1
|
Bhattacharya A, Turkalj L, Manzini MC. The promise of cyclic AMP modulation to restore cognitive function in neurodevelopmental disorders. Curr Opin Neurobiol 2024; 90:102966. [PMID: 39740265 DOI: 10.1016/j.conb.2024.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Cyclic AMP (cAMP) is a key regulator of synaptic function and is dysregulated in both neurodevelopmental (NDD) and neurodegenerative disorders. Due to the ease of diffusion and promiscuity of downstream effectors, cAMP signaling is restricted within spatiotemporal domains to localize activation. Among the best-studied mechanisms is the feedback inhibition of cAMP-dependent protein kinase (PKA) activity by phosphodiesterases 4 (PDE4s) at synapses controlling neuronal plasticity, which is largely regulated by PDE4D. In fact, genetic variants in genes for multiple PKA subunits and PDE4D lead to NDDs. Here, we discuss the rationale for choosing PDE4D as a candidate for the design of selective allosteric inhibitors and the recent advances in clinical trials. These new compounds improve cognitive function in preclinical animal models due to improved selectivity and more physiological inhibition of the active enzyme. We also discuss opportunities for better understanding of PDE4D function in general, and for the development of next-generation inhibitors.
Collapse
Affiliation(s)
- Aniket Bhattacharya
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, 08901, USA
| | - Luka Turkalj
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, 08901, USA
| | - M Chiara Manzini
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, 08901, USA.
| |
Collapse
|
2
|
Bhatnagar A, Raj G, Das S, Kannihali A, Rajakumara E, Murray G, Ray S. Integrated bioinformatics and interaction analysis to advance chronotherapies for mental disorders. Front Pharmacol 2024; 15:1444342. [PMID: 39703389 PMCID: PMC11655208 DOI: 10.3389/fphar.2024.1444342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Robust connections have been identified between the pathophysiology of mental disorders and the functioning of the circadian system. The overarching objective of this study was to investigate the potential for circadian rhythms to be leveraged for therapeutics in mental disorders. Methods We considered two approaches to chronotherapy-optimal timing of existing medications ("clocking the drugs") and redressing circadian abnormalities with small molecules ("drugging the clock"). We assessed whether circadian rhythm-modulating compounds can interact with the prominent drug targets of mental disorders utilizing computational tools like molecular docking and molecular dynamics simulation analysis. Results Firstly, an analysis of transcript-level rhythmic patterns in recognized drug targets for mental disorders found that 24-hour rhythmic patterns were measurable in 54.4% of targets in mice and 35.2% in humans. We also identified several drug receptors exhibiting 24-hour rhythmicity involved in critical physiological pathways for neural signaling and communication, such as neuroactive ligand-receptor interaction, calcium signaling pathway, cAMP signaling pathway, and dopaminergic and cholinergic synapses. These findings advocate that further research into the timing of drug administration in mental disorders is urgently required. We observed that many pharmacological modulators of mammalian circadian rhythms, including KL001, SR8278, SR9009, Nobiletin, and MLN4924, exhibit stable binding with psychotropic drug targets. Discussion These findings suggest that circadian clock-modulating pharmacologically active small molecules could be investigated further for repurposing in the treatment of mood disorders. In summary, the present analyses indicate the potential of chronotherapeutic approaches to mental disorder pharmacotherapy and specify the need for future circadian rhythm-oriented clinical research.
Collapse
Affiliation(s)
- Apoorva Bhatnagar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Gupta Raj
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Sandip Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Arpita Kannihali
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Eerappa Rajakumara
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Greg Murray
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| |
Collapse
|
3
|
Doorn N, Voogd EJHF, Levers MR, van Putten MJAM, Frega M. Breaking the burst: Unveiling mechanisms behind fragmented network bursts in patient-derived neurons. Stem Cell Reports 2024; 19:1583-1597. [PMID: 39366380 PMCID: PMC11589196 DOI: 10.1016/j.stemcr.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024] Open
Abstract
Fragmented network bursts (NBs) are observed as a phenotypic driver in many patient-derived neuronal networks on multi-electrode arrays (MEAs), but the pathophysiological mechanisms underlying this phenomenon are unknown. Here, we used our previously developed biophysically detailed in silico model to investigate these mechanisms. Fragmentation of NBs in our model simulations occurred only when the level of short-term synaptic depression (STD) was enhanced, suggesting that STD is a key player. Experimental validation with Dynasore, an STD enhancer, induced fragmented NBs in healthy neuronal networks in vitro. Additionally, we showed that strong asynchronous neurotransmitter release, NMDA currents, or short-term facilitation (STF) can support the emergence of multiple fragments in NBs by producing excitation that persists after high-frequency firing stops. Our results provide important insights into disease mechanisms and potential pharmaceutical targets for neurological disorders modeled using human induced pluripotent stem cell (hiPSC)-derived neurons.
Collapse
Affiliation(s)
- Nina Doorn
- Department of Clinical Neurophysiology, University of Twente, Enschede 7522 NB, the Netherlands.
| | - Eva J H F Voogd
- Department of Clinical Neurophysiology, University of Twente, Enschede 7522 NB, the Netherlands
| | - Marloes R Levers
- Department of Clinical Neurophysiology, University of Twente, Enschede 7522 NB, the Netherlands
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, University of Twente, Enschede 7522 NB, the Netherlands; Department of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente, Enschede 7512 KZ, the Netherlands
| | - Monica Frega
- Department of Clinical Neurophysiology, University of Twente, Enschede 7522 NB, the Netherlands
| |
Collapse
|
4
|
Santarriaga S, Gerlovin K, Layadi Y, Karmacharya R. Human stem cell-based models to study synaptic dysfunction and cognition in schizophrenia: A narrative review. Schizophr Res 2024; 273:78-97. [PMID: 36925354 PMCID: PMC10500041 DOI: 10.1016/j.schres.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Cognitive impairment is the strongest predictor of functional outcomes in schizophrenia and is hypothesized to result from synaptic dysfunction. However, targeting synaptic plasticity and cognitive deficits in patients remains a significant clinical challenge. A comprehensive understanding of synaptic plasticity and the molecular basis of learning and memory in a disease context can provide specific targets for the development of novel therapeutics targeting cognitive impairments in schizophrenia. Here, we describe the role of synaptic plasticity in cognition, summarize evidence for synaptic dysfunction in schizophrenia and demonstrate the use of patient derived induced-pluripotent stem cells for studying synaptic plasticity in vitro. Lastly, we discuss current advances and future technologies for bridging basic science research of synaptic dysfunction with clinical and translational research that can be used to predict treatment response and develop novel therapeutics.
