1
|
Pinzauti D, De Jaegher S, D’Aguanno M, Biazzo M. The Human Nasal Microbiome: A Perspective Study During the SARS-CoV-2 Pandemic in Malta. Microorganisms 2024; 12:2570. [PMID: 39770773 PMCID: PMC11679825 DOI: 10.3390/microorganisms12122570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
The human respiratory tract is colonized by a complex microbial community that helps maintain respiratory health and plays a crucial role in defending the host from infections. Respiratory viruses have been demonstrated to alter microbiota composition, resulting in opportunistic species expansion, and increasing the disease severity and host susceptibility to bacterial co-infections. This study aims to examine the compositional differences in the nasal microbiota between SARS-CoV-2-infected and non-infected patients. We conducted Oxford Nanopore full-length 16S rRNA sequencing on nasal swabs from 94 COVID-19 negative and 85 COVID-19 positive patients collected during the SARS-CoV-2 pandemic in Malta. Our analysis identified significant alpha and beta diversity differences in the nasal microbiota composition among our study groups. We observed a trend toward decreased microbial richness and evenness in the COVID-Positive cohort with and increased abundance of common nasal opportunistic species including Citrobacter koseri, Dolosigranulum pigrum, Haemophilus influenzae, Klebsiella pneumoniae, and Moraxella catarrhalis. The findings from this study are in line with previously published papers identifying key alterations in the nasal microbiota composition associated with SARS-CoV-2 infection. Understanding these microbiome-driven mechanisms could present novel prognostic markers or offer new approaches for disease prevention and treatment.
Collapse
Affiliation(s)
- David Pinzauti
- The BioArte Ltd., Life Science Park, Triq San Giljan, 3000 San Gwann, Malta; (S.D.J.); (M.D.); (M.B.)
| | | | | | | |
Collapse
|
2
|
Irizar H, Chun Y, Hsu HHL, Li YC, Zhang L, Arditi Z, Grishina G, Grishin A, Vicencio A, Pandey G, Bunyavanich S. Multi-omic integration reveals alterations in nasal mucosal biology that mediate air pollutant effects on allergic rhinitis. Allergy 2024; 79:3047-3061. [PMID: 38796780 PMCID: PMC11560721 DOI: 10.1111/all.16174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/12/2024] [Accepted: 03/30/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Allergic rhinitis is a common inflammatory condition of the nasal mucosa that imposes a considerable health burden. Air pollution has been observed to increase the risk of developing allergic rhinitis. We addressed the hypotheses that early life exposure to air toxics is associated with developing allergic rhinitis, and that these effects are mediated by DNA methylation and gene expression in the nasal mucosa. METHODS In a case-control cohort of 505 participants, we geocoded participants' early life exposure to air toxics using data from the US Environmental Protection Agency, assessed physician diagnosis of allergic rhinitis by questionnaire, and collected nasal brushings for whole-genome DNA methylation and transcriptome profiling. We then performed a series of analyses including differential expression, Mendelian randomization, and causal mediation analyses to characterize relationships between early life air toxics, nasal DNA methylation, nasal gene expression, and allergic rhinitis. RESULTS Among the 505 participants, 275 had allergic rhinitis. The mean age of the participants was 16.4 years (standard deviation = 9.5 years). Early life exposure to air toxics such as acrylic acid, phosphine, antimony compounds, and benzyl chloride was associated with developing allergic rhinitis. These air toxics exerted their effects by altering the nasal DNA methylation and nasal gene expression levels of genes involved in respiratory ciliary function, mast cell activation, pro-inflammatory TGF-β1 signaling, and the regulation of myeloid immune cell function. CONCLUSIONS Our results expand the range of air pollutants implicated in allergic rhinitis and shed light on their underlying biological mechanisms in nasal mucosa.
Collapse
Affiliation(s)
- Haritz Irizar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yoojin Chun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yan-Chak Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Lingdi Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Zoe Arditi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Galina Grishina
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alexander Grishin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alfin Vicencio
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
3
|
Gaudin C, Born-Bony M, Villeret B, Jaillet M, Faille D, Timsit JF, Tran-Dinh A, Montravers P, Crestani B, Garcia-Verdugo I, Sallenave JM. COVID-19 PBMCs are doubly harmful, through LDN-mediated lung epithelial damage and monocytic impaired responsiveness to live Pseudomonas aeruginosa exposure. Front Immunol 2024; 15:1398369. [PMID: 38835759 PMCID: PMC11148249 DOI: 10.3389/fimmu.2024.1398369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Although many studies have underscored the importance of T cells, phenotypically and functionally, fewer have studied the functions of myeloid cells in COVID disease. In particular, the potential role of myeloid cells such as monocytes and low-density neutrophils (LDNs) in innate responses and particular in the defense against secondary bacterial infections has been much less documented. Methods Here, we compared, in a longitudinal study, healthy subjects, idiopathic fibrosis patients, COVID patients who were either hospitalized/moderate (M-) or admitted to ICU (COV-ICU) and patients in ICU hospitalized for other reasons (non-COV-ICU). Results We show that COVID patients have an increased proportion of low-density neutrophils (LDNs), which produce high levels of proteases (particularly, NE, MMP-8 and MMP-9) (unlike non-COV-ICU patients), which are partly responsible for causing type II alveolar cell damage in co-culture experiments. In addition, we showed that M- and ICU-COVID monocytes had reduced responsiveness towards further live Pseudomonas aeruginosa (PAO1 strain) infection, an important pathogen colonizing COVID patients in ICU, as assessed by an impaired secretion of myeloid cytokines (IL-1, TNF, IL-8,…). By contrast, lymphoid cytokines (in particular type 2/type 3) levels remained high, both basally and post PAO1 infection, as reflected by the unimpaired capacity of T cells to proliferate, when stimulated with anti-CD3/CD28 beads. Discussion Overall, our results demonstrate that COVID circulatory T cells have a biased type 2/3 phenotype, unconducive to proper anti-viral responses and that myeloid cells have a dual deleterious phenotype, through their LDN-mediated damaging effect on alveolar cells and their impaired responsiveness (monocyte-mediated) towards bacterial pathogens such as P. aeruginosa.
Collapse
Affiliation(s)
- Clémence Gaudin
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Maëlys Born-Bony
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Bérengère Villeret
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Madeleine Jaillet
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Dorothée Faille
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, LVTS, Paris, France
- Laboratoire d'Hématologie, AP-HP, Hôpital Bichat, Paris, France
| | - Jean-François Timsit
- Réanimation Médicale et des Maladies Infectieuses, Centre Hospitalier Universitaire Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexy Tran-Dinh
- Inserm UMR1148, Laboratory for Vascular Translational Science Bichat Hospital, Paris, France
- AP-HP Nord, Anesthesiology and Intensive Care Department, Bichat-Claude Bernard University Hospital, Paris, France
| | - Philippe Montravers
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
- AP-HP Nord, Anesthesiology and Intensive Care Department, Bichat-Claude Bernard University Hospital, Paris, France
| | - Bruno Crestani
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
- Service de Pneumologie A, Hôpital Bichat, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Ignacio Garcia-Verdugo
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Jean-Michel Sallenave
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| |
Collapse
|
4
|
Vavougios GD, Mavridis T, Doskas T, Papaggeli O, Foka P, Hadjigeorgiou G. SARS-CoV-2-Induced Type I Interferon Signaling Dysregulation in Olfactory Networks Implications for Alzheimer's Disease. Curr Issues Mol Biol 2024; 46:4565-4579. [PMID: 38785545 PMCID: PMC11119810 DOI: 10.3390/cimb46050277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Type I interferon signaling (IFN-I) perturbations are major drivers of COVID-19. Dysregulated IFN-I in the brain, however, has been linked to both reduced cognitive resilience and neurodegenerative diseases such as Alzheimer's. Previous works from our group have proposed a model where peripheral induction of IFN-I may be relayed to the CNS, even in the absence of fulminant infection. The aim of our study was to identify significantly enriched IFN-I signatures and genes along the transolfactory route, utilizing published datasets of the nasal mucosa and olfactory bulb amygdala transcriptomes of COVID-19 patients. We furthermore sought to identify these IFN-I signature gene networks associated with Alzheimer's disease pathology and risk. Gene expression data involving the nasal epithelium, olfactory bulb, and amygdala of COVID-19 patients and transcriptomic data from Alzheimer's disease patients were scrutinized for enriched Type I interferon pathways. Gene set enrichment analyses and gene-Venn approaches were used to determine genes in IFN-I enriched signatures. The Agora web resource was used to identify genes in IFN-I signatures associated with Alzheimer's disease risk based on its aggregated multi-omic data. For all analyses, false discovery rates (FDR) <0.05 were considered statistically significant. Pathways associated with type I interferon signaling were found in all samples tested. Each type I interferon signature was enriched by IFITM and OAS family genes. A 14-gene signature was associated with COVID-19 CNS and the response to Alzheimer's disease pathology, whereas nine genes were associated with increased risk for Alzheimer's disease based on Agora. Our study provides further support to a type I interferon signaling dysregulation along the extended olfactory network as reconstructed herein, ranging from the nasal epithelium and extending to the amygdala. We furthermore identify the 14 genes implicated in this dysregulated pathway with Alzheimer's disease pathology, among which HLA-C, HLA-B, HLA-A, PSMB8, IFITM3, HLA-E, IFITM1, OAS2, and MX1 as genes with associated conferring increased risk for the latter. Further research into its druggability by IFNb therapeutics may be warranted.
