1
|
Riemann L, Weskamm LM, Mayer L, Odak I, Hammerschmidt S, Sandrock I, Friedrichsen M, Ravens I, Fuss J, Hansen G, Addo MM, Förster R. Blood transcriptome profiling reveals distinct gene networks induced by mRNA vaccination against COVID-19. Eur J Immunol 2024; 54:e2451236. [PMID: 39402787 DOI: 10.1002/eji.202451236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 11/08/2024]
Abstract
Messenger RNA (mRNA) vaccines represent a new class of vaccines that has been shown to be highly effective during the COVID-19 pandemic and that holds great potential for other preventative and therapeutic applications. While it is known that the transcriptional activity of various genes is altered following mRNA vaccination, identifying and studying gene networks could reveal important scientific insights that might inform future vaccine designs. In this study, we conducted an in-depth weighted gene correlation network analysis of the blood transcriptome before and 24 h after the second and third vaccination with licensed mRNA vaccines against COVID-19 in humans, following a prime vaccination with either mRNA or ChAdOx1 vaccines. Utilizing this unsupervised gene network analysis approach, we identified distinct modular networks of co-varying genes characterized by either an expressional up- or downregulation in response to vaccination. Downregulated networks were associated with cell metabolic processes and regulation of transcription factors, while upregulated networks were associated with myeloid differentiation, antigen presentation, and antiviral, interferon-driven pathways. Within this interferon-associated network, we identified highly connected hub genes such as STAT2 and RIGI and associated upstream transcription factors, potentially playing important regulatory roles in the vaccine-induced immune response. The expression profile of this network significantly correlated with S1-specific IgG levels at the follow-up visit in vaccinated individuals. Those findings could be corroborated in a second, independent cohort of mRNA vaccine recipients. Collectively, results from this modular gene network analysis enhance the understanding of mRNA vaccines from a systems immunology perspective. Influencing specific gene networks could lead to optimized vaccines that elicit augmented vaccine responses.
Collapse
Affiliation(s)
- Lennart Riemann
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Leonie M Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, 20246, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, 20246, Germany
- German Centre for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, 20246, Germany
| | - Leonie Mayer
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, 20246, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, 20246, Germany
- German Centre for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, 20246, Germany
| | - Ivan Odak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Inga Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Janina Fuss
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Gesine Hansen
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center of Lung Research (DZL), BREATH, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Marylyn M Addo
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, 20246, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, 20246, Germany
- German Centre for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, 20246, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, 20246, Germany
- German Center of Lung Research (DZL), BREATH, Hannover, Germany
- German Centre for Infection Research, partner site Braunschweig-Hannover, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Pelletier AN, Sanchez GP, Izmirly A, Watson M, Di Pucchio T, Carvalho KI, Filali-Mouhim A, Paramithiotis E, Timenetsky MDCST, Precioso AR, Kalil J, Diamond MS, Haddad EK, Kallas EG, Sekaly RP. A pre-vaccination immune metabolic interplay determines the protective antibody response to a dengue virus vaccine. Cell Rep 2024; 43:114370. [PMID: 38900640 PMCID: PMC11404042 DOI: 10.1016/j.celrep.2024.114370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
Protective immunity to dengue virus (DENV) requires antibody response to all four serotypes. Systems vaccinology identifies a multi-OMICs pre-vaccination signature and mechanisms predictive of broad antibody responses after immunization with a tetravalent live attenuated DENV vaccine candidate (Butantan-DV/TV003). Anti-inflammatory pathways, including TGF-β signaling expressed by CD68low monocytes, and the metabolites phosphatidylcholine (PC) and phosphatidylethanolamine (PE) positively correlate with broadly neutralizing antibody responses against DENV. In contrast, expression of pro-inflammatory pathways and cytokines (IFN and IL-1) in CD68hi monocytes and primary and secondary bile acids negatively correlates with broad DENV-specific antibody responses. Induction of TGF-β and IFNs is done respectively by PC/PE and bile acids in CD68low and CD68hi monocytes. The inhibition of viral sensing by PC/PE-induced TGF-β is confirmed in vitro. Our studies show that the balance between metabolites and the pro- or anti-inflammatory state of innate immune cells drives broad and protective B cell response to a live attenuated dengue vaccine.