Collapse
Affiliation(s)
- Stephanie Santarriaga
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kaia Gerlovin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasmine Layadi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chimie ParisTech, Université Paris Sciences et Lettres, Paris, France
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
5
|
Heider J, González EP, Hartmann SM, Kannaiyan N, Vogel S, Wüst R, Fallgatter AJ, Rossner MJ, Kraushaar U, Volkmer H. Aberrant neuronal connectivity and network activity of neurons derived from patients with idiopathic schizophrenia. Neurobiol Dis 2024; 201:106678. [PMID: 39307399 DOI: 10.1016/j.nbd.2024.106678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Schizophrenia (SCZ) is a psychiatric disorder with a strong genetic determinant. A major hypothesis to explain disease aetiology comprises synaptic dysfunction associated with excitatory-inhibitory imbalance of synaptic transmission, ultimately contributing to impaired network oscillation and cognitive deficits associated with the disease. Here, we studied the morphological and functional properties of a highly defined co-culture of GABAergic and glutamatergic neurons derived from induced pluripotent stem cells (iPSC) from patients with idiopathic SCZ. Our results indicate upregulation of synaptic genes and increased excitatory synapse formation on GABAergic neurons in co-cultures. In parallel, we observed decreased lengths of axon initial segments, concordant with data from postmortem brains from patients with SCZ. In line with increased synapse density, patch-clamp analyses revealed markedly increased spontaneous excitatory postsynaptic currents (EPSC) recorded from GABAergic SCZ neurons. Finally, MEA recordings from neuronal networks indicate increased strength of network activity, potentially in response to altered synaptic transmission and E-I balance in the co-cultures. In conclusion, our results suggest selective deregulation of neuronal activity in SCZ samples, providing evidence for altered synapse formation and synaptic transmission as a potential base for aberrant network synchronization.
Collapse
Affiliation(s)
- Johanna Heider
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Emilio Pardo González
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany; International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Sophia-Marie Hartmann
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany; International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Nirmal Kannaiyan
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Sabrina Vogel
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Richard Wüst
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Udo Kraushaar
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Hansjürgen Volkmer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany; International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany; German Center for Mental Health (DZPG), Partner Site Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
6
|
Zhang H, McCarroll A, Peyton L, Díaz de León-Guerrerro S, Zhang S, Gowda P, Sirkin D, ElAchwah M, Duhe A, Wood WG, Jamison B, Tracy G, Pollak R, Hart RP, Pato CN, Mulle JG, Sanders AR, Pang ZP, Duan J. Scaled and efficient derivation of loss-of-function alleles in risk genes for neurodevelopmental and psychiatric disorders in human iPSCs. Stem Cell Reports 2024; 19:1489-1504. [PMID: 39270650 PMCID: PMC11561461 DOI: 10.1016/j.stemcr.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/15/2024] Open
Abstract
Translating genetic findings for neurodevelopmental and psychiatric disorders (NPDs) into actionable disease biology would benefit from large-scale and unbiased functional studies of NPD genes. Leveraging the cytosine base editing (CBE) system, we developed a pipeline for clonal loss-of-function (LoF) allele mutagenesis in human induced pluripotent stem cells (hiPSCs) by introducing premature stop codons (iSTOP) that lead to mRNA nonsense-mediated decay (NMD) or protein truncation. We tested the pipeline for 23 NPD genes on 3 hiPSC lines and achieved highly reproducible, efficient iSTOP editing in 22 genes. Using RNA sequencing (RNA-seq), we confirmed their pluripotency, absence of chromosomal abnormalities, and NMD. Despite high editing efficiency, three schizophrenia risk genes (SETD1A, TRIO, and CUL1) only had heterozygous LoF alleles, suggesting their essential roles for cell growth. We found that CUL1-LoF reduced neurite branches and synaptic puncta density. This iSTOP pipeline enables a scaled and efficient LoF mutagenesis of NPD genes, yielding an invaluable shareable resource.
Collapse
Affiliation(s)
- Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Ada McCarroll
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Lilia Peyton
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Sol Díaz de León-Guerrerro
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Prarthana Gowda
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - David Sirkin
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Mahmoud ElAchwah
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Alexandra Duhe
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Whitney G Wood
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Brandon Jamison
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Gregory Tracy
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Rebecca Pollak
- Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Carlos N Pato
- Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Jennifer G Mulle
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Clarin JD, Bouras NN, Gao WJ. Genetic Diversity in Schizophrenia: Developmental Implications of Ultra-Rare, Protein-Truncating Mutations. Genes (Basel) 2024; 15:1214. [PMID: 39336805 PMCID: PMC11431303 DOI: 10.3390/genes15091214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The genetic basis of schizophrenia (SZ) remains elusive despite its characterization as a highly heritable disorder. This incomplete understanding has led to stagnation in therapeutics and treatment, leaving many suffering with insufficient relief from symptoms. However, recent large-cohort genome- and exome-wide association studies have provided insights into the underlying genetic machinery. The scale of these studies allows for the identification of ultra-rare mutations that confer substantial disease risk, guiding clinicians and researchers toward general classes of genes that are central to SZ etiology. One such large-scale collaboration effort by the Schizophrenia Exome Sequencing Meta-Analysis consortium identified ten, high-risk, ultra-rare, protein-truncating variants, providing the clearest picture to date of the dysfunctional gene products that substantially increase risk for SZ. While genetic studies of SZ provide valuable information regarding "what" genes are linked with the disorder, it is an open question as to "when" during brain development these genetic mutations impose deleterious effects. To shed light on this unresolved aspect of SZ etiology, we queried the BrainSpan developmental mRNA expression database for these ten high-risk genes and discovered three general expression trajectories throughout pre- and postnatal brain development. The elusiveness of SZ etiology, we infer, is not only borne out of the genetic heterogeneity across clinical cases, but also in our incomplete understanding of how genetic mutations perturb neurodevelopment during multiple critical periods. We contextualize this notion within the National Institute of Mental Health's Research Domain Criteria framework and emphasize the utility of considering both genetic variables and developmental context in future studies.
Collapse
Affiliation(s)
- Jacob D Clarin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Nadia N Bouras
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
8
|
Lendemeijer B, Unkel M, Smeenk H, Mossink B, Hijazi S, Gordillo-Sampedro S, Shpak G, Slump DE, van den Hout MCGN, van IJcken WFJ, Bindels EMJ, Hoogendijk WJG, Nadif Kasri N, de Vrij FMS, Kushner SA. Human Pluripotent Stem Cell-Derived Astrocyte Functionality Compares Favorably with Primary Rat Astrocytes. eNeuro 2024; 11:ENEURO.0148-24.2024. [PMID: 39227152 PMCID: PMC11404293 DOI: 10.1523/eneuro.0148-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024] Open
Abstract
Astrocytes are essential for the formation and maintenance of neural networks. However, a major technical challenge for investigating astrocyte function and disease-related pathophysiology has been the limited ability to obtain functional human astrocytes. Despite recent advances in human pluripotent stem cell (hPSC) techniques, primary rodent astrocytes remain the gold standard in coculture with human neurons. We demonstrate that a combination of leukemia inhibitory factor (LIF) and bone morphogenetic protein-4 (BMP4) directs hPSC-derived neural precursor cells to a highly pure population of astroglia in 28 d. Using single-cell RNA sequencing, we confirm the astroglial identity of these cells and highlight profound transcriptional adaptations in cocultured hPSC-derived astrocytes and neurons, consistent with their further maturation. In coculture with human neurons, multielectrode array recordings revealed robust network activity of human neurons in a coculture with hPSC-derived or rat astrocytes [3.63 ± 0.44 min-1 (hPSC-derived), 2.86 ± 0.64 min-1 (rat); p = 0.19]. In comparison, we found increased spike frequency within network bursts of human neurons cocultured with hPSC-derived astrocytes [56.31 ± 8.56 Hz (hPSC-derived), 24.77 ± 4.04 Hz (rat); p < 0.01], and whole-cell patch-clamp recordings revealed an increase of postsynaptic currents [2.76 ± 0.39 Hz (hPSC-derived), 1.07 ± 0.14 Hz (rat); p < 0.001], consistent with a corresponding increase in synapse density [14.90 ± 1.27/100 μm2 (hPSC-derived), 8.39 ± 0.63/100 μm2 (rat); p < 0.001]. Taken together, we show that hPSC-derived astrocytes compare favorably with rat astrocytes in supporting human neural network activity and maturation, providing a fully human platform for investigating astrocyte function and neuronal-glial interactions.