Collapse
Affiliation(s)
- George D. Vavougios
- Department of Neurology, Medical School, University of Cyprus, Nicosia 1678, Cyprus
| | - Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital, Dublin, Incorporating the National Children’s Hospital (AMNCH), D24 NR0A Dublin, Ireland;
| | | | - Olga Papaggeli
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 115 21 Athens, Greece; (O.P.); (P.F.)
| | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 115 21 Athens, Greece; (O.P.); (P.F.)
| | | |
Collapse
|
5
|
Konovalovas A, Armalytė J, Klimkaitė L, Liveikis T, Jonaitytė B, Danila E, Bironaitė D, Mieliauskaitė D, Bagdonas E, Aldonytė R. Human nasal microbiota shifts in healthy and chronic respiratory disease conditions. BMC Microbiol 2024; 24:150. [PMID: 38678223 PMCID: PMC11055347 DOI: 10.1186/s12866-024-03294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND An increasing number of studies investigate various human microbiotas and their roles in the development of diseases, maintenance of health states, and balanced signaling towards the brain. Current data demonstrate that the nasal microbiota contains a unique and highly variable array of commensal bacteria and opportunistic pathogens. However, we need to understand how to harness current knowledge, enrich nasal microbiota with beneficial microorganisms, and prevent pathogenic developments. RESULTS In this study, we have obtained nasal, nasopharyngeal, and bronchoalveolar lavage fluid samples from healthy volunteers and patients suffering from chronic respiratory tract diseases for full-length 16 S rRNA sequencing analysis using Oxford Nanopore Technologies. Demographic and clinical data were collected simultaneously. The microbiome analysis of 97 people from Lithuania suffering from chronic inflammatory respiratory tract disease and healthy volunteers revealed that the human nasal microbiome represents the microbiome of the upper airways well. CONCLUSIONS The nasal microbiota of patients was enriched with opportunistic pathogens, which could be used as indicators of respiratory tract conditions. In addition, we observed that a healthy human nasal microbiome contained several plant- and bee-associated species, suggesting the possibility of enriching human nasal microbiota via such exposures when needed. These candidate probiotics should be investigated for their modulating effects on airway and lung epithelia, immunogenic properties, neurotransmitter content, and roles in maintaining respiratory health and nose-brain interrelationships.
Collapse
Affiliation(s)
- Aleksandras Konovalovas
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Julija Armalytė
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania.
| | - Laurita Klimkaitė
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Tomas Liveikis
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Brigita Jonaitytė
- Clinic of Chest Diseases, Immunology, and Allergology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Edvardas Danila
- Clinic of Chest Diseases, Immunology, and Allergology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Centre of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Daiva Bironaitė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | | | - Edvardas Bagdonas
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Rūta Aldonytė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
6
|
Hadzega D, Babisova K, Hyblova M, Janostiakova N, Sabaka P, Janega P, Minarik G. Analysis of transcriptomics data from COVID-19 patients: a pilot research. Folia Microbiol (Praha) 2024; 69:155-164. [PMID: 38240884 PMCID: PMC10876742 DOI: 10.1007/s12223-024-01130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/03/2024] [Indexed: 02/21/2024]
Abstract
During SARS-CoV-2 infection, the virus transforms the infected host cell into factories that produce new viral particles. As infection progresses, the infected cells undergo numerous changes in various pathways. One of these changes is the occurrence of a cytokine storm, which leads to severe symptoms. In this study, we examined the transcriptomic changes caused by COVID-19 by analyzing RNA-seq data obtained from COVID-19-positive patients as well as COVID-19-negative donors. RNA-seq data were collected for the purpose of identification of potential biomarkers associated with a different course of the disease. We analyzed the first datasets, consisting of 96 samples to validate our methods. The objective of this publication is to report the pilot results. To explore potential biomarkers related to disease severity, we conducted a differential expression analysis of human transcriptome, focusing on COVID-19 positivity and symptom severity. Given the large number of potential biomarkers we identified, we further performed pathway enrichment analysis with terms from Kyoto Encyclopedia of Genes and Genomics (KEGG) to obtain a more profound understanding of altered pathways. Our results indicate that pathways related to immune processes, response to infection, and multiple signaling pathways were affected. These findings align with several previous studies that also reported the influence of SARS-CoV-2 infection on these pathways.
Collapse
Affiliation(s)
| | | | | | - Nikola Janostiakova
- Comenius University in Bratislava, Medical Faculty, Institute of Medical Biology, Genetics and Clinical Genetics, Špitálska 24, Bratislava, Slovakia
| | - Peter Sabaka
- Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Brati-Slava, Bratislava, Slovakia
| | | | | |
Collapse
|
7
|
Adzdzakiy MM, Sutarno S, Asyifa IZ, Sativa AR, Fiqri AR, Fibriani A, Ristandi RB, Ningrum RA, Iryanto SB, Prasetyoputri A, Dharmayanthi AB, Saputra S. SARS-CoV-2 genetic variation and bacterial communities of naso-oropharyngeal samples in middle-aged and elderly COVID-19 patients in West Java, Indonesia. J Taibah Univ Med Sci 2024; 19:70-81. [PMID: 37868100 PMCID: PMC10589881 DOI: 10.1016/j.jtumed.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/21/2023] [Accepted: 09/01/2023] [Indexed: 10/24/2023] Open
Abstract
Objective The number of COVID-19 cases in Indonesia reflects the disease severity and rapid dissemination. In response to the mounting threat, SARS-CoV-2 genomic surveillance and the investigation of naso-oropharyngeal bacterial communities in West Java were conducted, as dysbiosis of the upper respiratory tract microbiota might adversely affect the clinical condition of patients. Methods We utilized the Oxford Nanopore sequencing platform to analyze genetic variation of 43 samples of SARS-CoV-2 and 11 selected samples for 16S rRNA gene sequencing, using samples collected from May to August 2021. Results The prevalence of AY.23 (>82%) predominated among five virus lineages in the populations (AY.23, AY.24, AY.26, AY.42, B.1.1.7). The region in the SARS-CoV-2 genome found to have the highest number of mutations was the spike (S) protein (>20%). There was no association between SARS-CoV-2 lineages, mutation frequency, patient profile, and COVID-19 rapid spread-categorized cases. There was no association of bacterial relative abundance, alpha-beta diversity, and linear discriminant analysis effect size analysis with patient profile and rapid spread cases. MetagenomeSeq analysis showed eight differential abundance species in individual patient profiles, including Pseudomonas aeruginosa and Haemophilus parainfluenzae. Conclusions The data demonstrated relevant AY.23 dominance (the Delta variant) in West Java during that period supporting the importance of surveillance program in monitoring disease progression. The inconsistent results of the bacterial communities suggest that a complex multifactor process may contribute to the progression of bacterial-induced disease in each patient.
Collapse
Affiliation(s)
- Muhammad M. Adzdzakiy
- Graduate School of Bioscience, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Surakarta, Central Java, Indonesia
| | - Sutarno Sutarno
- Graduate School of Bioscience, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Surakarta, Central Java, Indonesia
| | - Isnaini Z. Asyifa
- Master Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No.6, Jakarta, Indonesia
| | - Alvira R. Sativa
- School of Life Science and Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung, West Java, Indonesia
| | - Ahmad R.A. Fiqri
- Master Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No.6, Jakarta, Indonesia
| | - Azzania Fibriani
- School of Life Science and Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung, West Java, Indonesia
| | - Ryan B. Ristandi
- West Java Health Laboratory, Jl. Sederhana No. 3-5, Pasteur, Sukajadi, Bandung, West Java, Indonesia
| | - Ratih A. Ningrum
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Km 46, Bogor, West Java, Indonesia
| | - Syam B. Iryanto
- Research Center for Computation, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Km 46, Bogor, West Java, Indonesia
| | - Anggia Prasetyoputri
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Km 46, Bogor, West Java, Indonesia
| | - Anik B. Dharmayanthi
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Km 46, Bogor, West Java, Indonesia
| | - Sugiyono Saputra
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Km 46, Bogor, West Java, Indonesia
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Km 46, Bogor, West Java, Indonesia
| |
Collapse
|
8
|
Taufer CR, Rampelotto PH. Lactobacilli in COVID-19: A Systematic Review Based on Next-Generation Sequencing Studies. Microorganisms 2024; 12:284. [PMID: 38399688 PMCID: PMC10891515 DOI: 10.3390/microorganisms12020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The global pandemic was caused by the SARS-CoV-2 virus, known as COVID-19, which primarily affects the respiratory and intestinal systems and impacts the microbial communities of patients. This systematic review involved a comprehensive search across the major literature databases to explore the relationship between lactobacilli and COVID-19. Our emphasis was on investigations employing NGS technologies to explore this connection. Our analysis of nine selected studies revealed that lactobacilli have a reduced abundance in the disease and an association with disease severity. The protective mechanisms of lactobacilli in COVID-19 and other viral infections are likely to be multifaceted, involving complex interactions between the microbiota, the host immune system, and the virus itself. Moreover, upon closely examining the NGS methodologies and associated statistical analyses in each research study, we have noted concerns regarding the approach used to delineate the varying abundance of lactobacilli, which involves potential biases and the exclusion of pertinent data elements. These findings provide new insight into the relationship between COVID-19 and lactobacilli, highlighting the potential for microbiota modulation in COVID-19 treatment.
Collapse
Affiliation(s)
- Clarissa Reginato Taufer
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| |
Collapse
|
9
|
Patel P, Bhattacharjee M. Microbiome and the COVID-19 pandemic. MICROBES, MICROBIAL METABOLISM, AND MUCOSAL IMMUNITY 2024:287-348. [DOI: 10.1016/b978-0-323-90144-4.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Nath S, Sarkar M, Maddheshiya A, De D, Paul S, Dey S, Pal K, Roy SK, Ghosh A, Sengupta S, Paine SK, Biswas NK, Basu A, Mukherjee S. Upper respiratory tract microbiome profiles in SARS-CoV-2 Delta and Omicron infected patients exhibit variant specific patterns and robust prediction of disease groups. Microbiol Spectr 2023; 11:e0236823. [PMID: 37905804 PMCID: PMC10715160 DOI: 10.1128/spectrum.02368-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE The role of the upper respiratory tract (URT) microbiome in predicting lung health has been documented in several studies. The dysbiosis in COVID patients has been associated with disease outcomes by modulating the host immune system. However, although it has been known that different SARS-CoV-2 variants manifest distinct transmissibility and mortality rates in human populations, their effect on the composition and diversity of the URT microbiome has not been studied to date. Unlike the older variant (Delta), the newer variant (Omicron) have become more transmissible with lesser mortality and the symptoms have also changed significantly. Hence, in the present study, we have investigated the change in the URT microbiome associated with Delta and Omicron variants and identified variant-specific signatures that will be useful in the assessment of lung health and can be utilized for nasal probiotic therapy in the future.