Collapse
Affiliation(s)
- Adam-Nicolas Pelletier
- RPM Bioinfo Solutions, Sainte-Thérèse, QC, Canada; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gabriela Pacheco Sanchez
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Abdullah Izmirly
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Tiziana Di Pucchio
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Karina Inacio Carvalho
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Abdelali Filali-Mouhim
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | | | | | | | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil; Institute for Investigation in Immunology-Instituto Nacional de Ciência e Tecnologia-iii-INCT, São Paulo, SP, Brazil
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elias K Haddad
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Esper G Kallas
- Instituto Butantan, São Paulo, Brazil; Department of Infectious and Parasitic Diseases, Hospital das Clínicas, School of Medicine, University of Sao Paulo, São Paulo 01246-903, Brazil
| | - Rafick Pierre Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
3
|
Li H, Liu H, Zhu D, Dou C, Gang B, Zhang M, Wan Z. Biological function molecular pathways and druggability of DNMT2/TRDMT1. Pharmacol Res 2024; 205:107222. [PMID: 38782147 DOI: 10.1016/j.phrs.2024.107222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
5-methylcytosine (m5C) is among the most common epigenetic modification in DNA and RNA molecules, and plays an important role in the animal development and disease pathogenesis. Interestingly, unlike other m5C DNA methyltransferases (DNMTs), DNMT2/TRDMT1 has the double-substrate specificity and adopts a DNMT-similar catalytic mechanism to methylate RNA. Moreover, it is widely involved in a variety of physiological regulatory processes, such as the gene expression, precise protein synthesis, immune response, and disease occurrence. Thus, comprehending the epigenetic mechanism and function of DNMT2/TRDMT1 will probably provide new strategies to treat some refractory diseases. Here, we discuss recent studies on the spatiotemporal expression pattern and post-translational modifications of DNMT2/TRDMT1, and summarize the research advances in substrate characteristics, catalytic recognition mechanism, DNMT2/TRDMT1-related genes or proteins, pharmacological application, and inhibitor development. This review will shed light on the pharmacological design by targeting DNMT2/TRDMT1 to treat parasitic, viral and oncologic diseases.
Collapse
Affiliation(s)
- Huari Li
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China; College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei Province 430070, PR China.
| | - Huiru Liu
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Daiyun Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei Province 430070, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Chengli Dou
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Baocai Gang
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Mengjie Zhang
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Ziyu Wan
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| |
Collapse
|
4
|
Papadatou I, Geropeppa M, Piperi C, Spoulou V, Adamopoulos C, Papavassiliou AG. Deciphering Immune Responses to Immunization via Transcriptional Analysis: A Narrative Review of the Current Evidence towards Personalized Vaccination Strategies. Int J Mol Sci 2024; 25:7095. [PMID: 39000206 PMCID: PMC11240890 DOI: 10.3390/ijms25137095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The development of vaccines has drastically reduced the mortality and morbidity of several diseases. Despite the great success of vaccines, the immunological processes involved in protective immunity are not fully understood and several issues remain to be elucidated. Recently, the advent of high-throughput technologies has enabled a more in-depth investigation of the immune system as a whole and the characterization of the interactions of numerous components of immunity. In the field of vaccinology, these tools allow for the exploration of the molecular mechanisms by which vaccines can induce protective immune responses. In this review, we aim to describe current data on transcriptional responses to vaccination, focusing on similarities and differences of vaccine-induced transcriptional responses among vaccines mostly in healthy adults, but also in high-risk populations, such as the elderly and children. Moreover, the identification of potential predictive biomarkers of vaccine immunogenicity, the effect of age on transcriptional response and future perspectives for the utilization of transcriptomics in the field of vaccinology will be discussed.
Collapse
Affiliation(s)
- Ioanna Papadatou
- Immunobiology and Vaccinology Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.P.); (M.G.); (V.S.)
- First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Geropeppa
- Immunobiology and Vaccinology Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.P.); (M.G.); (V.S.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.G.P.)
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.P.); (M.G.); (V.S.)
- First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.G.P.)
