1
|
Ma S, Liu B, Du H, Yang F, Han J, Huang X, Zhang M, Ji S, Jiang M. RNAi targeting LMAN1-MCFD2 complex promotes anticoagulation in mice. J Thromb Thrombolysis 2024:10.1007/s11239-024-03034-6. [PMID: 39222205 DOI: 10.1007/s11239-024-03034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Combined deficiency of coagulation factor V (FV) and factor VIII (FVIII) is a rare bleeding disease caused by variants in either lectin mannose binding 1 (LMAN1) or multiple coagulation factor deficiency 2 (MCFD2) gene. Reducing the level of FVIII by inhibiting the LMAN1-MCFD2 complex may become a new anticoagulant approach. We aimed to find a new therapeutic option for anticoagulation by RNA interference (RNAi) targeting LMAN1 and MCFD2. siRNA sequences with cross-homology between mice and humans were designed based on LMAN1 or MCFD2 transcripts in NCBI and were screened with the Dual-Luciferase reporter assay. The optimal siRNAs were chemically modified and conjugated with three N-acetylgalactosamine molecules (GalNAc-siRNA), promoting their targeted delivery to the liver. The expression of LMAN1 and MCFD2 in cell lines or mice was examined by RT-qPCR and western blotting. For the mice administered with siRNA, we assessed their coagulation function by measuring APTT and the activity of FVIII factor. After administration, siRNAs GalNAc-LMAN1 and GalNAc-MCFD2 demonstrated effective and persistent LMAN1 and MCFD2 inhibition. 7 days after injection of 3mg/kg GalNAc-LMAN1, the LMAN1 mRNA levels reduced to 19.97% ± 3.78%. MCFD2 mRNA levels reduced to 32.22% ± 13.14% with injection of 3mg/kg GalNAc-MCFD2. After repeated administration, APTT was prolonged and the FVIII activity was remarkably decreased. The tail bleeding test of mice showed that the amount of bleeding in the treated group did not significantly increase compared with the control group. Our study confirms that therapy with RNAi targeting LMAN1-MCFD2 complex is effective and can be considered a viable option for anticoagulation drugs. However, the benefits and potential risk of bleeding in thrombophilic mice model needs to be evaluated.
Collapse
Affiliation(s)
- Siqian Ma
- Hematology Department, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215021, China
| | - Boyan Liu
- Hematology Department, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215021, China
| | - Hong Du
- Suzhou Genephama Co., Ltd, , Suzhou, 215123, China
| | - Fei Yang
- National Clinical Medical Research Center of Blood Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China
- Key Laboratory of Thrombosis and Hemostasis of National Health Commission of People's Republic of China, Suzhou, 215006, China
| | - Jingjing Han
- National Clinical Medical Research Center of Blood Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China
- Key Laboratory of Thrombosis and Hemostasis of National Health Commission of People's Republic of China, Suzhou, 215006, China
| | - Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Minyang Zhang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Shundong Ji
- National Clinical Medical Research Center of Blood Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China
- Key Laboratory of Thrombosis and Hemostasis of National Health Commission of People's Republic of China, Suzhou, 215006, China
| | - Miao Jiang
- Hematology Department, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215021, China.
- National Clinical Medical Research Center of Blood Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China.
- Key Laboratory of Thrombosis and Hemostasis of National Health Commission of People's Republic of China, Suzhou, 215006, China.
| |
Collapse
|
2
|
Tung J, Huang L, George G, Harding HP, Ron D, Ordonez A. A genome-wide CRISPR/Cas9 screen identifies calreticulin as a selective repressor of ATF6α. eLife 2024; 13:RP96979. [PMID: 39073063 PMCID: PMC11286266 DOI: 10.7554/elife.96979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Activating transcription factor 6 (ATF6) is one of three endoplasmic reticulum (ER) transmembrane stress sensors that mediate the unfolded protein response (UPR). Despite its crucial role in long-term ER stress adaptation, regulation of ATF6 alpha (α) signalling remains poorly understood, possibly because its activation involves ER-to-Golgi and nuclear trafficking. Here, we generated an ATF6α/Inositol-requiring kinase 1 (IRE1) dual UPR reporter CHO-K1 cell line and performed an unbiased genome-wide CRISPR/Cas9 mutagenesis screen to systematically profile genetic factors that specifically contribute to ATF6α signalling in the presence and absence of ER stress. The screen identified both anticipated and new candidate genes that regulate ATF6α activation. Among these, calreticulin (CRT), a key ER luminal chaperone, selectively repressed ATF6α signalling: Cells lacking CRT constitutively activated a BiP::sfGFP ATF6α-dependent reporter, had higher BiP levels and an increased rate of trafficking and processing of ATF6α. Purified CRT interacted with the luminal domain of ATF6α in vitro and the two proteins co-immunoprecipitated from cell lysates. CRT depletion exposed a negative feedback loop implicating ATF6α in repressing IRE1 activity basally and overexpression of CRT reversed this repression. Our findings indicate that CRT, beyond its known role as a chaperone, also serves as an ER repressor of ATF6α to selectively regulate one arm of the UPR.