Collapse
Affiliation(s)
- Shankha Nath
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Mousumi Sarkar
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Debjit De
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Shouvik Paul
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Souradeep Dey
- Department of Community Medicine, College of Medicine and JNM Hospital, Kalyani, West Bengal, India
| | - Kuhu Pal
- Department of Microbiology, College of Medicine and JNM Hospital, Kalyani, West Bengal, India
| | - Suman Kr. Roy
- Department of Community Medicine, College of Medicine and JNM Hospital, Kalyani, West Bengal, India
| | - Ayan Ghosh
- Department of Community Medicine, College of Medicine and JNM Hospital, Kalyani, West Bengal, India
| | - Sharmila Sengupta
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Nidhan K. Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Souvik Mukherjee
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| |
Collapse
|
11
|
Yassin Z, Farid A, Ahmadi S, Emamikhah M, Motamedi O, Jafari M, Goodarzi A. Coronavirus disease 2019 (COVID-19)-associated brain abscesses caused by Pseudomonas aeruginosa and Aspergillus fumigatus: two case and a review of the literature. J Med Case Rep 2023; 17:520. [PMID: 38049820 PMCID: PMC10694943 DOI: 10.1186/s13256-023-04206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/09/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Bacterial and fungal superinfections are commonly reported in patients with coronavirus disease 2019. CASE PRESENTATION We report the first case of brain and intramedullary abscesses caused by Pseudomonas aeruginosa and a rare case of brain abscesses caused by Aspergillus fumigatus in two post-coronavirus disease 2019 patients. The first patient-34-year-old Iranian woman-presented with weakness of the left upper limb, headaches, and lower limb paresthesia. She had a history of undiagnosed diabetes and had received corticosteroid therapy. The second patient-45-year-old Iranian man-presented with right-sided weakness and had a history of intensive care unit admission. Both patients passed away despite appropriate medical therapy. CONCLUSION The immune dysregulation induced by coronavirus disease 2019 and its' treatments can predispose patients, especially immunosuppressed ones, to bacterial and fungal infections with unusual and opportunistic pathogens in the central nervous system. Pseudomonas aeruginosa and Aspergillus fumigatus should be considered as potential causes of brain infection in any coronavirus disease 2019 patient presenting with neurological symptoms and evidence of brain abscess in imaging, regardless of sinonasal involvement. These patients should get started on appropriate antimicrobial therapy as soon as possible, as any delay in diagnosis or treatment can be associated with adverse outcomes.
Collapse
Affiliation(s)
- Zeynab Yassin
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Armita Farid
- School of Medicine, Iran University of Medical Sciences, Bisotun Street, 6.1 Alley, No 56, Tehran, 1431644311, Iran
| | - Sayedali Ahmadi
- Department of Neurosurgery, Rasool Akram Medical Complex, School of Medicine, Iran University of Medical Sciences, Niayesh Street, Sattarkhan Ave, Tehran, 1431644311, Iran
| | - Maziar Emamikhah
- Department of Neurosurgery, Rasool Akram Medical Complex, School of Medicine, Iran University of Medical Sciences, Niayesh Street, Sattarkhan Ave, Tehran, 1431644311, Iran
| | - Omid Motamedi
- Department of Radiology, Rasool Akram Medical Complex, School of Medicine, Iran University of Medical Sciences, Niayesh Street, Sattarkhan Avenue, Tehran, 1445613131, Iran
| | - Mohammadamin Jafari
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Niayesh Street, Sattarkhan Avenue, Tehran, 1445613131, Iran
| | - Azadeh Goodarzi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Niayesh Street, Sattarkhan Avenue, Tehran, 1445613131, Iran.
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Fu T, Gifford DR, Knight CG, Brockhurst MA. Eco-evolutionary dynamics of experimental Pseudomonas aeruginosa populations under oxidative stress. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001396. [PMID: 37943284 PMCID: PMC10710836 DOI: 10.1099/mic.0.001396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023]
Abstract
Within-host environments are likely to present a challenging and stressful environment for opportunistic pathogenic bacteria colonizing from the external environment. How populations of pathogenic bacteria respond to such environmental challenges and how this varies between strains is not well understood. Oxidative stress is one of the defences adopted by the human immune system to confront invading bacteria. In this study, we show that strains of the opportunistic pathogenic bacterium Pseudomonas aeruginosa vary in their eco-evolutionary responses to hydrogen peroxide stress. By quantifying their 24 h growth kinetics across hydrogen peroxide gradients we show that a transmissible epidemic strain isolated from a chronic airway infection of a cystic fibrosis patient, LESB58, is much more susceptible to hydrogen peroxide than either of the reference strains, PA14 or PAO1, with PAO1 showing the lowest susceptibility. Using a 12 day serial passaging experiment combined with a mathematical model, we then show that short-term susceptibility controls the longer-term survival of populations exposed to subinhibitory levels of hydrogen peroxide, but that phenotypic evolutionary responses can delay population extinction. Our model further suggests that hydrogen peroxide driven extinctions are more likely with higher rates of population turnover. Together, these findings suggest that hydrogen peroxide is likely to be an effective defence in host niches where there is high population turnover, which may explain the counter-intuitively high susceptibility of a strain isolated from chronic lung infection, where such ecological dynamics may be slower.
Collapse
Affiliation(s)
- Taoran Fu
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Danna R. Gifford
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Christopher G. Knight
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PT, UK
| | - Michael A. Brockhurst
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
13
|
Lushington GH, Linde A, Melgarejo T. Bacterial Proteases as Potentially Exploitable Modulators of SARS-CoV-2 Infection: Logic from the Literature, Informatics, and Inspiration from the Dog. BIOTECH 2023; 12:61. [PMID: 37987478 PMCID: PMC10660736 DOI: 10.3390/biotech12040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
(1) Background: The COVID-19 pandemic left many intriguing mysteries. Retrospective vulnerability trends tie as strongly to odd demographics as to exposure profiles, genetics, health, or prior medical history. This article documents the importance of nasal microbiome profiles in distinguishing infection rate trends among differentially affected subgroups. (2) Hypothesis: From a detailed literature survey, microbiome profiling experiments, bioinformatics, and molecular simulations, we propose that specific commensal bacterial species in the Pseudomonadales genus confer protection against SARS-CoV-2 infections by expressing proteases that may interfere with the proteolytic priming of the Spike protein. (3) Evidence: Various reports have found elevated Moraxella fractions in the nasal microbiomes of subpopulations with higher resistance to COVID-19 (e.g., adolescents, COVID-19-resistant children, people with strong dietary diversity, and omnivorous canines) and less abundant ones in vulnerable subsets (the elderly, people with narrower diets, carnivorous cats and foxes), along with bioinformatic evidence that Moraxella bacteria express proteases with notable homology to human TMPRSS2. Simulations suggest that these proteases may proteolyze the SARS-CoV-2 spike protein in a manner that interferes with TMPRSS2 priming.
Collapse
Affiliation(s)
| | - Annika Linde
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Tonatiuh Melgarejo
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
14
|
Devi P, Kumari P, Yadav A, Tarai B, Budhiraja S, Shamim U, Pandey R. Longitudinal study across SARS-CoV-2 variants identifies transcriptionally active microbes (TAMs) associated with Delta severity. iScience 2023; 26:107779. [PMID: 37701571 PMCID: PMC10493601 DOI: 10.1016/j.isci.2023.107779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Emergence of new SARS-CoV-2 VOCs jeopardize global vaccine and herd immunity safeguards. VOCs interactions with host microbiota might affect clinical course and outcome. This longitudinal investigation involving Pre-VOC and VOCs (Delta & Omicron) holo-transcriptome based nasopharyngeal microbiome at taxonomic levels followed by metabolic pathway analysis and integrative host-microbiome interaction. VOCs showed enrichment of Proteobacteria with dominance of Pseudomonas. Interestingly, Proteobacteria with superiority of Pseudomonas and Acinetobacter, were highlights of Delta VOC rather than Omicron. Common species comprising the core microbiome across all variants, reiterated the significance of Klebsiella pneumoniae in Delta, and its association with metabolic pathways enhancing inflammation in patients. Microbe-host gene correlation network revealed Acinetobacter baumannii, Pseudomonas stutzeri, and Pseudomonas aeuroginosa modulating immune pathways, which might augment clinical severity in Delta. Importantly, opportunistic species of Acinetobacter, Enterococcus, Prevotella, and Streptococcus were abundant in Delta-mortality. The study establishes a functional association between elevated nasal pathobionts and dysregulated host response, particularly for Delta.
Collapse
Affiliation(s)
- Priti Devi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pallawi Kumari
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Aanchal Yadav
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Uzma Shamim
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
Pozza G, Casalini G, Ciubotariu CL, Giacomelli A, Galimberti M, Zacheo M, Rabbione A, Pieruzzi M, Oreni L, Galimberti L, Colombo R, Rizzardini G, Pagani C, Rimoldi SG, Bonazzetti C, Ridolfo AL, Antinori S. Bloodstream Infections in Intensive Care Unit during Four Consecutive SARS-CoV-2 Pandemic Waves. Antibiotics (Basel) 2023; 12:1448. [PMID: 37760744 PMCID: PMC10525187 DOI: 10.3390/antibiotics12091448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Critically ill COVID-19 patients are at an increased risk of bloodstream infections (BSIs). We performed a retrospective observational single-center study on COVID-19 patients admitted to intensive care unit (ICU) to assess the incidence of BSIs in four consecutive periods: 21 February-31 July 2020 (W1), 1 August 2020-31 January 2021 (W2), 1 February-30 September 2021 (W3) and 1 October 2021 and 30 April 2022 (W4). BSIs that occurred 48 h after ICU admission were included. The crude incidence of BSIs was estimated by means of Poisson distribution normalized to 1000 patient-days. A total of 404 critically ill COVID-19 patients were admitted to ICU, of whom 284 (61%) developed at least one episode of BSI with an overall crude incidence of 87 events every 1000 patient-days (95% CI 77-98) without a significant difference in consecutive epidemic periods (p = 0.357). Gram-positive bacteria were the most frequent etiological agents of BSIs, contributing to 74.6% episodes. A progressive decrease in BSIs due to Enterococcus spp. was observed (W1 57.4%, W2 43.7%, W3 35.7% and W4 32.7%; p = 0.004). The incidence of BSIs remained stable during different epidemic periods. Enterococcus spp. prevalence was significantly reduced, although still accounted for one third of BSIs in more recent epidemic periods.