Collapse
Affiliation(s)
- Bas Lendemeijer
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
- Department of Psychiatry, Columbia University, New York, New York 10027
- Stavros Niarchos Foundation (SNF) Center for Precision Psychiatry & Mental Health, Columbia University, New York, New York 10027
| | - Maurits Unkel
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Hilde Smeenk
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Britt Mossink
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Sara Hijazi
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Sara Gordillo-Sampedro
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Guy Shpak
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Denise E Slump
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Mirjam C G N van den Hout
- Department of Cell Biology, Center for Biomics, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Center for Biomics, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Witte J G Hoogendijk
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
- Department of Psychiatry, Columbia University, New York, New York 10027
- Stavros Niarchos Foundation (SNF) Center for Precision Psychiatry & Mental Health, Columbia University, New York, New York 10027
| |
Collapse
|
9
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
10
|
Bosworth ML, Isles AR, Wilkinson LS, Humby T. Sex-dependent effects of Setd1a haploinsufficiency on development and adult behaviour. PLoS One 2024; 19:e0298717. [PMID: 39141687 PMCID: PMC11324134 DOI: 10.1371/journal.pone.0298717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Loss of function (LoF) mutations affecting the histone methyl transferase SETD1A are implicated in the aetiology of a range of neurodevelopmental disorders including schizophrenia. We examined indices of development and adult behaviour in a mouse model of Setd1a haploinsufficiency, revealing a complex pattern of sex-related differences spanning the pre- and post-natal period. Specifically, male Setd1a+/- mice had smaller placentae at E11.5 and females at E18.5 without any apparent changes in foetal size. In contrast, young male Setd1a+/- mice had lower body weight and showed enhanced growth, leading to equivalent weights by adulthood. Embryonic whole brain RNA-seq analysis revealed expression changes that were significantly enriched for mitochondria-related genes in Setd1a+/ samples. In adulthood, we found enhanced acoustic startle responding in male Setd1a+/- mice which was insentitive to the effects of risperidone, but not haloperidol, both commonly used antipsychotic drugs. We also observed reduced pre-pulse inhibition of acoustic startle, a schizophrenia-relevant phenotype, in both male and female Setd1a+/- mice which could not be rescued by either drug. In the open field and elevated plus maze tests of anxiety, Setd1a haplosufficiency led to more anxiogenic behaviour in both sexes, whereas there were no differences in general motoric ability and memory. Thus, we find evidence for changes in a number of phenotypes which strengthen the support for the use of Setd1a haploinsufficient mice as a model for the biological basis of schizophrenia. Furthermore, our data point towards possible underpinning neural and developmental mechanisms that may be subtly different between the sexes.
Collapse
Affiliation(s)
- Matthew L. Bosworth
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anthony R. Isles
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Trevor Humby
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
11
|
Zhao T, Hong Y, Yan B, Huang S, Ming GL, Song H. Epigenetic maintenance of adult neural stem cell quiescence in the mouse hippocampus via Setd1a. Nat Commun 2024; 15:5674. [PMID: 38971831 PMCID: PMC11227589 DOI: 10.1038/s41467-024-50010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
Quiescence, a hallmark of adult neural stem cells (NSCs), is required for maintaining the NSC pool to support life-long continuous neurogenesis in the adult dentate gyrus (DG). Whether long-lasting epigenetic modifications maintain NSC quiescence over the long term in the adult DG is not well-understood. Here we show that mice with haploinsufficiency of Setd1a, a schizophrenia risk gene encoding a histone H3K4 methyltransferase, develop an enlarged DG with more dentate granule cells after young adulthood. Deletion of Setd1a specifically in quiescent NSCs in the adult DG promotes their activation and neurogenesis, which is countered by inhibition of the histone demethylase LSD1. Mechanistically, RNA-sequencing and CUT & RUN analyses of cultured quiescent adult NSCs reveal Setd1a deletion-induced transcriptional changes and many Setd1a targets, among which down-regulation of Bhlhe40 promotes quiescent NSC activation in the adult DG in vivo. Together, our study reveals a Setd1a-dependent epigenetic mechanism that sustains NSC quiescence in the adult DG.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA
| | - Yan Hong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA
| | - Bowen Yan
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Wang ZH, Zhao YQ, Yang SR, Guo XR, Gao ZB, Bai W, Kou C. Decreased serum levels of SETD1A protein in patients with schizophrenia. Neurosci Lett 2024; 833:137827. [PMID: 38777104 DOI: 10.1016/j.neulet.2024.137827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE SET domain-containing protein 1A (SETD1A) histone lysine N-methyltransferase may serve as a biomarker for the auxiliary diagnosis and treatment assessment of schizophrenia (SCZ). The aim of this study was to compare serum levels of SETD1A protein between patients with SCZ and health controls. METHODS Patients with SCZ and health controls were recruited from the Sixth Hospital of Changchun and the 'Survey on Chronic Diseases and Risk Factors among Adults in Jilin Province', respectively. The quantifications of lysine N-methyltransferase in peripheral serum were conducted by the ELISA method, and data was analyzed using the R software. RESULTS Forty patients with SCZ (mean age: 33.97 ± 5.99 years) and forty healthy controls (mean age: 39.07 ± 4.62 years) were included. There was significantly lower concentration of SETD1A protein in the SCZ group compared with the control group (P < 0.001). This significant difference still exists after stratification by sex (P < 0.05). CONCLUSION Our study demonstrates that decreased levels of serum SETD1A protein may be utilized as a possible peripheral biomarker for schizophrenia.
Collapse
Affiliation(s)
- Zi-Han Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province 130021, China
| | - Yu-Qi Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province 130021, China
| | - Shu-Ran Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province 130021, China
| | - Xin-Ru Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province 130021, China
| | - Zi-Bo Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province 130021, China
| | - Wei Bai
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province 130021, China
| | - Changgui Kou
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province 130021, China.
| |
Collapse
|
13
|
Zhang H, Peyton L, McCarroll A, de León Guerrerro SD, Zhang S, Gowda P, Sirkin D, El Achwah M, Duhe A, Wood WG, Jamison B, Tracy G, Pollak R, Hart RP, Pato CN, Mulle JG, Sanders AR, Pang ZP, Duan J. Scaled and Efficient Derivation of Loss of Function Alleles in Risk Genes for Neurodevelopmental and Psychiatric Disorders in Human iPSC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585542. [PMID: 38562852 PMCID: PMC10983959 DOI: 10.1101/2024.03.18.585542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Translating genetic findings for neurodevelopmental and psychiatric disorders (NPD) into actionable disease biology would benefit from large-scale and unbiased functional studies of NPD genes. Leveraging the cytosine base editing (CBE) system, here we developed a pipeline for clonal loss-of-function (LoF) allele mutagenesis in human induced pluripotent stem cells (hiPSCs) by introducing premature stop-codons (iSTOP) that lead to mRNA nonsense-mediated-decay (NMD) or protein truncation. We tested the pipeline for 23 NPD genes on 3 hiPSC lines and achieved highly reproducible, efficient iSTOP editing in 22 NPD genes. Using RNAseq, we confirmed their pluripotency, absence of chromosomal abnormalities, and NMD. Interestingly, for three schizophrenia risk genes (SETD1A, TRIO, CUL1), despite the high efficiency of base editing, we only obtained heterozygous LoF alleles, suggesting their essential roles for cell growth. We replicated the reported neural phenotypes of SHANK3-haploinsufficiency and found CUL1-LoF reduced neurite branches and synaptic puncta density. This iSTOP pipeline enables a scaled and efficient LoF mutagenesis of NPD genes, yielding an invaluable shareable resource.
