− hESC-retinas showed better host-graft contact, with indication of host-graft synapse formation and significant restoration of light responsiveness in host ganglion cells. We further analyzed to find out that improved functional integration of ISL1−/− hESC-retinas seemed attributed by a better host-graft contact and a better preservation of host inner retina. ISL1−/− hESC-retinas are promising for the efficient reconstruction of a degenerated retinal network in future clinical application. Deletion of ISL1 in hESC-retinas resulted in a reduced number of ON-bipolar cells Photoreceptors in ISL1−/− hESC-retinas achieved functional maturation in vivo ISL1−/− hESC-retinas showed better host-graft contact with putative synapses ISL1−/− hESC-retinas better restored RGC light responsiveness in degenerated retina
Collapse
Affiliation(s)
- Suguru Yamasaki
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Hung-Ya Tu
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Take Matsuyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan
| | - Matsuri Horiuchi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Tomoyo Hashiguchi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Junki Sho
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Atsushi Kuwahara
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Akiyoshi Kishino
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Toru Kimura
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan.,RIKEN Program for Drug Discovery and Medical Technology Platforms (DMP), RIKEN Cluster for Science, Technology and Innovation Hub., Saitama, 351-0198, Japan
| |
Collapse
|
50
|
Christelle M, Lise M, Ben M'Barek K. Challenges of cell therapies for retinal diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:49-77. [DOI: 10.1016/bs.irn.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|