Collapse
Affiliation(s)
- Joanne Tung
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Lei Huang
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Ginto George
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Heather P Harding
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - David Ron
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Adriana Ordonez
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| |
Collapse
|
3
|
Anglès F, Gupta V, Wang C, Balch WE. COPII cage assembly factor Sec13 integrates information flow regulating endomembrane function in response to human variation. Sci Rep 2024; 14:10160. [PMID: 38698045 PMCID: PMC11065896 DOI: 10.1038/s41598-024-60687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
How information flow is coordinated for managing transit of 1/3 of the genome through endomembrane pathways by the coat complex II (COPII) system in response to human variation remains an enigma. By examining the interactome of the COPII cage-assembly component Sec13, we show that it is simultaneously associated with multiple protein complexes that facilitate different features of a continuous program of chromatin organization, transcription, translation, trafficking, and degradation steps that are differentially sensitive to Sec13 levels. For the trafficking step, and unlike other COPII components, reduction of Sec13 expression decreased the ubiquitination and degradation of wild-type (WT) and F508del variant cargo protein cystic fibrosis transmembrane conductance regulator (CFTR) leading to a striking increase in fold stability suggesting that the events differentiating export from degradation are critically dependent on COPII cage assembly at the ER Golgi intermediate compartment (ERGIC) associated recycling and degradation step linked to COPI exchange. Given Sec13's multiple roles in protein complex assemblies that change in response to its expression, we suggest that Sec13 serves as an unanticipated master regulator coordinating information flow from the genome to the proteome to facilitate spatial covariant features initiating and maintaining design and function of membrane architecture in response to human variation.
Collapse
Affiliation(s)
- Frédéric Anglès
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Vijay Gupta
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Chao Wang
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - William E Balch
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
4
|
Zhao P, Wang C, Sun S, Wang X, Balch WE. Tracing genetic diversity captures the molecular basis of misfolding disease. Nat Commun 2024; 15:3333. [PMID: 38637533 PMCID: PMC11026414 DOI: 10.1038/s41467-024-47520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Genetic variation in human populations can result in the misfolding and aggregation of proteins, giving rise to systemic and neurodegenerative diseases that require management by proteostasis. Here, we define the role of GRP94, the endoplasmic reticulum Hsp90 chaperone paralog, in managing alpha-1-antitrypsin deficiency on a residue-by-residue basis using Gaussian process regression-based machine learning to profile the spatial covariance relationships that dictate protein folding arising from sequence variants in the population. Covariance analysis suggests a role for the ATPase activity of GRP94 in controlling the N- to C-terminal cooperative folding of alpha-1-antitrypsin responsible for the correction of liver aggregation and lung-disease phenotypes of alpha-1-antitrypsin deficiency. Gaussian process-based spatial covariance profiling provides a standard model built on covariant principles to evaluate the role of proteostasis components in guiding information flow from genome to proteome in response to genetic variation, potentially allowing us to intervene in the onset and progression of complex multi-system human diseases.
Collapse
Affiliation(s)
- Pei Zhao
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Chao Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA.
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Shuhong Sun
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xi Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
5
|
Li J, Moretti F, Hidvegi T, Sviben S, Fitzpatrick JAJ, Sundaramoorthi H, Pak SC, Silverman GA, Knapp B, Filipuzzi I, Alford J, Reece-Hoyes J, Nigsch F, Murphy LO, Nyfeler B, Perlmutter DH. Multiple Genes Core to ERAD, Macroautophagy and Lysosomal Degradation Pathways Participate in the Proteostasis Response in α1-Antitrypsin Deficiency. Cell Mol Gastroenterol Hepatol 2024; 17:1007-1024. [PMID: 38336172 PMCID: PMC11053228 DOI: 10.1016/j.jcmgh.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND & AIMS In the classic form of α1-antitrypsin deficiency (ATD), the misfolded α1-antitrypsin Z (ATZ) variant accumulates in the endoplasmic reticulum (ER) of liver cells. A gain-of-function proteotoxic mechanism is responsible for chronic liver disease in a subgroup of homozygotes. Proteostatic response pathways, including conventional endoplasmic reticulum-associated degradation and autophagy, have been proposed as the mechanisms that allow cellular adaptation and presumably protection from the liver disease phenotype. Recent studies have concluded that a distinct lysosomal pathway called endoplasmic reticulum-to-lysosome completely supplants the role of the conventional macroautophagy pathway in degradation of ATZ. Here, we used several state-of-the-art approaches to characterize the proteostatic responses more fully in cellular systems that model ATD. METHODS We used clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing coupled to a cell selection step by fluorescence-activated cell sorter to perform screening for proteostasis genes that regulate ATZ accumulation and combined that with selective genome editing in 2 other model systems. RESULTS Endoplasmic reticulum-associated degradation genes are key early regulators and multiple autophagy genes, from classic as well as from ER-to-lysosome and other newly described ER-phagy pathways, participate in degradation of ATZ in a manner that is temporally regulated and evolves as ATZ accumulation persists. Time-dependent changes in gene expression are accompanied by specific ultrastructural changes including dilation of the ER, formation of globular inclusions, budding of autophagic vesicles, and alterations in the overall shape and component parts of mitochondria. CONCLUSIONS Macroautophagy is a critical component of the proteostasis response to cellular ATZ accumulation and it becomes more important over time as ATZ synthesis continues unabated. Multiple subtypes of macroautophagy and nonautophagic lysosomal degradative pathways are needed to respond to the high concentrations of misfolded protein that characterizes ATD and these pathways are attractive candidates for genetic variants that predispose to the hepatic phenotype.