Collapse
Affiliation(s)
- Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Lilia Peyton
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Ada McCarroll
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Sol Díaz de León Guerrerro
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL
| | - Prarthana Gowda
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - David Sirkin
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Mahmoud El Achwah
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Alexandra Duhe
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Whitney G Wood
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Brandon Jamison
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Gregory Tracy
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Rebecca Pollak
- Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University
| | - Carlos N Pato
- Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - Jennifer G Mulle
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL
| |
Collapse
|
14
|
Heider J, Stahl A, Sperlich D, Hartmann SM, Vogel S, Breitmeyer R, Templin M, Volkmer H. Defined co-cultures of glutamatergic and GABAergic neurons with a mutation in DISC1 reveal aberrant phenotypes in GABAergic neurons. BMC Neurosci 2024; 25:12. [PMID: 38438989 PMCID: PMC10910844 DOI: 10.1186/s12868-024-00858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Mutations in the gene DISC1 are associated with increased risk for schizophrenia, bipolar disorder and major depression. The study of mutated DISC1 represents a well-known and comprehensively characterized approach to understand neuropsychiatric disease mechanisms. However, previous studies have mainly used animal models or rather heterogeneous populations of iPSC-derived neurons, generated by undirected differentiation, to study the effects of DISC1 disruption. Since major hypotheses to explain neurodevelopmental, psychiatric disorders rely on altered neuronal connectivity observed in patients, an ideal iPSC-based model requires accurate representation of the structure and complexity of neuronal circuitries. In this study, we made use of an isogenic cell line with a mutation in DISC1 to study neuronal synaptic phenotypes in a culture system comprising a defined ratio of NGN2 and ASCL1/DLX2 (AD2)-transduced neurons, enriched for glutamatergic and GABAergic neurons, respectively, to mimic properties of the cortical microcircuitry. RESULTS In heterozygous DISC1 mutant neurons, we replicated the expected phenotypes including altered neural progenitor proliferation as well as neurite outgrowth, deregulated DISC1-associated signaling pathways, and reduced synaptic densities in cultures composed of glutamatergic neurons. Cultures comprising a defined ratio of NGN2 and AD2 neurons then revealed considerably increased GABAergic synapse densities, which have not been observed in any iPSC-derived model so far. Increased inhibitory synapse densities could be associated with an increased efficiency of GABAergic differentiation, which we observed in AD2-transduced cultures of mutant neurons. Additionally, we found increased neuronal activity in GABAergic neurons through calcium imaging while the activity pattern of glutamatergic neurons remained unchanged. CONCLUSIONS In conclusion, our results demonstrate phenotypic differences in a co-culture comprising a defined ratio of DISC1 mutant NGN2 and AD2 neurons, as compared to culture models comprising only one neuronal cell type. Altered synapse numbers and neuronal activity imply that DISC1 impacts the excitatory/inhibitory balance in NGN2/AD2 co-cultures, mainly through increased GABAergic input.
Collapse
Affiliation(s)
- Johanna Heider
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Aaron Stahl
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Denise Sperlich
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Sophia-Marie Hartmann
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Sabrina Vogel
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Ricarda Breitmeyer
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Markus Templin
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Hansjürgen Volkmer
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany.
| |
Collapse
|
15
|
Colijn MA, Carrion P, Poirier-Morency G, Rogic S, Torres I, Menon M, Lisonek M, Cook C, DeGraaf A, Thammaiah SP, Neelakant H, Willaeys V, Leonova O, White RF, Yip S, Mungall AJ, MacLeod PM, Gibson WT, Sullivan PF, Honer WG, Pavlidis P, Stowe RM. SETD1A variant-associated psychosis: A systematic review of the clinical literature and description of two new cases. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110888. [PMID: 37918557 DOI: 10.1016/j.pnpbp.2023.110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/18/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE SETD1A encodes a histone methyltransferase involved in various cell cycle regulatory processes. Loss-of-function SETD1A variants have been associated with numerous neurodevelopmental phenotypes, including intellectual disability and schizophrenia. While the association between rare coding variants in SETD1A and schizophrenia has achieved genome-wide significance by rare variant burden testing, only a few studies have described the psychiatric phenomenology of such individuals in detail. This systematic review and case report aims to characterize the neurodevelopmental and psychiatric phenotypes of SETD1A variant-associated schizophrenia. METHODS A PubMed search was completed in July 2022 and updated in May 2023. Only studies that reported individuals with a SETD1A variant as well as a primary psychotic disorder were ultimately included. Additionally, another two previously unpublished cases of SETD1A variant-associated psychosis from our own sequencing cohort are described. RESULTS The search yielded 32 articles. While 15 articles met inclusion criteria, only five provided case descriptions. In total, phenotypic information was available for 11 individuals, in addition to our own two unpublished cases. Our findings suggest that although individuals with SETD1A variant-associated schizophrenia may share a number of common features, phenotypic variability nonetheless exists. Moreover, although such individuals may exhibit numerous other neurodevelopmental features suggestive of the syndrome, their psychiatric presentations appear to be similar to those of general schizophrenia populations. CONCLUSIONS Loss-of-function SETD1A variants may underlie the development of psychosis in a small percentage of individuals with schizophrenia. Identifying such individuals may become increasingly important, given the potential for advances in precision medicine treatment approaches.
Collapse
Affiliation(s)
- Mark A Colijn
- Department of Psychiatry, Hotchkiss Brain Institute, and Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada.
| | - Prescilla Carrion
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | | | - Sanja Rogic
- Department of Psychiatry and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Ivan Torres
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Mental Health and Substance Use Services, Vancouver, BC, Canada
| | - Mahesh Menon
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | | | - Courtney Cook
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ashley DeGraaf
- Heart Centre, St. Paul's Hospital and Providence Health, Vancouver, BC, Canada
| | | | - Harish Neelakant
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Veerle Willaeys
- BC Psychosis Program, British Columbia Mental Health & Substance Use Services, Vancouver, BC, Canada
| | - Olga Leonova
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Randall F White
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Patrick M MacLeod
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Patrick F Sullivan
- Psychiatry and Genetics, University of North Carolina at Chapel Hill, NC, USA; Karolinska Institut, Stockholm, Sweden
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
| | - Paul Pavlidis
- Department of Psychiatry, Michael Smith Laboratories, and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Robert M Stowe
- Departments of Psychiatry and Neurology (Medicine), BC Neuropsychiatry Program, and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Peall KJ, Owen MJ, Hall J. Rare genetic brain disorders with overlapping neurological and psychiatric phenotypes. Nat Rev Neurol 2024; 20:7-21. [PMID: 38001363 DOI: 10.1038/s41582-023-00896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Understanding rare genetic brain disorders with overlapping neurological and psychiatric phenotypes is of increasing importance given the potential for developing disease models that could help to understand more common, polygenic disorders. However, the traditional clinical boundaries between neurology and psychiatry result in frequent segregation of these disorders into distinct silos, limiting cross-specialty understanding that could facilitate clinical and biological advances. In this Review, we highlight multiple genetic brain disorders in which neurological and psychiatric phenotypes are observed, but for which in-depth, cross-spectrum clinical phenotyping is rarely undertaken. We describe the combined phenotypes observed in association with genetic variants linked to epilepsy, dystonia, autism spectrum disorder and schizophrenia. We also consider common underlying mechanisms that centre on synaptic plasticity, including changes to synaptic and neuronal structure, calcium handling and the balance of excitatory and inhibitory neuronal activity. Further investigation is needed to better define and replicate these phenotypes in larger cohorts, which would help to gain greater understanding of the pathophysiological mechanisms and identify common therapeutic targets.
