1
|
Revankar NA, Negi PS. Biotics: An emerging food supplement for health improvement in the era of immune modulation. Nutr Clin Pract 2024; 39:311-329. [PMID: 37466413 DOI: 10.1002/ncp.11036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023] Open
Abstract
The involvement of the commensal microbiota in immune function is a multifold process. Biotics, such as probiotics, prebiotics, synbiotics, and paraprobiotics, have been subjected to animal and human trials demonstrating the association between gut microbes and immunity biomarkers leading to improvement in overall health. In recent years, studies on human microbiome interaction have established the multifarious role of biotics in maintaining overall health. The consumption of biotics has been extensively reported to help in maintaining microbial diversity, enhancing gut-associated mucosal immune homeostasis, and providing protection against a wide range of lifestyle disorders. However, the establishment of biotics as an alternative therapy for a range of health conditions is yet to be ascertained. Despite the fact that scientific literature has demonstrated the correlation between biotics and immune modulation, most in vivo and in vitro reports are inconclusive on the dosage required. This review provides valuable insights into the immunomodulatory effects of biotics consumption based on evidence obtained from animal models and clinical trials. Furthermore, we highlight the optimal dosages of biotics that have been reported to deliver maximum health benefits. By identifying critical research gaps, we have suggested a roadmap for future investigations to advance our understanding of the intricate crosstalk between biotics and immune homeostasis.
Collapse
Affiliation(s)
- Neelam A Revankar
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep S Negi
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Yan L, Li H, Qian Y, Liu Q, Cong S, Dou B, Wang Y, Wang M, Yu T. Acupuncture modulates the gut microbiota in Alzheimer's disease: current evidence, challenges, and future opportunities. Front Neurosci 2024; 18:1334735. [PMID: 38495110 PMCID: PMC10940355 DOI: 10.3389/fnins.2024.1334735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Alzheimer's disease, one of the most severe and common neurodegenerative diseases, has no effective cure. Therefore it is crucial to explore novel and effective therapeutic targets. The gut microbiota - brain axis has been found to play a role in Alzheimer's disease by regulating the neuro-immune and endocrine systems. At the same time, acupuncture can modulate the gut microbiota and may impact the course of Alzheimer's disease. In this Review, we discuss recent studies on the role of acupuncture on the gut microbiota as well current challenges and future opportunities of acupuncture as potential treatment for the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Long Yan
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Hong Li
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Yulin Qian
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qidi Liu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Shan Cong
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Baomin Dou
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Yu Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Yu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Klontz E, Obi JO, Wang Y, Glendening G, Carr J, Tsibouris C, Buddula S, Nallar S, Soares AS, Beckett D, Redzic JS, Eisenmesser E, Palm C, Schmidt K, Scudder AH, Obiorah T, Essuman K, Milbrandt J, Diantonio A, Ray K, Snyder MLD, Deredge D, Snyder GA. The structure of NAD + consuming protein Acinetobacter baumannii TIR domain shows unique kinetics and conformations. J Biol Chem 2023; 299:105290. [PMID: 37758001 PMCID: PMC10641520 DOI: 10.1016/j.jbc.2023.105290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Toll-like and interleukin-1/18 receptor/resistance (TIR) domain-containing proteins function as important signaling and immune regulatory molecules. TIR domain-containing proteins identified in eukaryotic and prokaryotic species also exhibit NAD+ hydrolase activity in select bacteria, plants, and mammalian cells. We report the crystal structure of the Acinetobacter baumannii TIR domain protein (AbTir-TIR) with confirmed NAD+ hydrolysis and map the conformational effects of its interaction with NAD+ using hydrogen-deuterium exchange-mass spectrometry. NAD+ results in mild decreases in deuterium uptake at the dimeric interface. In addition, AbTir-TIR exhibits EX1 kinetics indicative of large cooperative conformational changes, which are slowed down upon substrate binding. Additionally, we have developed label-free imaging using the minimally invasive spectroscopic method 2-photon excitation with fluorescence lifetime imaging, which shows differences in bacteria expressing native and mutant NAD+ hydrolase-inactivated AbTir-TIRE208A protein. Our observations are consistent with substrate-induced conformational changes reported in other TIR model systems with NAD+ hydrolase activity. These studies provide further insight into bacterial TIR protein mechanisms and their varying roles in biology.