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.G.P.)
| |
Collapse
|
5
|
Lee SG, Furth PA, Hennighausen L, Lee HK. Variant- and vaccination-specific alternative splicing profiles in SARS-CoV-2 infections. iScience 2024; 27:109177. [PMID: 38414855 PMCID: PMC10897911 DOI: 10.1016/j.isci.2024.109177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
The COVID-19 pandemic, driven by the SARS-CoV-2 virus and its variants, highlights the important role of understanding host-viral molecular interactions influencing infection outcomes. Alternative splicing post-infection can impact both host responses and viral replication. We analyzed RNA splicing patterns in immune cells across various SARS-CoV-2 variants, considering immunization status. Using a dataset of 190 RNA-seq samples from our prior studies, we observed a substantial deactivation of alternative splicing and RNA splicing-related genes in COVID-19 patients. The alterations varied significantly depending on the infecting variant and immunization history. Notably, Alpha or Beta-infected patients differed from controls, while Omicron-infected patients displayed a splicing profile closer to controls. Particularly, vaccinated Omicron-infected individuals showed a distinct dynamic in alternative splicing patterns not widely shared among other groups. Our findings underscore the intricate interplay between SARS-CoV-2 variants, vaccination-induced immunity, and alternative splicing, emphasizing the need for further investigations to deepen understanding and guide therapeutic development.
Collapse
Affiliation(s)
- Sung-Gwon Lee
- Section of Genetics and Physiology, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Priscilla A Furth
- Section of Genetics and Physiology, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lothar Hennighausen
- Section of Genetics and Physiology, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hye Kyung Lee
- Section of Genetics and Physiology, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
6
|
Gómez-Carballa A, Albericio G, Montoto-Louzao J, Pérez P, Astorgano D, Rivero-Calle I, Martinón-Torres F, Esteban M, Salas A, García-Arriaza J. Lung transcriptomics of K18-hACE2 mice highlights mechanisms and genes involved in the MVA-S vaccine-mediated immune response and protection against SARS-CoV-2 infection. Antiviral Res 2023; 220:105760. [PMID: 37992765 DOI: 10.1016/j.antiviral.2023.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Unravelling the molecular mechanism of COVID-19 vaccines through transcriptomic pathways involved in the host response to SARS-CoV-2 infection is key to understand how vaccines work, and for the development of optimized COVID-19 vaccines that can prevent the emergence of SARS-CoV-2 variants of concern (VoCs) and future outbreaks. In this study, we investigated the effects of vaccination with a modified vaccinia virus Ankara (MVA)-based vector expressing the full-length SARS-CoV-2 spike protein (MVA-S) on the lung transcriptome from susceptible K18-hACE2 mice after SARS-CoV-2 infection. One dose of MVA-S regulated genes related to viral infection control, inflammation processes, T-cell response, cytokine production and IFN-γ signalling. Down-regulation of Rhcg and Tnfsf18 genes post-vaccination with one and two doses of MVA-S may represent a mechanism for controlling infection immunity and vaccine-induced protection. One dose of MVA-S provided partial protection with a distinct lung transcriptomic profile to healthy animals, while two doses of MVA-S fully protected against infection with a transcriptomic profile comparable to that of non-vaccinated healthy animals. This suggests that the MVA-S booster generates a robust and rapid antigen-specific immune response preventing virus infection. Notably, down-regulation of Atf3 and Zbtb16 genes in mice vaccinated with two doses of MVA-S may contribute to vaccine control of innate immune system and inflammation processes in the lungs during SARS-CoV-2 infection. This study shows host transcriptomic mechanisms likely involved in the MVA-S vaccine-mediated immune response against SARS-CoV-2 infection, which could help in improving vaccine dose assessment and developing novel, well-optimized SARS-CoV-2 vaccine candidates against prevalent or emerging VoCs.
Collapse
Affiliation(s)
- Alberto Gómez-Carballa
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Julián Montoto-Louzao
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Irene Rivero-Calle
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain.