Collapse
Affiliation(s)
- Kathryn J Peall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK.
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Michael J Owen
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
Lewerissa EI, Nadif Kasri N, Linda K. Epigenetic regulation of autophagy-related genes: Implications for neurodevelopmental disorders. Autophagy 2024; 20:15-28. [PMID: 37674294 PMCID: PMC10761153 DOI: 10.1080/15548627.2023.2250217] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily highly conserved catabolic process that is important for the clearance of cytosolic contents to maintain cellular homeostasis and survival. Recent findings point toward a critical role for autophagy in brain function, not only by preserving neuronal health, but especially by controlling different aspects of neuronal development and functioning. In line with this, mutations in autophagy-related genes are linked to various key characteristics and symptoms of neurodevelopmental disorders (NDDs), including autism, micro-/macrocephaly, and epilepsy. However, the group of NDDs caused by mutations in autophagy-related genes is relatively small. A significant proportion of NDDs are associated with mutations in genes encoding epigenetic regulatory proteins that modulate gene expression, so-called chromatinopathies. Intriguingly, several of the NDD-linked chromatinopathy genes have been shown to regulate autophagy-related genes, albeit in non-neuronal contexts. From these studies it becomes evident that tight transcriptional regulation of autophagy-related genes is crucial to control autophagic activity. This opens the exciting possibility that aberrant autophagic regulation might underly nervous system impairments in NDDs with disturbed epigenetic regulation. We here summarize NDD-related chromatinopathy genes that are known to regulate transcriptional regulation of autophagy-related genes. Thereby, we want to highlight autophagy as a candidate key hub mechanism in NDD-related chromatinopathies.Abbreviations: ADNP: activity dependent neuroprotector homeobox; ASD: autism spectrum disorder; ATG: AutTophaGy related; CpG: cytosine-guanine dinucleotide; DNMT: DNA methyltransferase; EHMT: euchromatic histone lysine methyltransferase; EP300: E1A binding protein p300; EZH2: enhancer of zeste 2 polycomb repressive complex 2 subunit; H3K4me3: histone 3 lysine 4 trimethylation; H3K9me1/2/3: histone 3 lysine 9 mono-, di-, or trimethylation; H3K27me2/3: histone 3 lysine 27 di-, or trimethylation; hiPSCs: human induced pluripotent stem cells; HSP: hereditary spastic paraplegia; ID: intellectual disability; KANSL1: KAT8 regulatory NSL complex subunit 1; KAT8: lysine acetyltransferase 8; KDM1A/LSD1: lysine demethylase 1A; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NDD: neurodevelopmental disorder; PHF8: PHD finger protein 8; PHF8-XLID: PHF8-X linked intellectual disability syndrome; PTM: post-translational modification; SESN2: sestrin 2; YY1: YY1 transcription factor; YY1AP1: YY1 associated protein 1.
Collapse
Affiliation(s)
- Elly I. Lewerissa
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Gelderland, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Gelderland, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behavior, Nijmegen, Gelderland, The Netherlands
| | - Katrin Linda
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Gelderland, The Netherlands
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Flemish Brabant, Belgium
- Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Flemish Brabant, Belgium
| |
Collapse
|
18
|
Perlee S, Kikuchi S, Nakadai T, Masuda T, Ohtsuki S, Matsumoto M, Rahmutulla B, Fukuyo M, Cifani P, Kentsis A, Roeder RG, Kaneda A, Hoshii T. SETD1A function in leukemia is mediated through interaction with mitotic regulators BuGZ/BUB3. EMBO Rep 2023; 24:e57108. [PMID: 37535603 PMCID: PMC10561176 DOI: 10.15252/embr.202357108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
The H3K4 methyltransferase SETD1A plays a crucial role in leukemia cell survival through its noncatalytic FLOS domain-mediated recruitment of cyclin K and regulation of DNA damage response genes. In this study, we identify a functional nuclear localization signal in and interaction partners of the FLOS domain. Our screen for FLOS domain-binding partners reveals that the SETD1A FLOS domain binds mitosis-associated proteins BuGZ/BUB3. Inhibition of both cyclin K and BuGZ/BUB3-binding motifs in SETD1A shows synergistic antileukemic effects. BuGZ/BUB3 localize to SETD1A-bound promoter-TSS regions and SETD1A-negative H3K4me1-positive enhancer regions adjacent to SETD1A target genes. The GLEBS motif and intrinsically disordered region of BuGZ are required for both SETD1A-binding and leukemia cell proliferation. Cell-cycle-specific SETD1A restoration assays indicate that SETD1A expression at the G1/S phase of the cell cycle promotes both the expression of DNA damage response genes and cell cycle progression in leukemia cells.
Collapse
Affiliation(s)
- Sarah Perlee
- Department of Cancer Biology and GeneticsMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Gerstner Graduate School of Biomedical SciencesMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Sota Kikuchi
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular BiologyThe Rockefeller UniversityNew YorkNYUSA
| | - Takeshi Masuda
- Laboratory of Pharmaceutical Microbiology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
| | - Sumio Ohtsuki
- Laboratory of Pharmaceutical Microbiology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Makoto Matsumoto
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Paolo Cifani
- Molecular Pharmacology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Alex Kentsis
- Molecular Pharmacology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular BiologyThe Rockefeller UniversityNew YorkNYUSA
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Takayuki Hoshii
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| |
Collapse
|
19
|
Mijdam R, Bijnagte-Schoenmaker C, Dyke E, Moons SJ, Boltje TJ, Nadif Kasri N, Lefeber DJ. Sialic acid biosynthesis pathway blockade disturbs neuronal network formation in human iPSC-derived excitatory neurons. J Neurochem 2023; 167:76-89. [PMID: 37650222 DOI: 10.1111/jnc.15934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
N-acetylneuraminic acid (sialic acid) is present in large quantities in the brain and plays a crucial role in brain development, learning, and memory formation. How sialic acid contributes to brain development is not fully understood. The purpose of this study was to determine the effects of reduced sialylation on network formation in human iPSC-derived neurons (iNeurons). Using targeted mass spectrometry and antibody binding, we observed an increase in free sialic acid and polysialic acid during neuronal development, which was disrupted by treatment of iNeurons with a synthetic inhibitor of sialic acid biosynthesis. Sialic acid inhibition disturbed synapse formation and network formation on microelectrode array (MEA), showing short but frequent (network) bursts and an overall lower firing rate, and higher percentage of random spikes. This study shows that sialic acid is necessary for neuronal network formation during human neuronal development and provides a physiologically relevant model to study the role of sialic acid in patient-derived iNeurons.