Collapse
Affiliation(s)
- Erik Klontz
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Juliet O Obi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Yajing Wang
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Physiology, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Gabrielle Glendening
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Jahid Carr
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Constantine Tsibouris
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Sahthi Buddula
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Shreeram Nallar
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Alexei S Soares
- Brookhaven National Laboratory, National Synchrotron Light Source II, Structural Biology Program, Upton, New York, USA
| | - Dorothy Beckett
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
| | - Elan Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
| | - Cheyenne Palm
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Katrina Schmidt
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Alexis H Scudder
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Trinity Obiorah
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Kow Essuman
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jeffrey Milbrandt
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Aaron Diantonio
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Krishanu Ray
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Biochemistry and Molecular Biology at the University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | | | - Daniel Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Greg A Snyder
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
| |
Collapse
|
4
|
Maruta N, Sorbello M, Lim BYJ, McGuinness HY, Shi Y, Ve T, Kobe B. TIR domain-associated nucleotides with functions in plant immunity and beyond. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102364. [PMID: 37086529 DOI: 10.1016/j.pbi.2023.102364] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/19/2023] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
TIR (Toll/interlukin-1 receptor) domains are found in archaea, bacteria and eukaryotes, featured in proteins generally associated with immune functions. In plants, they are found in a large group of NLRs (nucleotide-binding leucine-rich repeat receptors), NLR-like proteins and TIR-only proteins. They are also present in effector proteins from phytopathogenic bacteria that are associated with suppression of host immunity. TIR domains from plants and bacteria are enzymes that cleave NAD+ (nicotinamide adenine dinucleotide, oxidized form) and other nucleotides. In dicot plants, TIR-derived signalling molecules activate downstream immune signalling proteins, the EDS1 (enhanced disease susceptibility 1) family proteins, and in turn helper NLRs. Recent work has brought major advances in understanding how TIR domains work, how they produce signalling molecules and how these products signal.
Collapse
Affiliation(s)
- Natsumi Maruta
- The University of Queensland, School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - Mitchell Sorbello
- The University of Queensland, School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - Bryan Y J Lim
- The University of Queensland, School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - Helen Y McGuinness
- The University of Queensland, School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Bostjan Kobe
- The University of Queensland, School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
Pani G. Fusobacterium & Co. at the Stem of Cancer: Microbe-Cancer Stem Cell Interactions in Colorectal Carcinogenesis. Cancers (Basel) 2023; 15:cancers15092583. [PMID: 37174049 PMCID: PMC10177588 DOI: 10.3390/cancers15092583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Adult stem cells lie at the crossroads of tissue repair, inflammation, and malignancy. Intestinal microbiota and microbe-host interactions are pivotal to maintaining gut homeostasis and response to injury, and participate in colorectal carcinogenesis. Yet, limited knowledge is available on whether and how bacteria directly crosstalk with intestinal stem cells (ISC), particularly cancerous stem-like cells (CR-CSC), as engines for colorectal cancer initiation, maintenance, and metastatic dissemination. Among several bacterial species alleged to initiate or promote colorectal cancer (CRC), the pathobiont Fusobacterium Nucleatum has recently drawn significant attention for its epidemiologic association and mechanistic linkage with the disease. We will therefore focus on current evidence for an F. nucleatum-CRCSC axis in tumor development, highlighting the commonalities and differences between F. nucleatum-associated colorectal carcinogenesis and gastric cancer driven by Helicobacter Pylori. We will explore the diverse facets of the bacteria-CSC interaction, analyzing the signals and pathways whereby bacteria either confer "stemness" properties to tumor cells or primarily target stem-like elements within the heterogeneous tumor cell populations. We will also discuss the extent to which CR-CSC cells are competent for innate immune responses and participate in establishing a tumor-promoting microenvironment. Finally, by capitalizing on the expanding knowledge of how the microbiota and ISC crosstalk in intestinal homeostasis and response to injury, we will speculate on the possibility that CRC arises as an aberrant repair response promoted by pathogenic bacteria upon direct stimulation of intestinal stem cells.