Collapse
Affiliation(s)
- Giacomo Pozza
- III Division of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (G.P.); (G.C.); (C.L.C.); (M.G.); (M.Z.); (A.R.); (M.P.); (L.O.); (L.G.); (A.L.R.); (S.A.)
- Department of Biomedical Sciences and Clinics, Università degli Studi di Milano, 20157 Milan, Italy
| | - Giacomo Casalini
- III Division of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (G.P.); (G.C.); (C.L.C.); (M.G.); (M.Z.); (A.R.); (M.P.); (L.O.); (L.G.); (A.L.R.); (S.A.)
- Department of Biomedical Sciences and Clinics, Università degli Studi di Milano, 20157 Milan, Italy
| | - Cosmin Lucian Ciubotariu
- III Division of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (G.P.); (G.C.); (C.L.C.); (M.G.); (M.Z.); (A.R.); (M.P.); (L.O.); (L.G.); (A.L.R.); (S.A.)
- Department of Biomedical Sciences and Clinics, Università degli Studi di Milano, 20157 Milan, Italy
| | - Andrea Giacomelli
- III Division of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (G.P.); (G.C.); (C.L.C.); (M.G.); (M.Z.); (A.R.); (M.P.); (L.O.); (L.G.); (A.L.R.); (S.A.)
| | - Miriam Galimberti
- III Division of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (G.P.); (G.C.); (C.L.C.); (M.G.); (M.Z.); (A.R.); (M.P.); (L.O.); (L.G.); (A.L.R.); (S.A.)
- Department of Biomedical Sciences and Clinics, Università degli Studi di Milano, 20157 Milan, Italy
| | - Martina Zacheo
- III Division of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (G.P.); (G.C.); (C.L.C.); (M.G.); (M.Z.); (A.R.); (M.P.); (L.O.); (L.G.); (A.L.R.); (S.A.)
- Department of Biomedical Sciences and Clinics, Università degli Studi di Milano, 20157 Milan, Italy
| | - Andrea Rabbione
- III Division of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (G.P.); (G.C.); (C.L.C.); (M.G.); (M.Z.); (A.R.); (M.P.); (L.O.); (L.G.); (A.L.R.); (S.A.)
- Department of Biomedical Sciences and Clinics, Università degli Studi di Milano, 20157 Milan, Italy
| | - Margherita Pieruzzi
- III Division of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (G.P.); (G.C.); (C.L.C.); (M.G.); (M.Z.); (A.R.); (M.P.); (L.O.); (L.G.); (A.L.R.); (S.A.)
- Department of Biomedical Sciences and Clinics, Università degli Studi di Milano, 20157 Milan, Italy
| | - Letizia Oreni
- III Division of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (G.P.); (G.C.); (C.L.C.); (M.G.); (M.Z.); (A.R.); (M.P.); (L.O.); (L.G.); (A.L.R.); (S.A.)
| | - Laura Galimberti
- III Division of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (G.P.); (G.C.); (C.L.C.); (M.G.); (M.Z.); (A.R.); (M.P.); (L.O.); (L.G.); (A.L.R.); (S.A.)
| | - Riccardo Colombo
- Intensive Care Unit, ASST Fatebenefratelli Sacco, 20157 Milan, Italy;
| | - Giuliano Rizzardini
- I Division of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy;
| | - Cristina Pagani
- Clinical Microbiology, Virology and Bioemergency, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (C.P.); (S.G.R.)
| | - Sara Giordana Rimoldi
- Clinical Microbiology, Virology and Bioemergency, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (C.P.); (S.G.R.)
| | - Cecilia Bonazzetti
- Infectious Diseases Unit IRCCS, Policlinico Sant’Orsola, Department Medical Surgical Science, University of Bologna, 40138 Bologna, Italy;
| | - Anna Lisa Ridolfo
- III Division of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (G.P.); (G.C.); (C.L.C.); (M.G.); (M.Z.); (A.R.); (M.P.); (L.O.); (L.G.); (A.L.R.); (S.A.)
| | - Spinello Antinori
- III Division of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (G.P.); (G.C.); (C.L.C.); (M.G.); (M.Z.); (A.R.); (M.P.); (L.O.); (L.G.); (A.L.R.); (S.A.)
- Department of Biomedical Sciences and Clinics, Università degli Studi di Milano, 20157 Milan, Italy
| |
Collapse
|
16
|
Ishizaka A, Koga M, Mizutani T, Uraki R, Yamayoshi S, Iwatsuki-Horimoto K, Yamamoto S, Imai M, Tsutsumi T, Suzuki Y, Kawaoka Y, Yotsuyanagi H. Research article antibody induction and immune response in nasal cavity by third dose of SARS-CoV-2 mRNA vaccination. Virol J 2023; 20:146. [PMID: 37443091 PMCID: PMC10339591 DOI: 10.1186/s12985-023-02113-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND The mucosa serves as the first defence against pathogens and facilitates the surveillance and elimination of symbiotic bacteria by mucosal immunity. Recently, the mRNA vaccine against SARS-CoV-2 has been demonstrated to induce secretory antibodies in the oral and nasal cavities in addition to a systemic immune response. However, the mechanism of induced immune stimulation effect on mucosal immunity and commensal bacteria profile remains unclear. METHODS Here, we longitudinally analysed the changing nasal microbiota and both systemic and nasal immune response upon SARS-CoV-2 mRNA vaccination, and evaluated how mRNA vaccination influenced nasal microbiota in 18 healthy participants who had received the third BNT162b. RESULTS The nasal S-RBD IgG level correlated significantly with plasma IgG levels until 1 month and the levels were sustained for 3 months post-vaccination. In contrast, nasal S-RBD IgA induction peaked at 1 month, albeit slightly, and correlated only with plasma IgA, but the induction level decreased markedly at 3 months post-vaccination. 16 S rRNA sequencing of the nasal microbiota post-vaccination revealed not an overall change, but a decrease in certain opportunistic bacteria, mainly Fusobacterium. The decrease in these bacteria was more pronounced in those who exhibited nasal S-RBD IgA induction, and those with higher S-RBD IgA induction had lower relative amounts of potentially pathogenic bacteria such as Pseudomonas pre-vaccination. In addition, plasma and mucosal S-RBD IgG levels correlated with decreased commensal pathogens such as Finegoldia. CONCLUSIONS These findings suggest that the third dose of SARS-CoV-2 mRNA vaccination induced S-RBD antibodies in the nasal mucosa and may have stimulated mucosal immunity against opportunistic bacterial pathogens. This effect, albeit probably secondary, may be considered one of the benefits of mRNA vaccination. Furthermore, our data suggest that a cooperative function of mucosal and systemic immunity in the reduction of bacteria and provides a better understanding of the symbiotic relationship between the host and bacteria in the nasal mucosa.
Collapse
Affiliation(s)
- Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - Taketoshi Mizutani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha Kashiwa 277, 8562, Chiba, Japan.
| | - Ryuta Uraki
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinya Yamamoto
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaki Imai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Takeya Tsutsumi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases, The University of Tokyo, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha Kashiwa 277, 8562, Chiba, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Pandemic Preparedness, Infection and Advanced Research Center, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan.
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
17
|
Ling L, Lai CK, Lui G, Yeung ACM, Chan HC, Cheuk CHS, Cheung AN, Chang L, Chiu LCS, Zhang J, Wong WT, Hui DSC, Wong CK, Chan PKS, Chen Z. Characterization of upper airway microbiome across severity of COVID-19 during hospitalization and treatment. Front Cell Infect Microbiol 2023; 13:1205401. [PMID: 37469595 PMCID: PMC10352853 DOI: 10.3389/fcimb.2023.1205401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/13/2023] [Indexed: 07/21/2023] Open
Abstract
Longitudinal studies on upper respiratory tract microbiome in coronavirus disease 2019 (COVID-19) without potential confounders such as antimicrobial therapy are limited. The objective of this study is to assess for longitudinal changes in the upper respiratory microbiome, its association with disease severity, and potential confounders in adult hospitalized patients with COVID-19. Serial nasopharyngeal and throat swabs (NPSTSs) were taken for 16S rRNA gene amplicon sequencing from adults hospitalized for COVID-19. Alpha and beta diversity was assessed between different groups. Principal coordinate analysis was used to assess beta diversity between groups. Linear discriminant analysis was used to identify discriminative bacterial taxa in NPSTS taken early during hospitalization on need for intensive care unit (ICU) admission. A total of 314 NPSTS samples from 197 subjects (asymptomatic = 14, mild/moderate = 106, and severe/critical = 51 patients with COVID-19; non-COVID-19 mechanically ventilated ICU patients = 11; and healthy volunteers = 15) were sequenced. Among all covariates, antibiotic treatment had the largest effect on upper airway microbiota. When samples taken after antibiotics were excluded, alpha diversity (Shannon, Simpson, richness, and evenness) was similar across severity of COVID-19, whereas beta diversity (weighted GUniFrac and Bray-Curtis distance) remained different. Thirteen bacterial genera from NPSTS taken within the first week of hospitalization were associated with a need for ICU admission (area under the receiver operating characteristic curve, 0.96; 95% CI, 0.91-0.99). Longitudinal analysis showed that the upper respiratory microbiota alpha and beta diversity was unchanged during hospitalization in the absence of antimicrobial therapy.