Collapse
Affiliation(s)
- Jie Li
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | | | - Tunda Hidvegi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Sanja Sviben
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, Missouri
| | - James A J Fitzpatrick
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri; Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri
| | | | - Stephen C Pak
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Gary A Silverman
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Britta Knapp
- Novartis Biomedical Research, Basel, Switzerland
| | | | - John Alford
- Novartis Biomedical Research, Cambridge, Massachusetts
| | | | | | - Leon O Murphy
- Novartis Biomedical Research, Cambridge, Massachusetts
| | - Beat Nyfeler
- Novartis Biomedical Research, Basel, Switzerland
| | - David H Perlmutter
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
6
|
Guo CG, Sun R, Wang X, Yuan Y, Xu Y, Li S, Sun X, Wang J, Hu X, Guo T, Chen XW, Xiao RP, Zhang X. Intestinal SURF4 is essential for apolipoprotein transport and lipoprotein secretion. Mol Metab 2024; 79:101847. [PMID: 38042368 PMCID: PMC10755498 DOI: 10.1016/j.molmet.2023.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
OBJECTIVE Lipoprotein assembly and secretion in the small intestine are critical for dietary fat absorption. Surfeit locus protein 4 (SURF4) serves as a cargo receptor, facilitating the cellular transport of multiple proteins and mediating hepatic lipid secretion in vivo. However, its involvement in intestinal lipid secretion is not fully understood. In this study, we investigated the role of SURF4 in intestinal lipid absorption. METHODS We generated intestine-specific Surf4 knockout mice and characterized the phenotypes. Additionally, we investigated the underlying mechanisms of SURF4 in intestinal lipid secretion using proteomics and cellular models. RESULTS We unveiled that SURF4 is indispensable for apolipoprotein transport and lipoprotein secretion. Intestine-specific Surf4 knockout mice exhibited ectopic lipid deposition in the small intestine and hypolipidemia. Deletion of SURF4 impeded the transport of apolipoprotein A1 (ApoA1), proline-rich acidic protein 1 (PRAP1), and apolipoprotein B48 (ApoB48) and hindered the assembly and secretion of chylomicrons and high-density lipoproteins. CONCLUSIONS SURF4 emerges as a pivotal regulator of intestinal lipid absorption via mediating the secretion of ApoA1, PRAP1 and ApoB48.
Collapse
Affiliation(s)
- Chun-Guang Guo
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Rui Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Xiao Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Ye Yuan
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Yan Xu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Shihan Li
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Xueting Sun
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Jue Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Xinli Hu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Tiannan Guo
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Xiao-Wei Chen
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Rui-Ping Xiao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Xiuqin Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Tang VT, Abbineni PS, Veiga Leprevost FD, Basrur V, Khoriaty R, Emmer BT, Nesvizhskii AI, Ginsburg D. Identification of LMAN1- and SURF4-Dependent Secretory Cargoes. J Proteome Res 2023; 22:3439-3446. [PMID: 37844105 PMCID: PMC10629478 DOI: 10.1021/acs.jproteome.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 10/18/2023]
Abstract
Most proteins secreted into the extracellular space are first recruited from the endoplasmic reticulum into coat protein complex II (COPII)-coated vesicles or tubules that facilitate their transport to the Golgi apparatus. Although several secreted proteins have been shown to be actively recruited into COPII vesicles and tubules by the cargo receptors LMAN1 and SURF4, the full cargo repertoire of these receptors is unknown. We now report mass spectrometry analysis of conditioned media and cell lysates from HuH7 cells CRISPR targeted to inactivate the LMAN1 or SURF4 gene. We found that LMAN1 has limited clients in HuH7 cells, whereas SURF4 traffics a broad range of cargoes. Analysis of putative SURF4 cargoes suggests that cargo recognition is governed by complex mechanisms rather than interaction with a universal binding motif..