Collapse
Affiliation(s)
- Giovambattista Pani
- Department of Translational Medicine and Surgery, Section of General Pathology, Faculty of Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, L. go A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
6
|
Bayless AM, Chen S, Ogden SC, Xu X, Sidda JD, Manik MK, Li S, Kobe B, Ve T, Song L, Grant M, Wan L, Nishimura MT. Plant and prokaryotic TIR domains generate distinct cyclic ADPR NADase products. SCIENCE ADVANCES 2023; 9:eade8487. [PMID: 36930706 PMCID: PMC10022894 DOI: 10.1126/sciadv.ade8487] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/10/2023] [Indexed: 05/06/2023]
Abstract
Toll/interleukin-1 receptor (TIR) domain proteins function in cell death and immunity. In plants and bacteria, TIR domains are often enzymes that produce isomers of cyclic adenosine 5'-diphosphate-ribose (cADPR) as putative immune signaling molecules. The identity and functional conservation of cADPR isomer signals is unclear. A previous report found that a plant TIR could cross-activate the prokaryotic Thoeris TIR-immune system, suggesting the conservation of plant and prokaryotic TIR-immune signals. Here, we generate autoactive Thoeris TIRs and test the converse hypothesis: Do prokaryotic Thoeris TIRs also cross-activate plant TIR immunity? Using in planta and in vitro assays, we find that Thoeris and plant TIRs generate overlapping sets of cADPR isomers and further clarify how plant and Thoeris TIRs activate the Thoeris system via producing 3'cADPR. This study demonstrates that the TIR signaling requirements for plant and prokaryotic immune systems are distinct and that TIRs across kingdoms generate a diversity of small-molecule products.
Collapse
Affiliation(s)
- Adam M. Bayless
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sisi Chen
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Sam C. Ogden
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Xiaoyan Xu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - John D. Sidda
- School of Life Sciences, University of Warwick, Coventry CV47AL, UK
| | - Mohammad K. Manik
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Sulin Li
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Bostjan Kobe
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Lijiang Song
- School of Life Sciences, University of Warwick, Coventry CV47AL, UK
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry CV47AL, UK
| | - Li Wan
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marc T. Nishimura
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
7
|
Eastman S, Bayless A, Guo M. The Nucleotide Revolution: Immunity at the Intersection of Toll/Interleukin-1 Receptor Domains, Nucleotides, and Ca 2. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:964-976. [PMID: 35881867 DOI: 10.1094/mpmi-06-22-0132-cr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The discovery of the enzymatic activity of the toll/interleukin-1 receptor (TIR) domain protein SARM1 five years ago preceded a flood of discoveries regarding the nucleotide substrates and products of TIR domains in plants, animals, bacteria, and archaea. These discoveries into the activity of TIR domains coincide with major advances in understanding the structure and mechanisms of NOD-like receptors and the mutual dependence of pattern recognition receptor- and effector-triggered immunity (PTI and ETI, respectively) in plants. It is quickly becoming clear that TIR domains and TIR-produced nucleotides are ancestral signaling molecules that modulate immunity and that their activity is closely associated with Ca2+ signaling. TIR domain research now bridges the separate disciplines of molecular plant- and animal-microbe interactions, neurology, and prokaryotic immunity. A cohesive framework for understanding the role of enzymatic TIR domains in diverse organisms will help unite the research of these disparate fields. Here, we review known products of TIR domains in plants, animals, bacteria, and archaea and use context gained from animal and prokaryotic TIR domain systems to present a model for TIR domains, nucleotides, and Ca2+ at the intersection of PTI and ETI in plant immunity. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Samuel Eastman
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Adam Bayless
- Department of Biology, Colorado State University, Fort Collins, CO 80521, U.S.A
| | - Ming Guo
- Department of Agriculture and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| |
Collapse
|
8
|