Collapse
Affiliation(s)
- Lowell Ling
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Christopher K.C. Lai
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Grace Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Apple Chung Man Yeung
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hiu Ching Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chung Hon Shawn Cheuk
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adonia Nicole Cheung
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lok Ching Chang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lok Ching Sandra Chiu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jack Zhenhe Zhang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wai-Tat Wong
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - David S. C. Hui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
18
|
Toro-Ascuy D, Cárdenas JP, Zorondo-Rodríguez F, González D, Silva-Moreno E, Puebla C, Nunez-Parra A, Reyes-Cerpa S, Fuenzalida LF. Microbiota Profile of the Nasal Cavity According to Lifestyles in Healthy Adults in Santiago, Chile. Microorganisms 2023; 11:1635. [PMID: 37512807 PMCID: PMC10384449 DOI: 10.3390/microorganisms11071635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The respiratory microbiome is dynamic, varying between anatomical niches, and it is affected by various host and environmental factors, one of which is lifestyle. Few studies have characterized the upper respiratory tract microbiome profile according to lifestyle. We explored the association between lifestyles and microbiota profiles in the upper respiratory tract of healthy adults. METHODS We analyzed nasal samples from 110 healthy adults who were living in Santiago, Chile, using 16S ribosomal RNA gene-sequencing methods. Volunteers completed a structured questionnaire about lifestyle. RESULTS The composition and abundance of taxonomic groups varied across lifestyle attributes. Additionally, multivariate models suggested that alpha diversity varied in the function of physical activity, nutritional status, smoking, and the interaction between nutritional status and smoking, although the significant impact of those variables varied between women and men. Although physical activity and nutritional status were significantly associated with all indexes of alpha diversity among women, the diversity of microbiota among men was associated with smoking and the interaction between nutritional status and smoking. CONCLUSIONS The alpha diversity of nasal microbiota is associated with lifestyle attributes, but these associations depend on sex and nutritional status. Our results suggest that future studies of the airway microbiome may provide a better resolution if data are stratified for differences in sex and nutritional status.
Collapse
Affiliation(s)
- Daniela Toro-Ascuy
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Juan P Cárdenas
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Francisco Zorondo-Rodríguez
- Departamento de Gestión Agraria, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago 8910060, Chile
| | - Damariz González
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Evelyn Silva-Moreno
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Carlos Puebla
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Alexia Nunez-Parra
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Loreto F Fuenzalida
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| |
Collapse
|
19
|
Loyola-Cruz MÁ, Gonzalez-Avila LU, Martínez-Trejo A, Saldaña-Padilla A, Hernández-Cortez C, Bello-López JM, Castro-Escarpulli G. ESKAPE and Beyond: The Burden of Coinfections in the COVID-19 Pandemic. Pathogens 2023; 12:pathogens12050743. [PMID: 37242413 DOI: 10.3390/pathogens12050743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The ESKAPE group constitute a threat to public health, since these microorganisms are associated with severe infections in hospitals and have a direct relationship with high mortality rates. The presence of these bacteria in hospitals had a direct impact on the incidence of healthcare-associated coinfections in the SARS-CoV-2 pandemic. In recent years, these pathogens have shown resistance to multiple antibiotic families. The presence of high-risk clones within this group of bacteria contributes to the spread of resistance mechanisms worldwide. In the pandemic, these pathogens were implicated in coinfections in severely ill COVID-19 patients. The aim of this review is to describe the main microorganisms of the ESKAPE group involved in coinfections in COVID-19 patients, addressing mainly antimicrobial resistance mechanisms, epidemiology, and high-risk clones.
Collapse
Affiliation(s)
- Miguel Ángel Loyola-Cruz
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
- División de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Ciudad de México 07760, Mexico
| | - Luis Uriel Gonzalez-Avila
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Arturo Martínez-Trejo
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Andres Saldaña-Padilla
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Cecilia Hernández-Cortez
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Juan Manuel Bello-López
- División de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Ciudad de México 07760, Mexico
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| |
Collapse
|
20
|
Zafar H, Saier MH. Understanding the Relationship of the Human Bacteriome with COVID-19 Severity and Recovery. Cells 2023; 12:cells12091213. [PMID: 37174613 PMCID: PMC10177376 DOI: 10.3390/cells12091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) first emerged in 2019 in China and has resulted in millions of human morbidities and mortalities across the globe. Evidence has been provided that this novel virus originated in animals, mutated, and made the cross-species jump to humans. At the time of this communication, the Coronavirus disease (COVID-19) may be on its way to an endemic form; however, the threat of the virus is more for susceptible (older and immunocompromised) people. The human body has millions of bacterial cells that influence health and disease. As a consequence, the bacteriomes in the human body substantially influence human health and disease. The bacteriomes in the body and the immune system seem to be in constant association during bacterial and viral infections. In this review, we identify various bacterial spp. In major bacteriomes (oral, nasal, lung, and gut) of the body in healthy humans and compare them with dysbiotic bacteriomes of COVID-19 patients. We try to identify key bacterial spp. That have a positive effect on the functionality of the immune system and human health. These select bacterial spp. Could be used as potential probiotics to counter or prevent COVID-19 infections. In addition, we try to identify key metabolites produced by probiotic bacterial spp. That could have potential anti-viral effects against SARS-CoV-2. These metabolites could be subject to future therapeutic trials to determine their anti-viral efficacies.
Collapse
Affiliation(s)
- Hassan Zafar
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA 92093-0116, USA
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Milton H Saier
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA 92093-0116, USA
| |
Collapse
|
21
|
Hawsawi NM, Hamad AM, Rashid SN, Alshehri F, Sharaf M, Zakai SA, Al Yousef SA, Ali AM, Abou-Elnour A, Alkhudhayri A, Elrefaei NG, Elkelish A. Biogenic silver nanoparticles eradicate of Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA) isolated from the sputum of COVID-19 patients. Front Microbiol 2023; 14:1142646. [PMID: 37143540 PMCID: PMC10153441 DOI: 10.3389/fmicb.2023.1142646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
In recent investigations, secondary bacterial infections were found to be strongly related to mortality in COVID-19 patients. In addition, Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA) bacteria played an important role in the series of bacterial infections that accompany infection in COVID-19. The objective of the present study was to investigate the ability of biosynthesized silver nanoparticles from strawberries (Fragaria ananassa L.) leaf extract without a chemical catalyst to inhibit Gram-negative P. aeruginosa and Gram-positive Staph aureus isolated from COVID-19 patient’s sputum. A wide range of measurements was performed on the synthesized AgNPs, including UV–vis, SEM, TEM, EDX, DLS, ζ -potential, XRD, and FTIR. UV-Visible spectral showed the absorbance at the wavelength 398 nm with an increase in the color intensity of the mixture after 8 h passed at the time of preparation confirming the high stability of the FA-AgNPs in the dark at room temperature. SEM and TEM measurements confirmed AgNPs with size ranges of ∼40-∼50 nm, whereas the DLS study confirmed their average hydrodynamic size as ∼53 nm. Furthermore, Ag NPs. EDX analysis showed the presence of the following elements: oxygen (40.46%), and silver (59.54%). Biosynthesized FA-AgNPs (ζ = −17.5 ± 3.1 mV) showed concentration-dependent antimicrobial activity for 48 h in both pathogenic strains. MTT tests showed concentration-dependent and line-specific effects of FA-AgNPs on cancer MCF-7 and normal liver WRL-68 cell cultures. According to the results, synthetic FA-AgNPs obtained through an environmentally friendly biological process are inexpensive and may inhibit the growth of bacteria isolated from COVID-19 patients.
Collapse
|
22
|
Bhatia-Dey N, Csoka AB, Heinbockel T. Chemosensory Ability and Sensitivity in Health and Disease: Epigenetic Regulation and COVID-19. Int J Mol Sci 2023; 24:4179. [PMID: 36835589 PMCID: PMC9959623 DOI: 10.3390/ijms24044179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Throughout the animal kingdom, our two chemical senses, olfaction and gustation, are defined by two primary factors: genomic architecture of the organisms and their living environment. During the past three years of the global COVID-19 pandemic, these two sensory modalities have drawn much attention at the basic science and clinical levels because of the strong association of olfactory and gustatory dysfunction with viral infection. Loss of our sense of smell alone, or together with a loss of taste, has emerged as a reliable indicator of COVID-19 infection. Previously, similar dysfunctions have been detected in a large cohort of patients with chronic conditions. The research focus remains on understanding the persistence of olfactory and gustatory disturbances in the post-infection phase, especially in cases with long-term effect of infection (long COVID). Also, both sensory modalities show consistent age-related decline in studies aimed to understand the pathology of neurodegenerative conditions. Some studies using classical model organisms show an impact on neural structure and behavior in offspring as an outcome of parental olfactory experience. The methylation status of specific odorant receptors, activated in parents, is passed on to the offspring. Furthermore, experimental evidence indicates an inverse correlation of gustatory and olfactory abilities with obesity. Such diverse lines of evidence emerging from basic and clinical research studies indicate a complex interplay of genetic factors, evolutionary forces, and epigenetic alterations. Environmental factors that regulate gustation and olfaction could induce epigenetic modulation. However, in turn, such modulation leads to variable effects depending on genetic makeup and physiological status. Therefore, a layered regulatory hierarchy remains active and is passed on to multiple generations. In the present review, we attempt to understand the experimental evidence that indicates variable regulatory mechanisms through multilayered and cross-reacting pathways. Our analytical approach will add to enhancement of prevailing therapeutic interventions and bring to the forefront the significance of chemosensory modalities for the evaluation and maintenance of long-term health.
Collapse
Affiliation(s)
| | | | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
23
|
Lane S, Hilliam Y, Bomberger JM. Microbial and Immune Regulation of the Gut-Lung Axis during Viral-Bacterial Coinfection. J Bacteriol 2023; 205:e0029522. [PMID: 36409130 PMCID: PMC9879096 DOI: 10.1128/jb.00295-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Viral-bacterial coinfections of the respiratory tract have long been associated with worsened disease outcomes. Clinical and basic research studies demonstrate that these infections are driven via complex interactions between the infecting pathogens, microbiome, and host immune response, although how these interactions contribute to disease progression is still not fully understood. Research over the last decade shows that the gut has a significant role in mediating respiratory outcomes, in a phenomenon known as the "gut-lung axis." Emerging literature demonstrates that acute respiratory viruses can modulate the gut-lung axis, suggesting that dysregulation of gut-lung cross talk may be a contributing factor during respiratory coinfection. This review will summarize the current literature regarding modulation of the gut-lung axis during acute respiratory infection, with a focus on the role of the microbiome, secondary infections, and the host immune response.