Collapse
Affiliation(s)
- Vi T. Tang
- Department
of Molecular and Integrative Physiology and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Prabhodh S. Abbineni
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Microbiology and Immunology, Loyola University
Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| | | | - Venkatesha Basrur
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rami Khoriaty
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Cell and Developmental Biology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brian T. Emmer
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexey I. Nesvizhskii
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David Ginsburg
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, United States
- Howard
Hughes Medical Institute, University of
Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
He G, Yu W, Li H, Liu J, Tu Y, Kong D, Long Z, Liu R, Peng J, Wang Z, Liu P, Hai C, Yan W, Li W. Alpha-1 antitrypsin protects against phosgene-induced acute lung injury by activating the ID1-dependent anti-inflammatory response. Eur J Pharmacol 2023; 957:176017. [PMID: 37673367 DOI: 10.1016/j.ejphar.2023.176017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Phosgene is widely used as an industrial chemical, and phosgene inhalation causes acute lung injury (ALI), which may further progress into pulmonary edema. Currently, an antidote for phosgene poisoning is not known. Alpha-1 antitrypsin (α1-AT) is a protease inhibitor used to treat patients with emphysema who are deficient in α1-AT. Recent studies have revealed that α1-AT has both anti-inflammatory and anti-SARS-CoV-2 effects. Herein, we aimed to investigate the role of α1-AT in phosgene-induced ALI. We observed a time-dependent increase in α1-AT expression and secretion in the lungs of rats exposed to phosgene. Notably, α1-AT was derived from neutrophils but not from macrophages or alveolar type II cells. Moreover, α1-AT knockdown aggravated phosgene- and lipopolysaccharide (LPS)-induced inflammation and cell death in human bronchial epithelial cells (BEAS-2B). Conversely, α1-AT administration suppressed the inflammatory response and prevented death in LPS- and phosgene-exposed BEAS-2B cells. Furthermore, α1-AT treatment increased the inhibitor of DNA binding 1 (ID1) gene expression, which suppressed NF-κB pathway activation, reduced inflammation, and inhibited cell death. These data demonstrate that neutrophil-derived α1-AT acts as a self-protective mechanism, which protects against phosgene-induced ALI by activating the ID1-dependent anti-inflammatory response. This study may provide novel strategies for the treatment of patients with phosgene-induced ALI.
Collapse
Affiliation(s)
- Gaihua He
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Weihua Yu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Hongwei Li
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiangzheng Liu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Yongmei Tu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Deqin Kong
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Zi Long
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Liu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Jie Peng
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhao Wang
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Penghui Liu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Chunxu Hai
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an, 710032, China.
| | - Wenli Li
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
9
|
Zhang Y, Srivastava V, Zhang B. Mammalian cargo receptors for endoplasmic reticulum-to-Golgi transport: mechanisms and interactions. Biochem Soc Trans 2023:BST20220713. [PMID: 37334845 DOI: 10.1042/bst20220713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
Proteins that are destined to enter the secretory pathway are synthesized on the rough endoplasmic reticulum (ER) and then translocated into the ER lumen, where they undergo posttranslational modifications, folding, and assembly. After passing a quality control system, the cargo proteins are packaged into coat protein complex II (COPII) vesicles to exit the ER. In metazoans, most COPII subunits have multiple paralogs, enabling COPII vesicles the flexibility to transport a diverse range of cargo. The cytoplasmic domains of transmembrane proteins can interact with SEC24 subunits of COPII to enter the ER exit sites. Some transmembrane proteins may also act as cargo receptors that bind soluble secretory proteins within the ER lumen, enabling them to enter COPII vesicles. The cytoplasmic domains of cargo receptors also contain coat protein complex I binding motifs that allow for their cycling back to the ER after unloading their cargo in the ER-Golgi intermediate compartment and cis-Golgi. Once unloaded, the soluble cargo proteins continue maturation through the Golgi before reaching their final destinations. This review provides an overview of receptor-mediated transport of secretory proteins from the ER to the Golgi, with a focus on the current understanding of two mammalian cargo receptors: the LMAN1-MCFD2 complex and SURF4, and their roles in human health and disease.
Collapse
Affiliation(s)
- Yuan Zhang
- Genomic Medicine Institute, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, U.S.A
| | - Vishal Srivastava
- Genomic Medicine Institute, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, U.S.A
| | - Bin Zhang
- Genomic Medicine Institute, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, U.S.A
| |
Collapse
|
10
|
Tang VT, Abbineni PS, Leprevost FDV, Basrur V, Emmer BT, Nesvizhskii AI, Ginsburg D. Identification of LMAN1 and SURF4 dependent secretory cargoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535922. [PMID: 37066360 PMCID: PMC10104123 DOI: 10.1101/2023.04.06.535922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Most proteins secreted into the extracellular space are first recruited from the endoplasmic reticulum into coat protein complex II (COPII)-coated vesicles or tubules that facilitate their transport to the Golgi apparatus. Although several secreted proteins have been shown to be actively recruited into COPII vesicles/tubules by the cargo receptors LMAN1 and SURF4, the full cargo repertoire of these receptors is unknown. We now report mass spectrometry analysis of conditioned media and cell lysates from HuH7 cells CRISPR targeted to inactivate the LMAN1 or SURF4 gene. We found that LMAN1 has limited clients in HuH7 cells whereas SURF4 traffics a broad range of cargoes. Analysis of putative SURF4 cargoes suggests that cargo recognition is governed by complex mechanisms rather than interaction with a universal binding motif.
