1
|
Essouma M, Noubiap JJ. Lupus and other autoimmune diseases: Epidemiology in the population of African ancestry and diagnostic and management challenges in Africa. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100288. [PMID: 39282618 PMCID: PMC11399606 DOI: 10.1016/j.jacig.2024.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 09/19/2024]
Abstract
Autoimmune diseases are prevalent among people of African ancestry living outside Africa. However, the burden of autoimmune diseases in Africa is not well understood. This article provides a global overview of the current burden of autoimmune diseases in individuals of African descent. It also discusses the major factors contributing to autoimmune diseases in this population group, as well as the challenges involved in diagnosing and managing autoimmune diseases in Africa.
Collapse
Affiliation(s)
- Mickael Essouma
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Cameroon
| | - Jean Jacques Noubiap
- Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, Calif
| |
Collapse
|
2
|
Marques-da-Silva C, Schmidt-Silva C, Bowers C, Charles-Chess E, Shiau JC, Park ES, Yuan Z, Kim BH, Kyle DE, Harty JT, MacMicking JD, Kurup SP. Type-I IFNs induce GBPs and lysosomal defense in hepatocytes to control malaria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619707. [PMID: 39484443 PMCID: PMC11526971 DOI: 10.1101/2024.10.22.619707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Plasmodium parasites undergo development and replication within the hepatocytes before infecting the erythrocytes and initiating clinical malaria. Although type-I interferons (IFNs) are known to hinder Plasmodium infection within the liver, the underlying mechanisms remain unclear. Here, we describe two IFN-I-driven hepatocyte antimicrobial programs controlling liver-stage malaria. First, oxidative defense by NADPH oxidases 2 and 4 triggers a pathway of lysosomal fusion with the parasitophorous vacuole (PV) to help clear Plasmodium . Second, guanylate-binding protein (GBP) 1 disruption of the PV activates caspase-1 inflammasome, inducing pyroptosis to remove the infected host cells. Remarkably, both human and mouse hepatocytes enlist these cell-autonomous immune programs to eliminate Plasmodium ; their pharmacologic or genetic inhibition led to profound malarial susceptibility, and are essential in vivo . In addition to identifying the IFN-I-mediated cell-autonomous immune circuits controlling Plasmodium infection in the hepatocytes, this study extends our understanding of how non-immune cells are integral to protective immunity against malaria.
Collapse
|
3
|
Hildebrandt F, Iturritza MU, Zwicker C, Vanneste B, Van Hul N, Semle E, Quin J, Pascini T, Saarenpää S, He M, Andersson ER, Scott CL, Vega-Rodriguez J, Lundeberg J, Ankarklev J. Host-pathogen interactions in the Plasmodium-infected mouse liver at spatial and single-cell resolution. Nat Commun 2024; 15:7105. [PMID: 39160174 PMCID: PMC11333755 DOI: 10.1038/s41467-024-51418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Upon infecting its vertebrate host, the malaria parasite initially invades the liver where it undergoes massive replication, whilst remaining clinically silent. The coordination of host responses across the complex liver tissue during malaria infection remains unexplored. Here, we perform spatial transcriptomics in combination with single-nuclei RNA sequencing over multiple time points to delineate host-pathogen interactions across Plasmodium berghei-infected liver tissues. Our data reveals significant changes in spatial gene expression in the malaria-infected tissues. These include changes related to lipid metabolism in the proximity to sites of Plasmodium infection, distinct inflammation programs between lobular zones, and regions with enrichment of different inflammatory cells, which we term 'inflammatory hotspots'. We also observe significant upregulation of genes involved in inflammation in the control liver tissues of mice injected with mosquito salivary gland components. However, this response is considerably delayed compared to that observed in P. berghei-infected mice. Our study establishes a benchmark for investigating transcriptome changes during host-parasite interactions in tissues, it provides informative insights regarding in vivo study design linked to infection and offers a useful tool for the discovery and validation of de novo intervention strategies aimed at malaria liver stage infection.
Collapse
Affiliation(s)
- Franziska Hildebrandt
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden.