Manik MK, Shi Y, Li S, Zaydman MA, Damaraju N, Eastman S, Smith TG, Gu W, Masic V, Mosaiab T, Weagley JS, Hancock SJ, Vasquez E, Hartley-Tassell L, Kargios N, Maruta N, Lim BYJ, Burdett H, Landsberg MJ, Schembri MA, Prokes I, Song L, Grant M, DiAntonio A, Nanson JD, Guo M, Milbrandt J, Ve T, Kobe B. Cyclic ADP ribose isomers: Production, chemical structures, and immune signaling. Science 2022; 377:eadc8969. [PMID: 36048923 DOI: 10.1126/science.adc8969] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cyclic adenosine diphosphate (ADP)-ribose (cADPR) isomers are signaling molecules produced by bacterial and plant Toll/interleukin-1 receptor (TIR) domains via nicotinamide adenine dinucleotide (oxidized form) (NAD+) hydrolysis. We show that v-cADPR (2'cADPR) and v2-cADPR (3'cADPR) isomers are cyclized by O-glycosidic bond formation between the ribose moieties in ADPR. Structures of 2'cADPR-producing TIR domains reveal conformational changes that lead to an active assembly that resembles those of Toll-like receptor adaptor TIR domains. Mutagenesis reveals a conserved tryptophan that is essential for cyclization. We show that 3'cADPR is an activator of ThsA effector proteins from the bacterial antiphage defense system termed Thoeris and a suppressor of plant immunity when produced by the effector HopAM1. Collectively, our results reveal the molecular basis of cADPR isomer production and establish 3'cADPR in bacteria as an antiviral and plant immunity-suppressing signaling molecule.
Collapse
Affiliation(s)
- Mohammad K Manik
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Sulin Li
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark A Zaydman
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63100, USA
| | - Neha Damaraju
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63100, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63100, USA
| | - Samuel Eastman
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Thomas G Smith
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Veronika Masic
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Tamim Mosaiab
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - James S Weagley
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Steven J Hancock
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Eduardo Vasquez
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | | | - Nestoras Kargios
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Natsumi Maruta
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bryan Y J Lim
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hayden Burdett
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ivan Prokes
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Lijiang Song
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Aaron DiAntonio
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63100, USA
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63100, USA
| | - Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ming Guo
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jeffrey Milbrandt
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63100, USA
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Essuman K, Milbrandt J, Dangl JL, Nishimura MT. Shared TIR enzymatic functions regulate cell death and immunity across the tree of life. Science 2022; 377:eabo0001. [DOI: 10.1126/science.abo0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the 20th century, researchers studying animal and plant signaling pathways discovered a protein domain shared across diverse innate immune systems: the Toll/Interleukin-1/Resistance-gene (TIR) domain. The TIR domain is found in several protein architectures and was defined as an adaptor mediating protein-protein interactions in animal innate immunity and developmental signaling pathways. However, studies of nerve degeneration in animals, and subsequent breakthroughs in plant, bacterial and archaeal systems, revealed that TIR domains possess enzymatic activities. We provide a synthesis of TIR functions and the role of various related TIR enzymatic products in evolutionarily diverse immune systems. These studies may ultimately guide interventions that would span the tree of life, from treating human neurodegenerative disorders and bacterial infections, to preventing plant diseases.
Collapse
Affiliation(s)
- Kow Essuman
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jeffery L. Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marc T. Nishimura
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|