Collapse
Affiliation(s)
- Vi T. Tang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | | | | | | | - Brian T. Emmer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
11
|
Carneiro SP, Greco A, Chiesa E, Genta I, Merkel OM. Shaping the future from the small scale: dry powder inhalation of CRISPR-Cas9 lipid nanoparticles for the treatment of lung diseases. Expert Opin Drug Deliv 2023; 20:471-487. [PMID: 36896650 PMCID: PMC7614984 DOI: 10.1080/17425247.2023.2185220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Most lung diseases are serious conditions resulting from genetic and environmental causes associated with high mortality and severe symptoms. Currently, treatments available have a palliative effect and many targets are still considered undruggable. Gene therapy stands as an attractive approach to offering innovative therapeutic solutions. CRISPRCas9 has established a remarkable potential for genome editing with high selectivity to targeted mutations. To ensure high efficacy with minimum systemic exposure, the delivery and administration route are key components that must be investigated. AREAS COVERED This review is focused on the delivery of CRISPRCas9 to the lungs, taking advantage of lipid nanoparticles (LNPs), the most clinically advanced nucleic acid carriers. We also aim to highlight the benefits of pulmonary administration as a local delivery route and the use of spray drying to prepare stable nucleic-acid-based dry powder formulations that can overcome multiple lung barriers. EXPERT OPINION Exploring the pulmonary administration to deliver CRISPRCas9 loaded in LNPs as a dry powder increases the chances to achieve high efficacy and reduced adverse effects. CRISPRCas9 loaded in LNP-embedded microparticles has not yet been reported in the literature but has the potential to reach and accumulate in target cells in the lung, thus, enhancing overall efficacy and safety.
Collapse
Affiliation(s)
- Simone P. Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Antonietta Greco
- University School for Advanced Studies (IUSS), Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia, Italy
| | - Olivia M. Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| |
Collapse
|
12
|
Tao G, Wang H, Shen Y, Zhai L, Liu B, Wang B, Chen W, Xing S, Chen Y, Gu HM, Qin S, Zhang DW. Surf4 (Surfeit Locus Protein 4) Deficiency Reduces Intestinal Lipid Absorption and Secretion and Decreases Metabolism in Mice. Arterioscler Thromb Vasc Biol 2023; 43:562-580. [PMID: 36756879 PMCID: PMC10026970 DOI: 10.1161/atvbaha.123.318980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
BACKGROUND Postprandial dyslipidemia is a causative risk factor for cardiovascular disease. The majority of absorbed dietary lipids are packaged into chylomicron and then delivered to circulation. Previous studies showed that Surf4 (surfeit locus protein 4) mediates very low-density lipoprotein secretion from hepatocytes. Silencing hepatic Surf4 markedly reduces the development of atherosclerosis in different mouse models of atherosclerosis without causing hepatic steatosis. However, the role of Surf4 in chylomicron secretion is unknown. METHODS We developed inducible intestinal-specific Surf4 knockdown mice (Surf4IKO) using Vil1Cre-ERT2 and Surf4flox mice. Metabolic cages were used to monitor mouse metabolism. Enzymatic kits were employed to measure serum and tissue lipid levels. The expression of target genes was detected by qRT-PCR and Western Blot. Transmission electron microscopy and radiolabeled oleic acid were used to assess the structure of enterocytes and intestinal lipid absorption and secretion, respectively. Proteomics was performed to determine changes in protein expression in serum and jejunum. RESULTS Surf4IKO mice, especially male Surf4IKO mice, displayed significant body weight loss, increased mortality, and reduced metabolism. Surf4IKO mice exhibited lipid accumulation in enterocytes and impaired fat absorption and secretion. Lipid droplets and small lipid vacuoles were accumulated in the cytosol and the endoplasmic reticulum lumen of the enterocytes of Surf4IKO mice, respectively. Surf4 colocalized with apoB and co-immunoprecipitated with apoB48 in differentiated Caco-2 cells. Intestinal Surf4 deficiency also significantly reduced serum triglyceride, cholesterol, and free fatty acid levels in mice. Proteomics data revealed that diverse pathways were altered in Surf4IKO mice. In addition, Surf4IKO mice had mild liver damage, decreased liver size and weight, and reduced hepatic triglyceride levels. CONCLUSIONS Our findings demonstrate that intestinal Surf4 plays an essential role in lipid absorption and chylomicron secretion and suggest that the therapeutic use of Surf4 inhibition requires highly cell/tissue-specific targeting.