| | - Miren Urrutia Iturritza
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden
| | - Christian Zwicker
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Bavo Vanneste
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Noémi Van Hul
- Department of Cell and Molecular Biology, Karolinska Institutet Stockholm, SE-171 77, Solna, Sweden
| | - Elisa Semle
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden
| | - Jaclyn Quin
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden
| | - Tales Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Sami Saarenpää
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Mengxiao He
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet Stockholm, SE-171 77, Solna, Sweden
| | - Charlotte L Scott
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Joakim Lundeberg
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Johan Ankarklev
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
4
|
McConville R, Krol JMM, Steel RWJ, O’Neill MT, Davey BK, Hodder AN, Nebl T, Cowman AF, Kneteman N, Boddey JA. Flp/ FRT-mediated disruption of ptex150 and exp2 in Plasmodium falciparum sporozoites inhibits liver-stage development. Proc Natl Acad Sci U S A 2024; 121:e2403442121. [PMID: 38968107 PMCID: PMC11252984 DOI: 10.1073/pnas.2403442121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Plasmodium falciparum causes severe malaria and assembles a protein translocon (PTEX) complex at the parasitophorous vacuole membrane (PVM) of infected erythrocytes, through which several hundred proteins are exported to facilitate growth. The preceding liver stage of infection involves growth in a hepatocyte-derived PVM; however, the importance of protein export during P. falciparum liver infection remains unexplored. Here, we use the FlpL/FRT system to conditionally excise genes in P. falciparum sporozoites for functional liver-stage studies. Disruption of PTEX members ptex150 and exp2 did not affect sporozoite development in mosquitoes or infectivity for hepatocytes but attenuated liver-stage growth in humanized mice. While PTEX150 deficiency reduced fitness on day 6 postinfection by 40%, EXP2 deficiency caused 100% loss of liver parasites, demonstrating that PTEX components are required for growth in hepatocytes to differing degrees. To characterize PTEX loss-of-function mutations, we localized four liver-stage Plasmodium export element (PEXEL) proteins. P. falciparum liver specific protein 2 (LISP2), liver-stage antigen 3 (LSA3), circumsporozoite protein (CSP), and a Plasmodium berghei LISP2 reporter all localized to the periphery of P. falciparum liver stages but were not exported beyond the PVM. Expression of LISP2 and CSP but not LSA3 was reduced in ptex150-FRT and exp2-FRT liver stages, suggesting that expression of some PEXEL proteins is affected directly or indirectly by PTEX disruption. These results show that PTEX150 and EXP2 are important for P. falciparum development in hepatocytes and emphasize the emerging complexity of PEXEL protein trafficking.
Collapse
Affiliation(s)
- Robyn McConville
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Jelte M. M. Krol
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Ryan W. J. Steel
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Matthew T. O’Neill
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
| | - Bethany K. Davey
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Anthony N. Hodder
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Thomas Nebl
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Alan F. Cowman
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Norman Kneteman
- Departments of Surgery, University of Alberta, Edmonton, ABT6G 2E1, Canada
| | - Justin A. Boddey
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| |
Collapse
|
5
|
Marques-da-Silva C, Schmidt-Silva C, Kurup SP. Hepatocytes and the art of killing Plasmodium softly. Trends Parasitol 2024; 40:466-476. [PMID: 38714463 PMCID: PMC11156546 DOI: 10.1016/j.pt.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 05/09/2024]
Abstract
The Plasmodium parasites that cause malaria undergo asymptomatic development in the parenchymal cells of the liver, the hepatocytes, prior to infecting erythrocytes and causing clinical disease. Traditionally, hepatocytes have been perceived as passive bystanders that allow hepatotropic pathogens such as Plasmodium to develop relatively unchallenged. However, now there is emerging evidence suggesting that hepatocytes can mount robust cell-autonomous immune responses that target Plasmodium, limiting its progression to the blood and reducing the incidence and severity of clinical malaria. Here we discuss our current understanding of hepatocyte cell-intrinsic immune responses that target Plasmodium and how these pathways impact malaria.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Clyde Schmidt-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Samarchith P Kurup
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
6
|
Yongvanitchit K, Kum-Arb U, Limsalakpetch A, Im-Erbsin R, Ubalee R, Spring MD, Vesely BA, Waters N, Pichyangkul S. Superior protection in a relapsing Plasmodium cynomolgi rhesus macaque model by a chemoprophylaxis with sporozoite immunization regimen with atovaquone-proguanil followed by primaquine. Malar J 2024; 23:106. [PMID: 38632607 PMCID: PMC11022453 DOI: 10.1186/s12936-024-04933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND To gain a deeper understanding of protective immunity against relapsing malaria, this study examined sporozoite-specific T cell responses induced by a chemoprophylaxis with sporozoite (CPS) immunization in a relapsing Plasmodium cynomolgi rhesus macaque model. METHODS The animals received three CPS immunizations with P. cynomolgi sporozoites, administered by mosquito bite, while under two anti-malarial drug regimens. Group 1 (n = 6) received artesunate/chloroquine (AS/CQ) followed by a radical cure with CQ plus primaquine (PQ). Group 2 (n = 6) received atovaquone-proguanil (AP) followed by PQ. After the final immunization, the animals were challenged with intravenous injection of 104 P. cynomolgi sporozoites, the dose that induced reliable infection and relapse rate. These animals, along with control animals (n = 6), were monitored for primary infection and subsequent relapses. Immunogenicity blood draws were done after each of the three CPS session, before and after the challenge, with liver, spleen and bone marrow sampling and analysis done after the challenge. RESULTS Group 2 animals demonstrated superior protection, with two achieving protection and two experiencing partial protection, while only one animal in group 1 had partial protection. These animals displayed high sporozoite-specific IFN-γ T cell responses in the liver, spleen, and bone marrow after the challenge with one protected animal having the highest frequency of IFN-γ+ CD8+, IFN-γ+ CD4+, and IFN-γ+ γδ T cells in the liver. Partially protected animals also demonstrated a relatively high frequency of IFN-γ+ CD8+, IFN-γ+ CD4+, and IFN-γ+ γδ T cells in the liver. It is important to highlight that the second animal in group 2, which experienced protection, exhibited deficient sporozoite-specific T cell responses in the liver while displaying average to high T cell responses in the spleen and bone marrow. CONCLUSIONS This research supports the notion that local liver T cell immunity plays a crucial role in defending against liver-stage infection. Nevertheless, there is an instance where protection occurs independently of T cell responses in the liver, suggesting the involvement of the liver's innate immunity. The relapsing P. cynomolgi rhesus macaque model holds promise for informing the development of vaccines against relapsing P. vivax.
