1
|
Iannone AF, Akgül G, Zhang R, Wacks S, Hussein N, Macias CG, Donatelle A, Bauriedel JMJ, Wright C, Abramov D, Johnson MA, Govek EE, Burré J, Milner TA, De Marco García NV. The chemokine Cxcl14 regulates interneuron differentiation in layer I of the somatosensory cortex. Cell Rep 2024; 43:114531. [PMID: 39058591 PMCID: PMC11373301 DOI: 10.1016/j.celrep.2024.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Spontaneous and sensory-evoked activity sculpts developing circuits. Yet, how these activity patterns intersect with cellular programs regulating the differentiation of neuronal subtypes is not well understood. Through electrophysiological and in vivo longitudinal analyses, we show that C-X-C motif chemokine ligand 14 (Cxcl14), a gene previously characterized for its association with tumor invasion, is expressed by single-bouquet cells (SBCs) in layer I (LI) of the somatosensory cortex during development. Sensory deprivation at neonatal stages markedly decreases Cxcl14 expression. Additionally, we report that loss of function of this gene leads to increased intrinsic excitability of SBCs-but not LI neurogliaform cells-and augments neuronal complexity. Furthermore, Cxcl14 loss impairs sensory map formation and compromises the in vivo recruitment of superficial interneurons by sensory inputs. These results indicate that Cxcl14 is required for LI differentiation and demonstrate the emergent role of chemokines as key players in cortical network development.
Collapse
Affiliation(s)
- Andrew F Iannone
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Gülcan Akgül
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Robin Zhang
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sam Wacks
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nisma Hussein
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Carmen Ginelly Macias
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexander Donatelle
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Julia M J Bauriedel
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Cora Wright
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Debra Abramov
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA; Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Jacqueline Burré
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Natalia V De Marco García
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
2
|
Damilou A, Cai L, Argunşah AÖ, Han S, Kanatouris G, Karatsoli M, Hanley O, Gesuita L, Kollmorgen S, Helmchen F, Karayannis T. Developmental Cajal-Retzius cell death contributes to the maturation of layer 1 cortical inhibition and somatosensory processing. Nat Commun 2024; 15:6501. [PMID: 39090081 PMCID: PMC11294614 DOI: 10.1038/s41467-024-50658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
The role of developmental cell death in the formation of brain circuits is not well understood. Cajal-Retzius cells constitute a major transient neuronal population in the mammalian neocortex, which largely disappears at the time of postnatal somatosensory maturation. In this study, we used mouse genetics, anatomical, functional, and behavioral approaches to explore the impact of the early postnatal death of Cajal-Retzius cells in the maturation of the cortical circuit. We find that before their death, Cajal-Retzius cells mainly receive inputs from layer 1 neurons, which can only develop their mature connectivity onto layer 2/3 pyramidal cells after Cajal-Retzius cells disappear. This developmental connectivity progression from layer 1 GABAergic to layer 2/3 pyramidal cells regulates sensory-driven inhibition within, and more so, across cortical columns. Here we show that Cajal-Retzius cell death prevention leads to layer 2/3 hyper-excitability, delayed learning and reduced performance in a multi-whisker-dependent texture discrimination task.
Collapse
Affiliation(s)
- Angeliki Damilou
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich, 8057, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Linbi Cai
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Ali Özgür Argunşah
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Shuting Han
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - George Kanatouris
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Maria Karatsoli
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich, 8057, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Olivia Hanley
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Lorenzo Gesuita
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Sepp Kollmorgen
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich, 8057, Switzerland
| | - Fritjof Helmchen
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich, 8057, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Theofanis Karayannis
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich, 8057, Switzerland.