Collapse
Affiliation(s)
- Geru Tao
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Hao Wang
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | | | - Lei Zhai
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Boyan Liu
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Bingxiang Wang
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Wei Chen
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Sijie Xing
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Yuan Chen
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada (H.-M.G., D.-W.Z.)
| | - Shucun Qin
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada (H.-M.G., D.-W.Z.)
| |
Collapse
|
13
|
Shen Y, Gu HM, Qin S, Zhang DW. Surf4, cargo trafficking, lipid metabolism, and therapeutic implications. J Mol Cell Biol 2023; 14:6852946. [PMID: 36574593 PMCID: PMC9929512 DOI: 10.1093/jmcb/mjac063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/30/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Surfeit 4 is a polytopic transmembrane protein that primarily resides in the endoplasmic reticulum (ER) membrane. It is ubiquitously expressed and functions as a cargo receptor, mediating cargo transport from the ER to the Golgi apparatus via the canonical coat protein complex II (COPII)-coated vesicles or specific vesicles. It also participates in ER-Golgi protein trafficking through a tubular network. Meanwhile, it facilitates retrograde transportation of cargos from the Golgi apparatus to the ER through COPI-coated vesicles. Surf4 can selectively mediate export of diverse cargos, such as PCSK9 very low-density lipoprotein (VLDL), progranulin, α1-antitrypsin, STING, proinsulin, and erythropoietin. It has been implicated in facilitating VLDL secretion, promoting cell proliferation and migration, and increasing replication of positive-strand RNA viruses. Therefore, Surf4 plays a crucial role in various physiological and pathophysiological processes and emerges as a promising therapeutic target. However, the molecular mechanisms by which Surf4 selectively sorts diverse cargos for ER-Golgi protein trafficking remain elusive. Here, we summarize the most recent advances in Surf4, focusing on its role in lipid metabolism.
Collapse
Affiliation(s)
- Yishi Shen
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6R 2G3, Canada
| | - Hong-Mei Gu
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6R 2G3, Canada
| | - Shucun Qin
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6R 2G3, Canada
| |
Collapse
|
14
|
Tang VT, Ginsburg D. Cargo selection in endoplasmic reticulum-to-Golgi transport and relevant diseases. J Clin Invest 2023; 133:163838. [PMID: 36594468 PMCID: PMC9797344 DOI: 10.1172/jci163838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Most proteins destined for the extracellular space or various intracellular compartments must traverse the intracellular secretory pathway. The first step is the recruitment and transport of cargoes from the endoplasmic reticulum (ER) lumen to the Golgi apparatus by coat protein complex II (COPII), consisting of five core proteins. Additional ER transmembrane proteins that aid cargo recruitment are referred to as cargo receptors. Gene duplication events have resulted in multiple COPII paralogs present in the mammalian genome. Here, we review the functions of each COPII protein, human disorders associated with each paralog, and evidence for functional conservation between paralogs. We also provide a summary of current knowledge regarding two prototypical cargo receptors in mammals, LMAN1 and SURF4, and their roles in human health and disease.
Collapse
Affiliation(s)
- Vi T. Tang
- Department of Molecular and Integrative Physiology,,Life Sciences Institute
| | - David Ginsburg
- Life Sciences Institute,,Department of Internal Medicine,,Department of Human Genetics,,Department of Pediatrics and Communicable Diseases, and,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Tang X, Wang T, Guo Y. Export of polybasic motif-containing secretory proteins BMP8A and SFRP1 from the endoplasmic reticulum is regulated by surfeit locus protein 4. J Biol Chem 2022; 298:102687. [PMID: 36370847 PMCID: PMC9731852 DOI: 10.1016/j.jbc.2022.102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
In the conventional secretory pathway, cargo receptors play important roles in exporting newly synthesized secretory proteins from the endoplasmic reticulum (ER). We previously showed that a cargo receptor, surfeit locus protein 4 (SURF4), promotes ER export of a soluble signaling molecule, sonic hedgehog, via recognizing the polybasic residues within its Cardin-Weintraub motif. In addition to sonic hedgehog, we found 30 more secretory proteins containing the polybasic motif (K/R)(K/R)(K/R)XX(K/R)(K/R), but whether SURF4 plays a general role in mediating ER export of these secretory proteins is unclear. Here, we analyzed the trafficking of four of these secretory proteins: desert hedgehog, Indian hedgehog, bone morphogenetic protein 8A (BMP8A), and secreted frizzled-related protein 1 (SFRP1). We found that the polybasic motifs contained in these cargo proteins are important for their ER export. Further analyses indicated that the polybasic motifs of BMP8A and SFRP1 interact with the triacidic motif on the predicted first luminal domain of SURF4. These interactions with SURF4 are essential and sufficient for the ER-to-Golgi trafficking of BMP8A and SFRP1. Moreover, we demonstrated that SURF4 localizes at a subpopulation of ER exit sites to regulate the ER export of its clients. Taken together, these results suggest that SURF4 is recruited to specific ER exit sites and plays a general role in capturing polybasic motif-containing secretory cargo proteins through electrostatic interactions.