Collapse
Affiliation(s)
- Rachel Mijdam
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
| | - Chantal Bijnagte-Schoenmaker
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
| | - Emma Dyke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
| | - Sam J Moons
- Synvenio B.V. Mercator 2, Nijmegen, the Netherlands
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
20
|
Semesta KM, Garces A, Tsvetanova NG. The psychosis risk factor RBM12 encodes a novel repressor of GPCR/cAMP signal transduction. J Biol Chem 2023; 299:105133. [PMID: 37543364 PMCID: PMC10502367 DOI: 10.1016/j.jbc.2023.105133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
RBM12 is a high-penetrance risk factor for familial schizophrenia and psychosis, yet its precise cellular functions and the pathways to which it belongs are not known. We utilize two complementary models, HEK293 cells and human iPSC-derived neurons, and delineate RBM12 as a novel repressor of the G protein-coupled receptor/cAMP/PKA (GPCR/cAMP/PKA) signaling axis. We establish that loss of RBM12 leads to hyperactive cAMP production and increased PKA activity as well as altered neuronal transcriptional responses to GPCR stimulation. Notably, the cAMP and transcriptional signaling steps are subject to discrete RBM12-dependent regulation. We further demonstrate that the two RBM12 truncating variants linked to familial psychosis impact this interplay, as the mutants fail to rescue GPCR/cAMP signaling hyperactivity in cells depleted of RBM12. Lastly, we present a mechanism underlying the impaired signaling phenotypes. In agreement with its activity as an RNA-binding protein, loss of RBM12 leads to altered gene expression, including that of multiple effectors of established significance within the receptor pathway. Specifically, the abundance of adenylyl cyclases, phosphodiesterase isoforms, and PKA regulatory and catalytic subunits is impacted by RBM12 depletion. We note that these expression changes are fully consistent with the entire gamut of hyperactive signaling outputs. In summary, the current study identifies a previously unappreciated role for RBM12 in the context of the GPCR-cAMP pathway that could be explored further as a tentative molecular mechanism underlying the functions of this factor in neuronal physiology and pathophysiology.
Collapse
Affiliation(s)
- Khairunnisa M Semesta
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Angelica Garces
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Nikoleta G Tsvetanova
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
21
|
Kathuria A, Lopez-Lengowski K, Watmuff B, Karmacharya R. Morphological and transcriptomic analyses of stem cell-derived cortical neurons reveal mechanisms underlying synaptic dysfunction in schizophrenia. Genome Med 2023; 15:58. [PMID: 37507766 PMCID: PMC10375745 DOI: 10.1186/s13073-023-01203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Postmortem studies in schizophrenia consistently show reduced dendritic spines in the cerebral cortex but the mechanistic underpinnings of these deficits remain unknown. Recent genome-wide association studies and exome sequencing investigations implicate synaptic genes and processes in the disease biology of schizophrenia. METHODS We generated human cortical pyramidal neurons by differentiating iPSCs of seven schizophrenia patients and seven healthy subjects, quantified dendritic spines and synapses in different cortical neuron subtypes, and carried out transcriptomic studies to identify differentially regulated genes and aberrant cellular processes in schizophrenia. RESULTS Cortical neurons expressing layer III marker CUX1, but not those expressing layer V marker CTIP2, showed significant reduction in dendritic spine density in schizophrenia, mirroring findings in postmortem studies. Transcriptomic experiments in iPSC-derived cortical neurons showed that differentially expressed genes in schizophrenia were enriched for genes implicated in schizophrenia in genome-wide association and exome sequencing studies. Moreover, most of the differentially expressed genes implicated in schizophrenia genetic studies had lower expression levels in schizophrenia cortical neurons. Network analysis of differentially expressed genes led to identification of NRXN3 as a hub gene, and follow-up experiments showed specific reduction of the NRXN3 204 isoform in schizophrenia neurons. Furthermore, overexpression of the NRXN3 204 isoform in schizophrenia neurons rescued the spine and synapse deficits in the cortical neurons while knockdown of NRXN3 204 in healthy neurons phenocopied spine and synapse deficits seen in schizophrenia cortical neurons. The antipsychotic clozapine increased expression of the NRXN3 204 isoform in schizophrenia cortical neurons and rescued the spine and synapse density deficits. CONCLUSIONS Taken together, our findings in iPSC-derived cortical neurons recapitulate cell type-specific findings in postmortem studies in schizophrenia and have led to the identification of a specific isoform of NRXN3 that modulates synaptic deficits in schizophrenia neurons.
Collapse
Affiliation(s)
- Annie Kathuria
- Harvard University, MGH Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN6, Boston, MA, 02114, USA
- Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kara Lopez-Lengowski
- Harvard University, MGH Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN6, Boston, MA, 02114, USA
- Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Bradley Watmuff
- Harvard University, MGH Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN6, Boston, MA, 02114, USA
- Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Rakesh Karmacharya
- Harvard University, MGH Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN6, Boston, MA, 02114, USA.
- Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Program in Neuroscience, Harvard University, Cambridge, MA, USA.
- Schizophrenia & Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
- Program in Chemical Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
22
|
Liu T, Klussmann E. Targeting cAMP signaling compartments in iPSC-derived models of cardiovascular disease. Curr Opin Pharmacol 2023; 71:102392. [PMID: 37453312 DOI: 10.1016/j.coph.2023.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Adenosine 3',5'-cyclic monophosphate (cAMP) acts as a second messenger that is involved in the regulation of a plethora of processes. The activation of cAMP signaling in defined compartments is critical for cells to respond to an extracellular stimulus in a specific manner. Rapid advances in the field of human induced pluripotent stem cells (iPSCs) reflect their great potential for cardiovascular disease modeling, drug screening, regenerative and precision medicine. This review discusses cAMP signaling in iPSC-derived cardiovascular disease models, and the prospects of using such systems to elucidate disease mechanisms, drug actions and to identify novel drug targets for the treatment of cardiovascular diseases with unmet medical need, such as hypertension and heart failure.
Collapse
Affiliation(s)
- Tiannan Liu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany.
| |
Collapse
|
23
|
Nakamura T, Takata A. The molecular pathology of schizophrenia: an overview of existing knowledge and new directions for future research. Mol Psychiatry 2023; 28:1868-1889. [PMID: 36878965 PMCID: PMC10575785 DOI: 10.1038/s41380-023-02005-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Despite enormous efforts employing various approaches, the molecular pathology in the schizophrenia brain remains elusive. On the other hand, the knowledge of the association between the disease risk and changes in the DNA sequences, in other words, our understanding of the genetic pathology of schizophrenia, has dramatically improved over the past two decades. As the consequence, now we can explain more than 20% of the liability to schizophrenia by considering all analyzable common genetic variants including those with weak or no statistically significant association. Also, a large-scale exome sequencing study identified single genes whose rare mutations substantially increase the risk for schizophrenia, of which six genes (SETD1A, CUL1, XPO7, GRIA3, GRIN2A, and RB1CC1) showed odds ratios larger than ten. Based on these findings together with the preceding discovery of copy number variants (CNVs) with similarly large effect sizes, multiple disease models with high etiological validity have been generated and analyzed. Studies of the brains of these models, as well as transcriptomic and epigenomic analyses of patient postmortem tissues, have provided new insights into the molecular pathology of schizophrenia. In this review, we overview the current knowledge acquired from these studies, their limitations, and directions for future research that may redefine schizophrenia based on biological alterations in the responsible organ rather than operationalized criteria.