Collapse
Affiliation(s)
- Sidney Lane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yasmin Hilliam
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
24
|
Everett MJ, Davies DT, Leiris S, Sprynski N, Llanos A, Castandet J, Lozano C, LaRock CN, LaRock DL, Corsica G, Docquier JD, Pallin TD, Cridland A, Blench T, Zalacain M, Lemonnier M. Chemical Optimization of Selective Pseudomonas aeruginosa LasB Elastase Inhibitors and Their Impact on LasB-Mediated Activation of IL-1β in Cellular and Animal Infection Models. ACS Infect Dis 2023; 9:270-282. [PMID: 36669138 PMCID: PMC9926489 DOI: 10.1021/acsinfecdis.2c00418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
LasB elastase is a broad-spectrum exoprotease and a key virulence factor of Pseudomonas aeruginosa, a major pathogen causing lung damage and inflammation in acute and chronic respiratory infections. Here, we describe the chemical optimization of specific LasB inhibitors with druglike properties and investigate their impact in cellular and animal models of P. aeruginosa infection. Competitive inhibition of LasB was demonstrated through structural and kinetic studies. In vitro LasB inhibition was confirmed with respect to several host target proteins, namely, elastin, IgG, and pro-IL-1β. Furthermore, inhibition of LasB-mediated IL-1β activation was demonstrated in macrophage and mouse lung infection models. In mice, intravenous administration of inhibitors also resulted in reduced bacterial numbers at 24 h. These highly potent, selective, and soluble LasB inhibitors constitute valuable tools to study the proinflammatory impact of LasB in P. aeruginosa infections and, most importantly, show clear potential for the clinical development of a novel therapy for life-threatening respiratory infections caused by this opportunistic pathogen.
Collapse
Affiliation(s)
- Martin J. Everett
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France,
| | - David T. Davies
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Simon Leiris
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Nicolas Sprynski
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Agustina Llanos
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | | | - Clarisse Lozano
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Christopher N. LaRock
- Department
of Microbiology and Immunology, Rollins
Research Center, 1510
Clifton Rd, Atlanta, Georgia 30322, United States
| | - Doris L. LaRock
- Department
of Microbiology and Immunology, Rollins
Research Center, 1510
Clifton Rd, Atlanta, Georgia 30322, United States
| | - Giuseppina Corsica
- Dipartimento
di Biotecnologie Mediche, Università
degli Studi di Siena, Viale Bracci 16, 53100 Siena, Italy
| | - Jean-Denis Docquier
- Dipartimento
di Biotecnologie Mediche, Università
degli Studi di Siena, Viale Bracci 16, 53100 Siena, Italy,Centre
d’Ingénierie des Protéines - InBioS, University of Liège, Allée du six Août 11, 4000 Liège, Belgium
| | - Thomas D. Pallin
- Charles
River Laboratories, 8-9 The Spire Green Centre, Harlow, Essex CM19 5TR, U.K.
| | - Andrew Cridland
- Charles
River Laboratories, 8-9 The Spire Green Centre, Harlow, Essex CM19 5TR, U.K.
| | - Toby Blench
- Charles
River Laboratories, 8-9 The Spire Green Centre, Harlow, Essex CM19 5TR, U.K.
| | - Magdalena Zalacain
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Marc Lemonnier
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| |
Collapse
|
25
|
An Overview of the Impact of Bacterial Infections and the Associated Mortality Predictors in Patients with COVID-19 Admitted to a Tertiary Center from Eastern Europe. Antibiotics (Basel) 2023; 12:antibiotics12010144. [PMID: 36671345 PMCID: PMC9854454 DOI: 10.3390/antibiotics12010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
1. BACKGROUND Literature data on bacterial infections and their impact on the mortality rates of COVID-19 patients from Romania are scarce, while worldwide reports are contrasting. 2. MATERIALS AND METHODS We conducted a unicentric retrospective observational study that included 280 patients with SARS-CoV-2 infection, on whom we performed various microbiological determinations. Based on the administration or not of the antibiotic treatment, we divided the patients into two groups. First, we sought to investigate the rates and predictors of bacterial infections, the causative microbial strains, and the prescribed antibiotic treatment. Secondly, the study aimed to identify the risk factors associated with in-hospital death and evaluate the biomarkers' performance for predicting short-term mortality. 3. RESULTS Bacterial co-infections or secondary infections were confirmed in 23 (8.2%) patients. Acinetobacter baumannii was the pathogen responsible for most of the confirmed bacterial infections. Almost three quarters of the patients (72.8%) received empiric antibiotic therapy. Multivariate logistic regression has shown leukocytosis and intensive care unit admission as risk factors for bacterial infections and C-reactive protein, together with the length of hospital stay, as mortality predictors. The ROC curves revealed an acceptable performance for the erythrocyte sedimentation rate (AUC: 0.781), and C-reactive protein (AUC: 0.797), but a poor performance for fibrinogen (AUC: 0.664) in predicting fatal events. 4. CONCLUSIONS This study highlighted the somewhat paradoxical association of a low rate of confirmed infections with a high rate of empiric antibiotic therapy. A thorough assessment of the risk factors for bacterial infections, in addition to the acknowledgment of various mortality predictors, is crucial for identifying high-risk patients, thus allowing a timely therapeutic intervention, with a direct impact on improving patients' prognosis.
Collapse
|
26
|
Li W, Ma ZS. The Upper Respiratory Tract Microbiome Network Impacted by SARS-CoV-2. MICROBIAL ECOLOGY 2022:1-10. [PMID: 36509943 PMCID: PMC9744668 DOI: 10.1007/s00248-022-02148-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/12/2022] [Indexed: 06/17/2023]
Abstract
The microbiome of upper respiratory tract (URT) acts as a gatekeeper to respiratory health of the host. However, little is still known about the impacts of SARS-CoV-2 infection on the microbial species composition and co-occurrence correlations of the URT microbiome, especially the relationships between SARS-CoV-2 and other microbes. Here, we characterized the URT microbiome based on RNA metagenomic-sequencing datasets from 1737 nasopharyngeal samples collected from COVID-19 patients. The URT-microbiome network consisting of bacteria, archaea, and RNA viruses was built and analyzed from aspects of core/periphery species, cluster composition, and balance between positive and negative interactions. It is discovered that the URT microbiome in the COVID-19 patients is enriched with Enterobacteriaceae, a gut associated family containing many pathogens. These pathogens formed a dense cooperative guild that seemed to suppress beneficial microbes collectively. Besides bacteria and archaea, 72 eukaryotic RNA viruses were identified in the URT microbiome of COVID-19 patients. Only five of these viruses were present in more than 10% of all samples, including SARS-CoV-2 and a bat coronavirus (i.e., BatCoV BM48-31) not detected in humans by routine means. SARS-CoV-2 was inhibited by a cooperative alliance of 89 species, but seems to cooperate with BatCoV BM48-31 given their statistically significant, positive correlations. The presence of cooperative bat-coronavirus partner of SARS-CoV-2 (BatCoV BM48-31), which was previously discovered in bat but not in humans to the best of our knowledge, is puzzling and deserves further investigation given their obvious implications. Possible microbial translocation mechanism from gut to URT also deserves future studies.
Collapse
Affiliation(s)
- Wendy Li
- Computational Biology and Medical Ecology Lab, State Key Laboratory for Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, China
| | - Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, State Key Laboratory for Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
27
|
Wei X, Huang Z, Jiang L, Li Y, Zhang X, Leng Y, Jiang C. Charting the landscape of the environmental exposome. IMETA 2022; 1:e50. [PMID: 38867899 PMCID: PMC10989948 DOI: 10.1002/imt2.50] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/13/2022] [Accepted: 07/30/2022] [Indexed: 06/14/2024]
Abstract
The exposome depicts the total exposures in the lifetime of an organism. Human exposome comprises exposures from environmental and humanistic sources. Biological, chemical, and physical environmental exposures pose potential health threats, especially to susceptible populations. Although still in its nascent stage, we are beginning to recognize the vast and dynamic nature of the exposome. In this review, we systematically summarize the biological and chemical environmental exposomes in three broad environmental matrices-air, soil, and water; each contains several distinct subcategories, along with a brief introduction to the physical exposome. Disease-related environmental exposures are highlighted, and humans are also a major source of disease-related biological exposures. We further discuss the interactions between biological, chemical, and physical exposomes. Finally, we propose a list of outstanding challenges under the exposome research framework that need to be addressed to move the field forward. Taken together, we present a detailed landscape of environmental exposome to prime researchers to join this exciting new field.
Collapse
Affiliation(s)
- Xin Wei
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Zinuo Huang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Liuyiqi Jiang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yueer Li
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Xinyue Zhang
- Department of GeneticsStanford UniversityStanfordCaliforniaUSA
| | - Yuxin Leng
- Department of Intensive Care UnitPeking University Third HospitalBeijingChina
| | - Chao Jiang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
28
|
Sureshchandra S, Messaoudi I. Aging and macrophages: Not standing the test of time? J Leukoc Biol 2022; 112:1369-1370. [PMID: 35766198 DOI: 10.1002/jlb.3ce0322-145r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The underlying mechanism of immunosenescence and compromised responses to environmental stressors in alveolar macrophages is a result of epigenetic dysregulation, rather than loss of subtypes.
Collapse
Affiliation(s)
- Suhas Sureshchandra
- Institute for Immunology, University of California, Irvine, California, USA.,Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
29
|
Alterations in the nasopharyngeal microbiome associated with SARS-CoV-2 infection status and disease severity. PLoS One 2022; 17:e0275815. [PMID: 36240246 PMCID: PMC9565700 DOI: 10.1371/journal.pone.0275815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
Objectives The COVID-19 pandemic and ensuing public health emergency has emphasized the need to study SARS-CoV-2 pathogenesis. The human microbiome has been shown to regulate the host immune system and may influence host susceptibility to viral infection, as well as disease severity. Several studies have assessed whether compositional alterations in the nasopharyngeal microbiota are associated with SARS-CoV-2 infection. However, the results of these studies were varied, and many did not account for disease severity. This study aims to examine whether compositional differences in the nasopharyngeal microbiota are associated with SARS-CoV-2 infection status and disease severity. Methods We performed Nanopore full-length 16S rRNA sequencing on 194 nasopharyngeal swab specimens from hospitalized and community-dwelling SARS-CoV-2-infected and uninfected individuals. Sequence data analysis was performed using the BugSeq 16S analysis pipeline. Results We found significant beta (PERMANOVA p < 0.05), but not alpha (Kruskal-Wallis p > 0.05) diversity differences in the nasopharyngeal microbiota among our study groups. We identified several differentially abundant taxa associated with SARS-CoV-2 infection status and disease severity using ALDEx2. Finally, we observed a trend towards higher abundance of Enterobacteriaceae in specimens from hospitalized SARS-CoV-2-infected patients. Conclusions This study identified several alterations in the nasopharyngeal microbiome associated with SARS-CoV-2 infection status and disease severity. Understanding the role of the microbiome in infection susceptibility and severity may open new avenues of research for disease prevention and treatment.