Collapse
Affiliation(s)
- Xiao Tang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China,Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tingxuan Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yusong Guo
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China,Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China,For correspondence: Yusong Guo
| |
Collapse
|
16
|
Gomez-Navarro N, Maldutyte J, Poljak K, Peak-Chew SY, Orme J, Bisnett BJ, Lamb CH, Boyce M, Gianni D, Miller EA. Selective inhibition of protein secretion by abrogating receptor-coat interactions during ER export. Proc Natl Acad Sci U S A 2022; 119:e2202080119. [PMID: 35901214 PMCID: PMC9351455 DOI: 10.1073/pnas.2202080119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/01/2022] [Indexed: 01/03/2023] Open
Abstract
Protein secretion is an essential process that drives cell growth, movement, and communication. Protein traffic within the secretory pathway occurs via transport intermediates that bud from one compartment and fuse with a downstream compartment to deliver their contents. Here, we explore the possibility that protein secretion can be selectively inhibited by perturbing protein-protein interactions that drive capture into transport vesicles. Human proprotein convertase subtilisin/kexin type 9 (PCSK9) is a determinant of cholesterol metabolism whose secretion is mediated by a specific cargo adaptor protein, SEC24A. We map a series of protein-protein interactions between PCSK9, its endoplasmic reticulum (ER) export receptor SURF4, and SEC24A that mediate secretion of PCSK9. We show that the interaction between SURF4 and SEC24A can be inhibited by 4-phenylbutyrate (4-PBA), a small molecule that occludes a cargo-binding domain of SEC24. This inhibition reduces secretion of PCSK9 and additional SURF4 clients that we identify by mass spectrometry, leaving other secreted cargoes unaffected. We propose that selective small-molecule inhibition of cargo recognition by SEC24 is a potential therapeutic intervention for atherosclerosis and other diseases that are modulated by secreted proteins.
Collapse
Affiliation(s)
- Natalia Gomez-Navarro
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Julija Maldutyte
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Kristina Poljak
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Sew-Yeu Peak-Chew
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Jonathon Orme
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, CB2 0AA, United Kingdom
| | - Brittany J. Bisnett
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710, USA
| | - Caitlin H. Lamb
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710, USA
| | - Davide Gianni
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, CB2 0AA, United Kingdom
| | - Elizabeth A. Miller
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| |
Collapse
|
17
|
Yang W, Yan J, Zhuang P, Ding T, Chen Y, Zhang Y, Zhang H, Cui W. Progress of delivery methods for CRISPR-Cas9. Expert Opin Drug Deliv 2022; 19:913-926. [PMID: 35818792 DOI: 10.1080/17425247.2022.2100342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Gene therapy is becoming increasingly common in clinical practice, giving hope for the correction of a wide range of human diseases and defects. The CRISPR/Cas9 system, consisting of the Cas9 nuclease and single-guide RNA (sgRNA), has revolutionized the field of gene editing. However, efficiently delivering the CRISPR-Cas9 to the target organ or cell remains a significant challenge. In recent years, with rapid advances in nanoscience, materials science, and medicine, researchers have developed various technologies that can deliver CRISPR-Cas9 in different forms for in vitro and in vivo gene editing. Here, we review the development of the CRISPR-Cas9 and describe the delivery forms and the vectors that have emerged in CRISPR-Cas9 delivery, summarizing the key barriers and the promising strategies that vectors currently face in delivering the CRISPR-Cas9. AREAS COVERED With the rapid development of CRISPR-Cas9, delivery methods are becoming increasingly important in the in vivo delivery of CRISPR-Cas9. EXPERT OPINION CRISPR-Cas9 is becoming increasingly common in clinical trials. However, the complex nuclease and protease environment is a tremendous challenge for in vivo clinical applications. Therefore, the development of delivery methods is highly likely to take the application of CRISPR-Cas9 technology to another level.
Collapse
Affiliation(s)
- Wu Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.,Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Jiaqi Yan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.,Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Pengzhen Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.,Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Tao Ding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yu Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.,Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Yu Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.,Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Hongbo Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.,Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| |
Collapse
|
18
|
LMAN1-MCFD2 complex is a cargo receptor for the ER-Golgi transport of α1-antitrypsin. Biochem J 2022; 479:839-855. [PMID: 35322856 PMCID: PMC9022998 DOI: 10.1042/bcj20220055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022]
Abstract
α1-antitrypsin (AAT) is a serine protease inhibitor synthesized in hepatocytes and protects the lung from damage by neutrophil elastase. AAT gene mutations result in AAT deficiency (AATD), which leads to lung and liver diseases. The AAT Z variant forms polymer within the endoplasmic reticulum (ER) of hepatocytes and results in reduction of AAT secretion and severe disease. Previous studies demonstrated a secretion defect of AAT in LMAN1 deficient cells, and mild decreases in AAT levels in male LMAN1 and MCFD2 deficient mice. LMAN1 is a transmembrane lectin that forms a complex with a small soluble protein MCFD2. The LMAN1-MCFD2 protein complex cycles between the ER and the Golgi. Here we report that LMAN1 and MCFD2 knockout (KO) HepG2 and HEK293T cells display reduced AAT secretion and elevated intracellular AAT levels due to a delayed ER-to-Golgi transport of AAT. Secretion defects in KO cells were rescued by wild-type LMAN1 or MCFD2, but not by mutant proteins. Elimination of the second glycosylation site of AAT abolished LMAN1 dependent secretion. Co-immunoprecipitation experiment in MCFD2 KO cells suggested that AAT interaction with LMAN1 is independent of MCFD2. Furthermore, our results suggest that secretion of the Z variant, both monomers and polymers, is also LMAN1-dependent. Results provide direct evidence supporting that the LMAN1-MCFD2 complex is a cargo receptor for the ER-to-Golgi transport of AAT and that interactions of LMAN1 with an N-glycan of AAT is critical for this process. These results have implications in production of recombinant AAT and in developing treatments for AATD patients.