Collapse
Affiliation(s)
- Takumi Nakamura
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
24
|
Muzzi L, Di Lisa D, Falappa M, Pepe S, Maccione A, Pastorino L, Martinoia S, Frega M. Human-Derived Cortical Neurospheroids Coupled to Passive, High-Density and 3D MEAs: A Valid Platform for Functional Tests. Bioengineering (Basel) 2023; 10:bioengineering10040449. [PMID: 37106636 PMCID: PMC10136157 DOI: 10.3390/bioengineering10040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
With the advent of human-induced pluripotent stem cells (hiPSCs) and differentiation protocols, methods to create in-vitro human-derived neuronal networks have been proposed. Although monolayer cultures represent a valid model, adding three-dimensionality (3D) would make them more representative of an in-vivo environment. Thus, human-derived 3D structures are becoming increasingly used for in-vitro disease modeling. Achieving control over the final cell composition and investigating the exhibited electrophysiological activity is still a challenge. Thence, methodologies to create 3D structures with controlled cellular density and composition and platforms capable of measuring and characterizing the functional aspects of these samples are needed. Here, we propose a method to rapidly generate neurospheroids of human origin with control over cell composition that can be used for functional investigations. We show a characterization of the electrophysiological activity exhibited by the neurospheroids by using micro-electrode arrays (MEAs) with different types (i.e., passive, C-MOS, and 3D) and number of electrodes. Neurospheroids grown in free culture and transferred on MEAs exhibited functional activity that can be chemically and electrically modulated. Our results indicate that this model holds great potential for an in-depth study of signal transmission to drug screening and disease modeling and offers a platform for in-vitro functional testing.
Collapse
Affiliation(s)
- Lorenzo Muzzi
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Donatella Di Lisa
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Matteo Falappa
- 3Brain AG, 8808 Pfäffikon, Switzerland
- Corticale Srl., 16145 Genoa, Italy
| | - Sara Pepe
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | | | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Sergio Martinoia
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Monica Frega
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
25
|
Wang S, Hesen R, Mossink B, Nadif Kasri N, Schubert D. Generation of glutamatergic/GABAergic neuronal co-cultures derived from human induced pluripotent stem cells for characterizing E/I balance in vitro. STAR Protoc 2023; 4:101967. [PMID: 36856768 PMCID: PMC9898783 DOI: 10.1016/j.xpro.2022.101967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 12/07/2022] [Indexed: 01/27/2023] Open
Abstract
Obtaining mechanistic insights into the disruptions of neuronal excitation and inhibition (E/I) balance in brain disorders has remained challenging. Here, we present a protocol for in vitro characterization of E/I balance. Using human induced pluripotent stem cells, we describe the generation of glutamatergic excitatory/GABAergic inhibitory neuronal co-cultures at defined ratios, followed by analyzing E/I network properties using immunocytochemistry and multi-electrode array recording. This approach allows for studying cell-type-specific contribution of disease genes to E/I balance in human neurons. For complete details on the use and execution of this protocol, please refer to Mossink et al. (2022)1 and Wang et al. (2022).2.
Collapse
Affiliation(s)
- Shan Wang
- Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands
| | - Rick Hesen
- Department of Human Genetics, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Dirk Schubert
- Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands.
| |
Collapse
|
26
|
Roth C, Kilpinen H, Kurian MA, Barral S. Histone lysine methyltransferase-related neurodevelopmental disorders: current knowledge and saRNA future therapies. Front Cell Dev Biol 2023; 11:1090046. [PMID: 36923252 PMCID: PMC10009263 DOI: 10.3389/fcell.2023.1090046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Neurodevelopmental disorders encompass a group of debilitating diseases presenting with motor and cognitive dysfunction, with variable age of onset and disease severity. Advances in genetic diagnostic tools have facilitated the identification of several monogenic chromatin remodeling diseases that cause Neurodevelopmental disorders. Chromatin remodelers play a key role in the neuro-epigenetic landscape and regulation of brain development; it is therefore not surprising that mutations, leading to loss of protein function, result in aberrant neurodevelopment. Heterozygous, usually de novo mutations in histone lysine methyltransferases have been described in patients leading to haploinsufficiency, dysregulated protein levels and impaired protein function. Studies in animal models and patient-derived cell lines, have highlighted the role of histone lysine methyltransferases in the regulation of cell self-renewal, cell fate specification and apoptosis. To date, in depth studies of histone lysine methyltransferases in oncology have provided strong evidence of histone lysine methyltransferase dysregulation as a determinant of cancer progression and drug resistance. As a result, histone lysine methyltransferases have become an important therapeutic target for the treatment of different cancer forms. Despite recent advances, we still lack knowledge about the role of histone lysine methyltransferases in neuronal development. This has hampered both the study and development of precision therapies for histone lysine methyltransferases-related Neurodevelopmental disorders. In this review, we will discuss the current knowledge of the role of histone lysine methyltransferases in neuronal development and disease progression. We will also discuss how RNA-based technologies using small-activating RNAs could potentially provide a novel therapeutic approach for the future treatment of histone lysine methyltransferase haploinsufficiency in these Neurodevelopmental disorders, and how they could be first tested in state-of-the-art patient-derived neuronal models.
Collapse
Affiliation(s)
- Charlotte Roth
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Helena Kilpinen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Manju A. Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Serena Barral
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
27
|
Ritchie FD, Lizarraga SB. The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities. Front Neurosci 2023; 17:989109. [PMID: 36845425 PMCID: PMC9950662 DOI: 10.3389/fnins.2023.989109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Brain size is controlled by several factors during neuronal development, including neural progenitor proliferation, neuronal arborization, gliogenesis, cell death, and synaptogenesis. Multiple neurodevelopmental disorders have co-morbid brain size abnormalities, such as microcephaly and macrocephaly. Mutations in histone methyltransferases that modify histone H3 on Lysine 36 and Lysine 4 (H3K36 and H3K4) have been identified in neurodevelopmental disorders involving both microcephaly and macrocephaly. H3K36 and H3K4 methylation are both associated with transcriptional activation and are proposed to sterically hinder the repressive activity of the Polycomb Repressor Complex 2 (PRC2). During neuronal development, tri-methylation of H3K27 (H3K27me3) by PRC2 leads to genome wide transcriptional repression of genes that regulate cell fate transitions and neuronal arborization. Here we provide a review of neurodevelopmental processes and disorders associated with H3K36 and H3K4 histone methyltransferases, with emphasis on processes that contribute to brain size abnormalities. Additionally, we discuss how the counteracting activities of H3K36 and H3K4 modifying enzymes vs. PRC2 could contribute to brain size abnormalities which is an underexplored mechanism in relation to brain size control.