Collapse
|
30
|
Merenstein C, Bushman FD, Collman RG. Alterations in the respiratory tract microbiome in COVID-19: current observations and potential significance. MICROBIOME 2022; 10:165. [PMID: 36195943 PMCID: PMC9532226 DOI: 10.1186/s40168-022-01342-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
SARS-CoV-2 infection causes COVID-19 disease, which can result in consequences ranging from undetectable to fatal, focusing attention on the modulators of outcomes. The respiratory tract microbiome is thought to modulate the outcomes of infections such as influenza as well as acute lung injury, raising the question to what degree does the airway microbiome influence COVID-19? Here, we review the results of 56 studies examining COVID-19 and the respiratory tract microbiome, summarize the main generalizations, and point to useful avenues for further research. Although the results vary among studies, a few consistent findings stand out. The diversity of bacterial communities in the oropharynx typically declined with increasing disease severity. The relative abundance of Haemophilus and Neisseria also declined with severity. Multiple microbiome measures tracked with measures of systemic immune responses and COVID outcomes. For many of the conclusions drawn in these studies, the direction of causality is unknown-did an alteration in the microbiome result in increased COVID severity, did COVID severity alter the microbiome, or was some third factor the primary driver, such as medication use. Follow-up mechanistic studies can help answer these questions. Video Abstract.
Collapse
Affiliation(s)
- Carter Merenstein
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Ronald G. Collman
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
31
|
He D, Fu C, Ning M, Hu X, Li S, Chen Y. Biofilms possibly harbor occult SARS-CoV-2 may explain lung cavity, re-positive and long-term positive results. Front Cell Infect Microbiol 2022; 12:971933. [PMID: 36250053 PMCID: PMC9554432 DOI: 10.3389/fcimb.2022.971933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/14/2022] [Indexed: 01/08/2023] Open
Abstract
During the COVID-19 pandemic, there have been an increasing number of COVID-19 patients with cavitary or cystic lung lesions, re-positive or long-term positive nucleic acid tests, but the mechanism is still unclear. Lung cavities may appear at long time interval from initial onset of coronavirus infection, generally during the absorption phase of the disease. The main histopathological characteristic is diffuse alveolar damage and may have more severe symptoms after initial recovery from COVID-19 and an increased mortality rate. There are many possible etiologies of pulmonary cavities in COVID-19 patients and we hypothesize that occult SARS-CoV-2, in the form of biofilm, is harbored in the airway lacuna with other pathogenic microorganisms, which may be the cause of pulmonary cavities and repeated and long-term positive nucleic acid tests.
Collapse
Affiliation(s)
- Daqian He
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Chaojiang Fu
- Emergency Department (Outpatient Chemotherapy Center), The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Mingjie Ning
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Xianglin Hu
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Shanshan Li
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
- *Correspondence: Ying Chen, ; Shanshan Li,
| | - Ying Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
- *Correspondence: Ying Chen, ; Shanshan Li,
| |
Collapse
|
32
|
Travis BJ, Elste J, Gao F, Joo BY, Cuevas‐Nunez M, Kohlmeir E, Tiwari V, Mitchell JC. Significance of chlorine-dioxide-based oral rinses in preventing SARS-CoV-2 cell entry. Oral Dis 2022; 28 Suppl 2:2481-2491. [PMID: 35841377 PMCID: PMC9349900 DOI: 10.1111/odi.14319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/08/2022] [Accepted: 07/01/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This work aims to determine the efficacy of preprocedural oral rinsing with chlorine dioxide solutions to minimize the risk of coronavirus disease 2019 (COVID-19) transmission during high-risk dental procedures. METHODS The antiviral activity of chlorine-dioxide-based oral rinse (OR) solutions was tested by pre-incubating with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus in a dosage-dependent manner before transducing to human embryonic kidney epithelial (HEK293T-ACE2) cells, which stably expresses ACE-2 receptor. Viral entry was determined by measuring luciferase activity using a luminescence microplate reader. In the cell-to-cell fusion assay, effector Chinese hamster ovary (CHO-K1) cells co-expressing spike glycoprotein of SARS-CoV-2 and T7 RNA polymerase were pre-incubated with the ORs before co-culturing with the target CHO-K1 cells co-expressing human ACE2 receptor and luciferase gene. The luciferase signal was quantified 24 h after mixing the cells. Surface expression of SARS-CoV-2 spike glycoprotein and ACE-2 receptor was confirmed using direct fluorescent imaging and quantitative cell-ELISA. Finally, dosage-dependent cytotoxic effects of ORs were evaluated at two different time points. RESULTS A dosage-dependent antiviral effect of the ORs was observed against SARS-CoV-2 cell entry and spike glycoprotein mediated cell-to-cell fusion. This demonstrates that ORs can be useful as a preprocedural step to reduce viral infectivity. CONCLUSIONS Chlorine-dioxide-based ORs have a potential benefit for reducing SARS-CoV-2 entry and spread.
Collapse
Affiliation(s)
- Briana Joy Travis
- College of Dental MedicineMidwestern UniversityDowners GroveIllinoisUSA
| | - James Elste
- Department of Microbiology and ImmunologyMidwestern UniversityDowners GroveIllinoisUSA
| | - Feng Gao
- College of Dental MedicineMidwestern UniversityDowners GroveIllinoisUSA
| | - Bo Young Joo
- Department of Microbiology and ImmunologyMidwestern UniversityDowners GroveIllinoisUSA
| | | | - Ellen Kohlmeir
- Core FacilityMidwestern University, IllinoisDowners GroveIllinoisUSA
| | - Vaibhav Tiwari
- Department of Microbiology and ImmunologyMidwestern UniversityDowners GroveIllinoisUSA
| | - John C. Mitchell
- College of Dental MedicineMidwestern UniversityDowners GroveIllinoisUSA
| |
Collapse
|
33
|
Devi P, Maurya R, Mehta P, Shamim U, Yadav A, Chattopadhyay P, Kanakan A, Khare K, Vasudevan JS, Sahni S, Mishra P, Tyagi A, Jha S, Budhiraja S, Tarai B, Pandey R. Increased Abundance of Achromobacter xylosoxidans and Bacillus cereus in Upper Airway Transcriptionally Active Microbiome of COVID-19 Mortality Patients Indicates Role of Co-Infections in Disease Severity and Outcome. Microbiol Spectr 2022; 10:e0231121. [PMID: 35579429 PMCID: PMC9241827 DOI: 10.1128/spectrum.02311-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/17/2022] [Indexed: 12/13/2022] Open
Abstract
The modulators of severe COVID-19 have emerged as the most intriguing features of SARS-CoV-2 pathogenesis. This is especially true as we are encountering variants of concern (VOC) with increased transmissibility and vaccination breakthroughs. Microbial co-infections are being investigated as one of the crucial factors for exacerbation of disease severity and complications of COVID-19. A key question remains whether early transcriptionally active microbial signature/s in COVID-19 patients can provide a window for future disease severity susceptibility and outcome? Using complementary metagenomics sequencing approaches, respiratory virus oligo panel (RVOP) and Holo-seq, our study highlights the possible functional role of nasopharyngeal early resident transcriptionally active microbes in modulating disease severity, within recovered patients with sub-phenotypes (mild, moderate, severe) and mortality. The integrative analysis combines patients' clinical parameters, SARS-CoV-2 phylogenetic analysis, microbial differential composition, and their functional role. The clinical sub-phenotypes analysis led to the identification of transcriptionally active bacterial species associated with disease severity. We found significant transcript abundance of Achromobacter xylosoxidans and Bacillus cereus in the mortality, Leptotrichia buccalis in the severe, Veillonella parvula in the moderate, and Actinomyces meyeri and Halomonas sp. in the mild COVID-19 patients. Additionally, the metabolic pathways, distinguishing the microbial functional signatures between the clinical sub-phenotypes, were also identified. We report a plausible mechanism wherein the increased transcriptionally active bacterial isolates might contribute to enhanced inflammatory response and co-infections that could modulate the disease severity in these groups. Current study provides an opportunity for potentially using these bacterial species for screening and identifying COVID-19 patient sub-groups with severe disease outcome and priority medical care. IMPORTANCE COVID-19 is invariably a disease of diverse clinical manifestation, with multiple facets involved in modulating the progression and outcome. In this regard, we investigated the role of transcriptionally active microbial co-infections as possible modulators of disease pathology in hospital admitted SARS-CoV-2 infected patients. Specifically, can there be early nasopharyngeal microbial signatures indicative of prospective disease severity? Based on disease severity symptoms, the patients were segregated into clinical sub-phenotypes: mild, moderate, severe (recovered), and mortality. We identified significant presence of transcriptionally active isolates, Achromobacter xylosoxidans and Bacillus cereus in the mortality patients. Importantly, the bacterial species might contribute toward enhancing the inflammatory responses as well as reported to be resistant to common antibiotic therapy, which together hold potential to alter the disease severity and outcome.