Collapse
|
19
|
Chang X, Zhao Y, Qin S, Wang H, Wang B, Zhai L, Liu B, Gu HM, Zhang DW. Loss of Hepatic Surf4 Depletes Lipid Droplets in the Adrenal Cortex but Does Not Impair Adrenal Hormone Production. Front Cardiovasc Med 2021; 8:764024. [PMID: 34859075 PMCID: PMC8631933 DOI: 10.3389/fcvm.2021.764024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
The adrenal gland produces steroid hormones to play essential roles in regulating various physiological processes. Our previous studies showed that knockout of hepatic Surf4 (Surf4LKO) markedly reduced fasting plasma total cholesterol levels in adult mice, including low-density lipoprotein and high-density lipoprotein cholesterol. Here, we found that plasma cholesterol levels were also dramatically reduced in 4-week-old young mice and non-fasted adult mice. Circulating lipoprotein cholesterol is an important source of the substrate for the production of adrenal steroid hormones. Therefore, we investigated whether adrenal steroid hormone production was affected in Surf4LKO mice. We observed that lacking hepatic Surf4 essentially eliminated lipid droplets and significantly reduced cholesterol levels in the adrenal gland; however, plasma levels of aldosterone and corticosterone were comparable in Surf4LKO and the control mice under basal and stress conditions. Further analysis revealed that mRNA levels of genes encoding enzymes important for hormone synthesis were not altered, whereas the expression of scavenger receptor class B type I (SR-BI), low-density lipoprotein receptor (LDLR) and 3-hydroxy-3-methyl-glutaryl-CoA reductase was significantly increased in the adrenal gland of Surf4LKO mice, indicating increased de novo cholesterol biosynthesis and enhanced LDLR and SR-BI-mediated lipoprotein cholesterol uptake. We also observed that the nuclear form of SREBP2 was increased in the adrenal gland of Surf4 LKO mice. Taken together, these findings indicate that the very low levels of circulating lipoprotein cholesterol in Surf4LKO mice cause a significant reduction in adrenal cholesterol levels but do not significantly affect adrenal steroid hormone production. Reduced adrenal cholesterol levels activate SREBP2 and thus increase the expression of genes involved in cholesterol biosynthesis, which increases de novo cholesterol synthesis to compensate for the loss of circulating lipoprotein-derived cholesterol in the adrenal gland of Surf4LKO mice.
Collapse
Affiliation(s)
- Xiaole Chang
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Yongfang Zhao
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Shucun Qin
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Hao Wang
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Bingxiang Wang
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Lei Zhai
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Boyan Liu
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
An in vitro vesicle formation assay reveals cargo clients and factors that mediate vesicular trafficking. Proc Natl Acad Sci U S A 2021; 118:2101287118. [PMID: 34433667 PMCID: PMC8536394 DOI: 10.1073/pnas.2101287118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein sorting in the secretory pathway is a fundamentally important cellular process, but the clients of a specific cargo sorting machinery remains largely underinvestigated. Here, utilizing a vesicle formation assay to profile proteins associated with vesicles, we identified cytosolic proteins that are associated with vesicle membranes in a GTP-dependent manner or that interact with GTP-bound Sar1A. We found that two of them, FAM84B and PRRC1, regulate anterograde trafficking. Moreover, we revealed specific clients of two export adaptors, SURF4 and ERGIC53. These analyses demonstrate that our approach is powerful to identify factors that regulate vesicular trafficking and to uncover clients of specific cargo receptors, providing a robust method to reveal insights into the secretory pathway. The fidelity of protein transport in the secretory pathway relies on the accurate sorting of proteins to their correct destinations. To deepen our understanding of the underlying molecular mechanisms, it is important to develop a robust approach to systematically reveal cargo proteins that depend on specific sorting machinery to be enriched into transport vesicles. Here, we used an in vitro assay that reconstitutes packaging of human cargo proteins into vesicles to quantify cargo capture. Quantitative mass spectrometry (MS) analyses of the isolated vesicles revealed cytosolic proteins that are associated with vesicle membranes in a GTP-dependent manner. We found that two of them, FAM84B (also known as LRAT domain containing 2 or LRATD2) and PRRC1, contain proline-rich domains and regulate anterograde trafficking. Further analyses revealed that PRRC1 is recruited to endoplasmic reticulum (ER) exit sites, interacts with the inner COPII coat, and its absence increases membrane association of COPII. In addition, we uncovered cargo proteins that depend on GTP hydrolysis to be captured into vesicles. Comparing control cells with cells depleted of the cargo receptors, SURF4 or ERGIC53, we revealed specific clients of each of these two export adaptors. Our results indicate that the vesicle formation assay in combination with quantitative MS analysis is a robust and powerful tool to uncover novel factors that mediate vesicular trafficking and to uncover cargo clients of specific cellular factors.
Collapse
|