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
3
|
Lawrence AR, Canzi A, Bridlance C, Olivié N, Lansonneur C, Catale C, Pizzamiglio L, Kloeckner B, Silvin A, Munro DAD, Fortoul A, Boido D, Zehani F, Cartonnet H, Viguier S, Oller G, Squarzoni P, Candat A, Helft J, Allet C, Watrin F, Manent JB, Paoletti P, Thieffry D, Cantini L, Pridans C, Priller J, Gélot A, Giacobini P, Ciobanu L, Ginhoux F, Thion MS, Lokmane L, Garel S. Microglia maintain structural integrity during fetal brain morphogenesis. Cell 2024; 187:962-980.e19. [PMID: 38309258 PMCID: PMC10869139 DOI: 10.1016/j.cell.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/30/2023] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.
Collapse
Affiliation(s)
- Akindé René Lawrence
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Alice Canzi
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Cécile Bridlance
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Nicolas Olivié
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Claire Lansonneur
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France; Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational Systems Biology, 75005 Paris, France
| | - Clarissa Catale
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Lara Pizzamiglio
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Glutamate Receptors and Excitatory Synapses, 75005 Paris, France
| | - Benoit Kloeckner
- Gustave Roussy Cancer Campus, INSERM, Team Myeloid Cell Development, 94800 Villejuif, France
| | - Aymeric Silvin
- Gustave Roussy Cancer Campus, INSERM, Team Myeloid Cell Development, 94800 Villejuif, France
| | - David A D Munro
- UK Dementia Research Institute at the University of Edinburgh, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Aurélien Fortoul
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Davide Boido
- NeuroSpin, CEA, Paris-Saclay University, Gif-sur-Yvette, Saclay, France
| | - Feriel Zehani
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Hugues Cartonnet
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Sarah Viguier
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Guillaume Oller
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Paola Squarzoni
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Adrien Candat
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Electron Microscopy Facility, 75005 Paris, France
| | - Julie Helft
- Institut Cochin, INSERM, CNRS, Université Paris Cité, Team Phagocytes and Tumor Immunology, 75014 Paris, France
| | - Cécile Allet
- UMR-S 1172, JPArc - Centre de Recherche Neurosciences et Cancer, University of Lille, Lille, France
| | - Francoise Watrin
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Jean-Bernard Manent
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Pierre Paoletti
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Glutamate Receptors and Excitatory Synapses, 75005 Paris, France
| | - Denis Thieffry
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational Systems Biology, 75005 Paris, France
| | - Laura Cantini
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational Systems Biology, 75005 Paris, France
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, Edinburgh EH16 4TJ, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Josef Priller
- UK Dementia Research Institute at the University of Edinburgh, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Department of Psychiatry and Psychotherapy, School of Medicine, Technical University Munich, 81675 Munich, Germany; Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin and DZNE Berlin, 10117 Berlin, Germany
| | - Antoinette Gélot
- Service d'anatomie Pathologique, Hôpital Trousseau APHP, 75571 Paris Cedex 12, France
| | - Paolo Giacobini
- University of Lille, CHU Lille, Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, 59000 Lille, France
| | - Luisa Ciobanu
- NeuroSpin, CEA, Paris-Saclay University, Gif-sur-Yvette, Saclay, France
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, INSERM, Team Myeloid Cell Development, 94800 Villejuif, France; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Morgane Sonia Thion
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Ludmilla Lokmane
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Sonia Garel
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France; Collège de France, Université PSL, 75005 Paris, France.
| |
Collapse
|
4
|
Huang S, Wu SJ, Sansone G, Ibrahim LA, Fishell G. Layer 1 neocortex: Gating and integrating multidimensional signals. Neuron 2024; 112:184-200. [PMID: 37913772 PMCID: PMC11180419 DOI: 10.1016/j.neuron.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
Layer 1 (L1) of the neocortex acts as a nexus for the collection and processing of widespread information. By integrating ascending inputs with extensive top-down activity, this layer likely provides critical information regulating how the perception of sensory inputs is reconciled with expectation. This is accomplished by sorting, directing, and integrating the complex network of excitatory inputs that converge onto L1. These signals are combined with neuromodulatory afferents and gated by the wealth of inhibitory interneurons that either are embedded within L1 or send axons from other cortical layers. Together, these interactions dynamically calibrate information flow throughout the neocortex. This review will primarily focus on L1 within the primary sensory cortex and will use these insights to understand L1 in other cortical areas.