| |
Collapse
|
7
|
Lee SG, Furth PA, Hennighausen L, Lee HK. Variant- and Vaccination-Specific Alternative Splicing Profiles in SARS-CoV-2 Infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.24.568603. [PMID: 38076812 PMCID: PMC10705549 DOI: 10.1101/2023.11.24.568603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, and its subsequent variants has underscored the importance of understanding the host-viral molecular interactions to devise effective therapeutic strategies. A significant aspect of these interactions is the role of alternative splicing in modulating host responses and viral replication mechanisms. Our study sought to delineate the patterns of alternative splicing of RNAs from immune cells across different SARS-CoV-2 variants and vaccination statuses, utilizing a robust dataset of 190 RNA-seq samples from our previous studies, encompassing an average of 212 million reads per sample. We identified a dynamic alteration in alternative splicing and genes related to RNA splicing were highly deactivated in COVID-19 patients and showed variant- and vaccination-specific expression profiles. Overall, Omicron-infected patients exhibited a gene expression profile akin to healthy controls, unlike the Alpha or Beta variants. However, significantly, we found identified a subset of infected individuals, most pronounced in vaccinated patients infected with Omicron variant, that exhibited a specific dynamic in their alternative splicing patterns that was not widely shared amongst the other groups. Our findings underscore the complex interplay between SARS-CoV-2 variants, vaccination-induced immune responses, and alternative splicing, emphasizing the necessity for further investigations into these molecular cross-talks to foster deeper understanding and guide strategic therapeutic development.
Collapse
Affiliation(s)
- Sung-Gwon Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, USA
| | - Priscilla A. Furth
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, USA
| | - Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, USA
| |
Collapse
|
8
|
Mann JT, Riley BA, Baker SF. All differential on the splicing front: Host alternative splicing alters the landscape of virus-host conflict. Semin Cell Dev Biol 2023; 146:40-56. [PMID: 36737258 DOI: 10.1016/j.semcdb.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Alternative RNA splicing is a co-transcriptional process that richly increases proteome diversity, and is dynamically regulated based on cell species, lineage, and activation state. Virus infection in vertebrate hosts results in rapid host transcriptome-wide changes, and regulation of alternative splicing can direct a combinatorial effect on the host transcriptome. There has been a recent increase in genome-wide studies evaluating host alternative splicing during viral infection, which integrates well with prior knowledge on viral interactions with host splicing proteins. A critical challenge remains in linking how these individual events direct global changes, and whether alternative splicing is an overall favorable pathway for fending off or supporting viral infection. Here, we introduce the process of alternative splicing, discuss how to analyze splice regulation, and detail studies on genome-wide and splice factor changes during viral infection. We seek to highlight where the field can focus on moving forward, and how incorporation of a virus-host co-evolutionary perspective can benefit this burgeoning subject.
Collapse
Affiliation(s)
- Joshua T Mann
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Brent A Riley
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Steven F Baker
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
9
|
DeMaso C, Sharma M. Reply to de Silva and White. J Infect Dis 2022; 227:165-166. [PMID: 36285767 PMCID: PMC9796160 DOI: 10.1093/infdis/jiac425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 01/19/2023] Open
Affiliation(s)
- Christina DeMaso
- Correspondence: Christina DeMaso, MSc., Takeda Vaccines, 40 Landsdowne Street, Boston, MA 02139 ()
| | | |
Collapse
|
10
|
Malard F, Mackereth CD, Campagne S. Principles and correction of 5'-splice site selection. RNA Biol 2022; 19:943-960. [PMID: 35866748 PMCID: PMC9311317 DOI: 10.1080/15476286.2022.2100971] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022] Open
Abstract
In Eukarya, immature mRNA transcripts (pre-mRNA) often contain coding sequences, or exons, interleaved by non-coding sequences, or introns. Introns are removed upon splicing, and further regulation of the retained exons leads to alternatively spliced mRNA. The splicing reaction requires the stepwise assembly of the spliceosome, a macromolecular machine composed of small nuclear ribonucleoproteins (snRNPs). This review focuses on the early stage of spliceosome assembly, when U1 snRNP defines each intron 5'-splice site (5'ss) in the pre-mRNA. We first introduce the splicing reaction and the impact of alternative splicing on gene expression regulation. Thereafter, we extensively discuss splicing descriptors that influence the 5'ss selection by U1 snRNP, such as sequence determinants, and interactions mediated by U1-specific proteins or U1 small nuclear RNA (U1 snRNA). We also include examples of diseases that affect the 5'ss selection by U1 snRNP, and discuss recent therapeutic advances that manipulate U1 snRNP 5'ss selectivity with antisense oligonucleotides and small-molecule splicing switches.
Collapse
Affiliation(s)
- Florian Malard
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| | - Cameron D Mackereth
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| | - Sébastien Campagne
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| |
Collapse
|