Collapse
Affiliation(s)
- Priti Devi
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjeet Maurya
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priyanka Mehta
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Uzma Shamim
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Aanchal Yadav
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Chattopadhyay
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Akshay Kanakan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Kriti Khare
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Janani Srinivasa Vasudevan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Shweta Sahni
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Pallavi Mishra
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Akansha Tyagi
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Delhi, India
| | - Sujeet Jha
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Delhi, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Delhi, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Delhi, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
34
|
Koenen MH, de Steenhuijsen Piters WAA, Bogaert D, Verhagen LM. The microbiota in respiratory tract infections: from association to intervention. Curr Opin Infect Dis 2022; 35:215-222. [PMID: 35665715 DOI: 10.1097/qco.0000000000000826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The respiratory microbiota has a role in respiratory tract infection (RTI) pathogenesis. On the mucosa, the respiratory microbiota interacts with potential pathogenic viruses, bacteria and the host immune system, including secretory IgA (sIgA). This review discusses the role of the respiratory microbiota and its interaction with the (mucosal) immune system in RTI susceptibility, as well as the potential to exploit the microbiota to promote health and prevent RTIs. RECENT FINDINGS Recent studies confirm that specific microbiota profiles are associated with RTI susceptibility and during susceptibility and found accompanying RTIs, although clear associations have not yet been found for SARS-CoV-2 infection. sIgA plays a central role in RTI pathogenesis: it stands under control of the local microbiota, while at the same time influencing bacterial gene expression, metabolism and defense mechanisms. Respiratory microbiota interventions are still newly emerging but promising candidates for probiotics to prevent RTIs, such as Corynebacterium and Dolosigranulum species, have been identified. SUMMARY Improved understanding of the respiratory microbiota in RTIs and its interplay with the immune system is of importance for early identification and follow-up of individuals at risk of infection. It also opens doors for future microbiota interventions by altering the microbiota towards a healthier state to prevent and/or adjunctively treat RTIs.
Collapse
Affiliation(s)
- Mischa H Koenen
- Center of Translational Immunology, UMC Utrecht.,Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht
| | - Wouter A A de Steenhuijsen Piters
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Debby Bogaert
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.,Center for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Lilly M Verhagen
- Department of Pediatric Infectious Diseases and Immunology.,Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Prasad P, Mahapatra S, Mishra R, Murmu KC, Aggarwal S, Sethi M, Mohapatra P, Ghosh A, Yadav R, Dodia H, Ansari SA, De S, Singh D, Suryawanshi A, Dash R, Senapati S, Beuria TK, Chattopadhyay S, Syed GH, Swain R, Raghav SK, Parida A. Long-read 16S-seq reveals nasopharynx microbial dysbiosis and enrichment of Mycobacterium and Mycoplasma in COVID-19 patients: a potential source of co-infection. Mol Omics 2022; 18:490-505. [PMID: 35506682 DOI: 10.1039/d2mo00044j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major global health concern. This virus infects the upper respiratory tract and causes pneumonia-like symptoms. So far, few studies have shown alterations in nasopharyngeal (NP) microbial diversity, enrichment of opportunistic pathogens and their role in co-infections during respiratory infections. Therefore, we hypothesized that microbial diversity changes, with increase in the population of opportunistic pathogens, during SARS-CoV2 infection in the nasopharynx, which may be involved in co-infection in COVID-19 patients. The 16S rRNA variable regions, V1-V9, of NP samples of control and COVID-19 (symptomatic and asymptomatic) patients were sequenced using the Oxford Nanopore™ technology. Comprehensive bioinformatics analysis for determining alpha/beta diversities, non-metric multidimensional scaling, correlation studies, canonical correspondence analysis, linear discriminate analysis, and dysbiosis index were used to analyze the control and COVID-19-specific NP microbiomes. We observed significant dysbiosis in the COVID-19 NP microbiome with an increase in the abundance of opportunistic pathogens at genus and species levels in asymptomatic/symptomatic patients. The significant abundance of Mycobacteria spp. and Mycoplasma spp. in symptomatic patients suggests their association and role in co-infections in COVID-19 patients. Furthermore, we found strong correlation of enrichment of Mycobacteria and Mycoplasma with the occurrences of chest pain and fever in symptomatic COVID-19 patients. This is the first study from India to show the abundance of Mycobacteria and Mycoplasma opportunistic pathogens in non-hospitalized COVID-19 patients and their relationship with symptoms, indicating the possibility of co-infections.
Collapse
Affiliation(s)
- Punit Prasad
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Soumendu Mahapatra
- Institute of Life Sciences, Bhubaneswar, Odisha, India. .,Kalinga Institute of Industrial Technology (KIIT), School of Biotechnology, Bhubaneswar, Odisha, India
| | | | | | | | - Manisha Sethi
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | | | - Arup Ghosh
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Rina Yadav
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Hiren Dodia
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | | | - Saikat De
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Deepak Singh
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | | | - Rupesh Dash
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | | | | | | | | | - Rajeeb Swain
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | | | - Ajay Parida
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
36
|
Abstract
The lung is the primary site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced immunopathology whereby the virus enters the host cells by binding to angiotensin-converting enzyme 2 (ACE2). Sophisticated regeneration and repair programs exist in the lungs to replenish injured cell populations. However, known resident stem/progenitor cells have been demonstrated to express ACE2, raising a substantial concern regarding the long-term consequences of impaired lung regeneration after SARS-CoV-2 infection. Moreover, clinical treatments may also affect lung repair from antiviral drug candidates to mechanical ventilation. In this review, we highlight how SARS-CoV-2 disrupts a program that governs lung homeostasis. We also summarize the current efforts of targeted therapy and supportive treatments for COVID-19 patients. In addition, we discuss the pros and cons of cell therapy with mesenchymal stem cells or resident lung epithelial stem/progenitor cells in preventing post-acute sequelae of COVID-19. We propose that, in addition to symptomatic treatments being developed and applied in the clinic, targeting lung regeneration is also essential to restore lung homeostasis in COVID-19 patients.
Collapse
Affiliation(s)
- Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qingwen Ma
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qing Yue
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| |
Collapse
|
37
|
Fais F, Juskeviciene R, Francardo V, Mateos S, Guyard M, Viollet C, Constant S, Borelli M, Hohenfeld IP. Drug-Free Nasal Spray as a Barrier against SARS-CoV-2 and Its Delta Variant: In Vitro Study of Safety and Efficacy in Human Nasal Airway Epithelia. Int J Mol Sci 2022; 23:4062. [PMID: 35409423 PMCID: PMC8999825 DOI: 10.3390/ijms23074062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
The nasal epithelium is a key portal for infection by respiratory viruses such as SARS-CoV-2 and represents an important target for prophylactic and therapeutic interventions. In the present study, we test the safety and efficacy of a newly developed nasal spray (AM-301, marketed as Bentrio) against infection by SARS-CoV-2 and its Delta variant on an in vitro 3D-model of the primary human nasal airway epithelium. Safety was assessed in assays for tight junction integrity, cytotoxicity and cilia beating frequency. Efficacy against SARS-CoV-2 infection was evaluated in pre-viral load and post-viral load application on airway epithelium. No toxic effects of AM-301 on the nasal epithelium were found. Prophylactic treatment with AM-301 significantly reduced viral titer vs. controls over 4 days, reaching a maximum reduction of 99% in case of infection from the wild-type SARS-CoV-2 variant and more than 83% in case of the Delta variant. When AM-301 administration was started 24 h after infection, viral titer was reduced by about 12-folds and 3-folds on Day 4. The results suggest that AM-301 is safe and significantly decelerates SARS-CoV-2 replication in cell culture inhibition assays of prophylaxis (pre-viral load application) and mitigation (post-viral load application). Its physical (non-pharmaceutical) mechanism of action, safety and efficacy warrant additional investigations both in vitro and in vivo for safety and efficacy against a broad spectrum of airborne viruses and allergens.
Collapse
Affiliation(s)
- Fabio Fais
- Altamira Medica AG, 6300 Zug, Switzerland; (F.F.); (R.J.); (V.F.)
| | | | | | | | | | | | | | - Massimo Borelli
- Life Sciences and Technologies Department, School of PhD Programmes, Magna Graecia University, 88100 Catanzaro, Italy;
| | | |
Collapse
|
38
|
Giugliano R, Sellitto A, Ferravante C, Rocco T, D'Agostino Y, Alexandrova E, Lamberti J, Palumbo D, Galdiero M, Vaccaro E, Pagliano P, Weisz A, Giurato G, Franci G, Rizzo F. NGS analysis of nasopharyngeal microbiota in SARS-CoV-2 positive patients during the first year of the pandemic in the Campania Region of Italy. Microb Pathog 2022; 165:105506. [PMID: 35358660 PMCID: PMC8958261 DOI: 10.1016/j.micpath.2022.105506] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/26/2022] [Indexed: 11/27/2022]
|
39
|
Dalal A, Kushwaha T, Choudhir G, Inampudi KK, Karmakar T, Hariprasad P, Gholap SL. Computational investigations on the potential role of hygrophorones as quorum sensing inhibitors against LasR protein of Pseudomonas aeruginosa. J Biomol Struct Dyn 2022; 41:2249-2259. [PMID: 35075974 DOI: 10.1080/07391102.2022.2029570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa is a gram negative, rod shape bacterium that infects people with compromised immune systems, such as those suffering from AIDS, organ transplantation and cancer. This bacterium is responsible for diseases like cystic fibrosis, chronic lung infection, and ulcerative keratitis. It is diagnosed in most of the patients who were on prolonged ventilation with long term critical care stay. P. aeruginosa develops rapid antimicrobial resistance that is challenging for the treatment and eventually it causes high mortality rate. Thus, the search for potential novel inhibitors that can inhibit the pathogenic activity of P. aeruginosa is of utmost importance. In P. aeruginosa, an important protein, LasR that participates in the gene regulations and expressions has been proposed to be a suitable drug target. Here, we identify a set of hygrophorone molecules as effective inhibitors for this LasR protein based on molecular docking and simulations studies. At first, large number of hygrophorone series of small molecules were screened against the LasR protein and their binding affinities were assessed based on the docking scores. Top scored molecules were selected for calculating various pharmacophore properties, and finally, their potential in inhibiting the LasR protein was delineated by atomistic molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area-based calculations. Both docking and simulations studies reveal that a subset of hygrophorone molecules have a good binding affinity for LasR protein and form stable LasR-inhibitor complexes. The present study illustrates that the hygrophorones can be effective inhibitors for the LasR protein and will spur further in vitro studies that would aid to the ongoing search for new antibiotics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anu Dalal
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Tushar Kushwaha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Gourav Choudhir
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Krishna K Inampudi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - P Hariprasad
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Shivajirao L Gholap
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|