Collapse
Affiliation(s)
- Shuhan Huang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sherry Jingjing Wu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Giulia Sansone
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Leena Ali Ibrahim
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
van Bruggen R, Patel ZH, Wang M, Suk TR, Rousseaux MWC, Tan Q. A Versatile Strategy for Genetic Manipulation of Cajal-Retzius Cells in the Adult Mouse Hippocampus. eNeuro 2023; 10:ENEURO.0054-23.2023. [PMID: 37775311 PMCID: PMC10585607 DOI: 10.1523/eneuro.0054-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
Cajal-Retzius (CR) cells are transient neurons with long-lasting effects on the architecture and circuitry of the neocortex and hippocampus. Contrary to the prevailing assumption that CR cells completely disappear in rodents shortly after birth, a substantial portion of these cells persist in the hippocampus throughout adulthood. The role of these surviving CR cells in the adult hippocampus is largely unknown, partly because of the paucity of suitable tools to dissect their functions in the adult versus the embryonic brain. Here, we show that genetic crosses of the ΔNp73-Cre mouse line, widely used to target CR cells, to reporter mice induce reporter expression not only in CR cells, but also progressively in postnatal dentate gyrus granule neurons. Such a lack of specificity may confound studies of CR cell function in the adult hippocampus. To overcome this, we devise a method that not only leverages the temporary CR cell-targeting specificity of the ΔNp73-Cre mice before the first postnatal week, but also capitalizes on the simplicity and effectiveness of freehand neonatal intracerebroventricular injection of adeno-associated virus. We achieve robust Cre-mediated recombination that remains largely restricted to hippocampal CR cells from early postnatal age to adulthood. We further demonstrate the utility of this method to manipulate neuronal activity of CR cells in the adult hippocampus. This versatile and scalable strategy will facilitate experiments of CR cell-specific gene knockdown and/or overexpression, lineage tracing, and neural activity modulation in the postnatal and adult brain.
Collapse
Affiliation(s)
- Rebekah van Bruggen
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Zain H Patel
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Mi Wang
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Terry R Suk
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Eric Poulin Center for Neuromuscular Diseases, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Maxime W C Rousseaux
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Eric Poulin Center for Neuromuscular Diseases, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Qiumin Tan
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| |
Collapse
|
6
|
Sinclair-Wilson A, Lawrence A, Ferezou I, Cartonnet H, Mailhes C, Garel S, Lokmane L. Plasticity of thalamocortical axons is regulated by serotonin levels modulated by preterm birth. Proc Natl Acad Sci U S A 2023; 120:e2301644120. [PMID: 37549297 PMCID: PMC10438379 DOI: 10.1073/pnas.2301644120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/09/2023] [Indexed: 08/09/2023] Open
Abstract
Sensory inputs are conveyed to distinct primary areas of the neocortex through specific thalamocortical axons (TCA). While TCA have the ability to reorient postnatally to rescue embryonic mistargeting and target proper modality-specific areas, how this remarkable adaptive process is regulated remains largely unknown. Here, using a mutant mouse model with a shifted TCA trajectory during embryogenesis, we demonstrated that TCA rewiring occurs during a short postnatal time window, preceded by a prenatal apoptosis of thalamic neurons-two processes that together lead to the formation of properly innervated albeit reduced primary sensory areas. We furthermore showed that preterm birth, through serotonin modulation, impairs early postnatal TCA plasticity, as well as the subsequent delineation of cortical area boundary. Our study defines a birth and serotonin-sensitive period that enables concerted adaptations of TCA to primary cortical areas with major implications for our understanding of brain wiring in physiological and preterm conditions.