Collapse
|
28
|
Fu MP, Merrill SM, Sharma M, Gibson WT, Turvey SE, Kobor MS. Rare diseases of epigenetic origin: Challenges and opportunities. Front Genet 2023; 14:1113086. [PMID: 36814905 PMCID: PMC9939656 DOI: 10.3389/fgene.2023.1113086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Rare diseases (RDs), more than 80% of which have a genetic origin, collectively affect approximately 350 million people worldwide. Progress in next-generation sequencing technology has both greatly accelerated the pace of discovery of novel RDs and provided more accurate means for their diagnosis. RDs that are driven by altered epigenetic regulation with an underlying genetic basis are referred to as rare diseases of epigenetic origin (RDEOs). These diseases pose unique challenges in research, as they often show complex genetic and clinical heterogeneity arising from unknown gene-disease mechanisms. Furthermore, multiple other factors, including cell type and developmental time point, can confound attempts to deconvolute the pathophysiology of these disorders. These challenges are further exacerbated by factors that contribute to epigenetic variability and the difficulty of collecting sufficient participant numbers in human studies. However, new molecular and bioinformatics techniques will provide insight into how these disorders manifest over time. This review highlights recent studies addressing these challenges with innovative solutions. Further research will elucidate the mechanisms of action underlying unique RDEOs and facilitate the discovery of treatments and diagnostic biomarkers for screening, thereby improving health trajectories and clinical outcomes of affected patients.
Collapse
Affiliation(s)
- Maggie P. Fu
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada,BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Sarah M. Merrill
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada,BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Mehul Sharma
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada,Department of Pediatrics, Faculty of Medicine, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - William T. Gibson
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Stuart E. Turvey
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada,Department of Pediatrics, Faculty of Medicine, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Michael S. Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada,BC Children’s Hospital Research Institute, Vancouver, BC, Canada,*Correspondence: Michael S. Kobor,
| |
Collapse
|
29
|
Semesta KM, Garces A, Tsvetanova NG. The psychosis risk factor RBM12 encodes a novel repressor of GPCR/cAMP signal transduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523776. [PMID: 36711667 PMCID: PMC9882185 DOI: 10.1101/2023.01.12.523776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
RBM12 is a high-penetrance risk factor for familial schizophrenia and psychosis, yet its precise cellular functions and the pathways to which it belongs are not known. We utilize two complementary models, HEK293 cells and human iPSC-derived neurons, and delineate RBM12 as a novel repressor of the G protein-coupled receptor/cyclic AMP/protein kinase A (GPCR/cAMP/PKA) signaling axis. We establish that loss of RBM12 leads to hyperactive cAMP production and increased PKA activity as well as altered neuronal transcriptional responses to GPCR stimulation. Notably, the cAMP and transcriptional signaling steps are subject to discrete RBM12-dependent regulation. We further demonstrate that the two RBM12 truncating variants linked to familial psychosis impact this interplay, as the mutants fail to rescue GPCR/cAMP signaling hyperactivity in cells depleted of RBM12. Lastly, we present a mechanism underlying the impaired signaling phenotypes. In agreement with its activity as an RNA-binding protein, loss of RBM12 leads to altered gene expression, including that of multiple effectors of established significance within the receptor pathway. Specifically, the abundance of adenylyl cyclases, phosphodiesterase isoforms, and PKA regulatory and catalytic subunits is impacted by RBM12 depletion. We note that these expression changes are fully consistent with the entire gamut of hyperactive signaling outputs. In summary, the current study identifies a previously unappreciated role for RBM12 in the context of the GPCR/cAMP pathway that could be explored further as a tentative molecular mechanism underlying the functions of this factor in neuronal physiology and pathophysiology.
Collapse
Affiliation(s)
- Khairunnisa M Semesta
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| | - Angelica Garces
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| | - Nikoleta G Tsvetanova
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| |
Collapse
|
30
|
Chong ZS, Khong ZJ, Tay SH, Ng SY. Metabolic contributions to neuronal deficits caused by genomic disruption of schizophrenia risk gene SETD1A. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:115. [PMID: 36581615 PMCID: PMC9800576 DOI: 10.1038/s41537-022-00326-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
Regulation of neuronal metabolism during early brain development is crucial for directing synaptic plasticity and proper circuit formation. Alterations in neuronal glycolysis or mitochondrial function are associated with several neuropsychiatric disorders, including schizophrenia. Recently, loss-of-function mutations in SETD1A, a histone methyltransferase, have been linked to increased schizophrenia risk and global developmental delay. Here, we show that heterozygous disruption of SETD1A in human induced pluripotent stem cell (hiPSC)-derived neurons results in reduced neurite outgrowth and spontaneous activity, two phenotypes commonly associated with schizophrenia, as well as alterations in metabolic capacity. Furthermore, supplementing culture media with metabolic intermediates ameliorated changes in neurite outgrowth and spontaneous activity, suggesting that metabolic dysfunction contributes to neuronal phenotypes caused by SETD1A haploinsufficiency. These findings highlight a previously unknown connection between SETD1A function, metabolic regulation, and neuron development, and identifies alternative avenues for therapeutic development.
Collapse
Affiliation(s)
- Zheng-Shan Chong
- grid.418812.60000 0004 0620 9243Cellular Basis of Neural Diseases Laboratory, Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, Singapore
| | - Zi Jian Khong
- grid.418812.60000 0004 0620 9243Cellular Basis of Neural Diseases Laboratory, Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Shermaine Huiping Tay
- grid.418812.60000 0004 0620 9243Cellular Basis of Neural Diseases Laboratory, Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, Singapore
| | - Shi-Yan Ng
- grid.418812.60000 0004 0620 9243Cellular Basis of Neural Diseases Laboratory, Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431National University of Singapore, Yong Loo Lin School of Medicine (Department of Physiology, Singapore, Singapore ,grid.276809.20000 0004 0636 696XNational Neuroscience Institute, Singapore, Singapore
| |
Collapse
|
31
|
Kurishev AO, Karpov DS, Nadolinskaia NI, Goncharenko AV, Golimbet VE. CRISPR/Cas-Based Approaches to Study Schizophrenia and Other Neurodevelopmental Disorders. Int J Mol Sci 2022; 24:241. [PMID: 36613684 PMCID: PMC9820593 DOI: 10.3390/ijms24010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
The study of diseases of the central nervous system (CNS) at the molecular level is challenging because of the complexity of neural circuits and the huge number of specialized cell types. Moreover, genomic association studies have revealed the complex genetic architecture of schizophrenia and other genetically determined mental disorders. Investigating such complex genetic architecture to decipher the molecular basis of CNS pathologies requires the use of high-throughput models such as cells and their derivatives. The time is coming for high-throughput genetic technologies based on CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat)/Cas systems to manipulate multiple genomic targets. CRISPR/Cas systems provide the desired complexity, versatility, and flexibility to create novel genetic tools capable of both altering the DNA sequence and affecting its function at higher levels of genetic information flow. CRISPR/Cas tools make it possible to find and investigate the intricate relationship between the genotype and phenotype of neuronal cells. The purpose of this review is to discuss innovative CRISPR-based approaches for studying the molecular mechanisms of CNS pathologies using cellular models.
Collapse
Affiliation(s)
| | - Dmitry S. Karpov
- Mental Health Research Center, Kashirskoe sh. 34, 115522 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Nonna I. Nadolinskaia
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Anna V. Goncharenko
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Vera E. Golimbet
- Mental Health Research Center, Kashirskoe sh. 34, 115522 Moscow, Russia
| |
Collapse
|