Collapse
Affiliation(s)
- Alexander Sinclair-Wilson
- Team Brain Development and Plasticity, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, PSL Research University, 75005Paris, France
| | - Akindé Lawrence
- Team Brain Development and Plasticity, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, PSL Research University, 75005Paris, France
| | - Isabelle Ferezou
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400Saclay, France
| | - Hugues Cartonnet
- Team Brain Development and Plasticity, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, PSL Research University, 75005Paris, France
| | - Caroline Mailhes
- Acute Transgenesis Facility, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, PSL Research University, 75005Paris, France
| | - Sonia Garel
- Team Brain Development and Plasticity, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, PSL Research University, 75005Paris, France
- Collège de France, PSL Research University, 75005Paris, France
| | - Ludmilla Lokmane
- Team Brain Development and Plasticity, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, PSL Research University, 75005Paris, France
| |
Collapse
|
7
|
Moreau MX, Saillour Y, Elorriaga V, Bouloudi B, Delberghe E, Deutsch Guerrero T, Ochandorena-Saa A, Maeso-Alonso L, Marques MM, Marin MC, Spassky N, Pierani A, Causeret F. Repurposing of the multiciliation gene regulatory network in fate specification of Cajal-Retzius neurons. Dev Cell 2023; 58:1365-1382.e6. [PMID: 37321213 DOI: 10.1016/j.devcel.2023.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/06/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Cajal-Retzius cells (CRs) are key players in cerebral cortex development, and they display a unique transcriptomic identity. Here, we use scRNA-seq to reconstruct the differentiation trajectory of mouse hem-derived CRs, and we unravel the transient expression of a complete gene module previously known to control multiciliogenesis. However, CRs do not undergo centriole amplification or multiciliation. Upon deletion of Gmnc, the master regulator of multiciliogenesis, CRs are initially produced but fail to reach their normal identity resulting in their massive apoptosis. We further dissect the contribution of multiciliation effector genes and identify Trp73 as a key determinant. Finally, we use in utero electroporation to demonstrate that the intrinsic competence of hem progenitors as well as the heterochronic expression of Gmnc prevent centriole amplification in the CR lineage. Our work exemplifies how the co-option of a complete gene module, repurposed to control a distinct process, may contribute to the emergence of novel cell identities.
Collapse
Affiliation(s)
- Matthieu X Moreau
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Yoann Saillour
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Vicente Elorriaga
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Benoît Bouloudi
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Elodie Delberghe
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Tanya Deutsch Guerrero
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Amaia Ochandorena-Saa
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Laura Maeso-Alonso
- Instituto de Biomedicina, y Departamento de Biología Molecular, Universidad de León, 24071 Leon, Spain
| | - Margarita M Marques
- Instituto de Desarrollo Ganadero y Sanidad Animal, y Departamento de Producción Animal, Universidad de León, 24071 Leon, Spain
| | - Maria C Marin
- Instituto de Biomedicina, y Departamento de Biología Molecular, Universidad de León, 24071 Leon, Spain
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Frédéric Causeret
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France.
| |
Collapse
|
8
|
Elorriaga V, Pierani A, Causeret F. Cajal-retzius cells: Recent advances in identity and function. Curr Opin Neurobiol 2023; 79:102686. [PMID: 36774666 DOI: 10.1016/j.conb.2023.102686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 02/12/2023]
Abstract
Cajal-Retzius cells (CRs) are a transient neuronal type of the developing cerebral cortex. Over the years, they have been shown or proposed to play important functions in neocortical and hippocampal morphogenesis, circuit formation, brain evolution and human pathology. Because of their short lifespan, CRs have been pictured as a purely developmental cell type, whose production and active elimination are both required for correct brain development. In this review, we present some of the findings that allow us to better appreciate the identity and diversity of this very special cell type, and propose a unified definition of what should be considered a Cajal-Retzius cell, especially when working with non-mammalian species or organoids. In addition, we highlight a flurry of recent studies pointing to the importance of CRs in the assembly of functional and dysfunctional cortical networks.
Collapse
Affiliation(s)
- Vicente Elorriaga
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France.
| | - Frédéric Causeret
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France.
| |
Collapse
|