Collapse
Affiliation(s)
- Kosol Yongvanitchit
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Utaiwan Kum-Arb
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | - Rawiwan Im-Erbsin
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Ratawan Ubalee
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Michele D Spring
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Brian A Vesely
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Norman Waters
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Sathit Pichyangkul
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand.
| |
Collapse
|
7
|
Marques-da-Silva C, Schmidt-Silva C, Baptista RP, Kurup SP. Inherently Reduced Expression of ASC Restricts Caspase-1 Processing in Hepatocytes and Promotes Plasmodium Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:596-606. [PMID: 38149914 PMCID: PMC10872340 DOI: 10.4049/jimmunol.2300440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
Inflammasome-mediated caspase-1 activation facilitates innate immune control of Plasmodium in the liver, thereby limiting the incidence and severity of clinical malaria. However, caspase-1 processing occurs incompletely in both mouse and human hepatocytes and precludes the generation of mature IL-1β or IL-18, unlike in other cells. Why this is so or how it impacts Plasmodium control in the liver has remained unknown. We show that an inherently reduced expression of the inflammasome adaptor molecule apoptosis-associated specklike protein containing CARD (ASC) is responsible for the incomplete proteolytic processing of caspase-1 in murine hepatocytes. Transgenically enhancing ASC expression in hepatocytes enabled complete caspase-1 processing, enhanced pyroptotic cell death, maturation of the proinflammatory cytokines IL-1β and IL-18 that was otherwise absent, and better overall control of Plasmodium infection in the liver of mice. This, however, impeded the protection offered by live attenuated antimalarial vaccination. Tempering ASC expression in mouse macrophages, on the other hand, resulted in incomplete processing of caspase-1. Our work shows how caspase-1 activation and function in host cells are fundamentally defined by ASC expression and offers a potential new pathway to create better disease and vaccination outcomes by modifying the latter.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
| | - Clyde Schmidt-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
| | - Rodrigo P Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
| | - Samarchith P Kurup
- Department of Cellular Biology, University of Georgia, Athens, GA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
| |
Collapse
|
8
|
Mura M, Misganaw B, Gautam A, Robinson T, Chaudhury S, Bansal N, Martins AJ, Tsang J, Hammamieh R, Bergmann-Leitner E. Human transcriptional signature of protection after Plasmodium falciparum immunization and infectious challenge via mosquito bites. Hum Vaccin Immunother 2023; 19:2282693. [PMID: 38010150 PMCID: PMC10760396 DOI: 10.1080/21645515.2023.2282693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
The identification of immune correlates of protection against infectious pathogens will accelerate the design and optimization of recombinant and subunit vaccines. Systematic analyses such as immunoprofiling including serological, cellular, and molecular assessments supported by computational tools are key to not only identify correlates of protection but also biomarkers of disease susceptibility. The current study expands our previous cellular and serological profiling of vaccine-induced responses to a whole parasite malaria vaccine. The irradiated sporozoite model was chosen as it is considered the most effective vaccine against malaria. In contrast to whole blood transcriptomics analysis, we stimulated peripheral blood mononuclear cells (PBMC) with sporozoites and enriched for antigen-specific cells prior to conducting transcriptomics analysis. By focusing on transcriptional events triggered by antigen-specific stimulation, we were able to uncover quantitative and qualitative differences between protected and non-protected individuals to controlled human malaria infections and identified differentially expressed genes associated with sporozoite-specific responses. Further analyses including pathway and gene set enrichment analysis revealed that vaccination with irradiated sporozoites induced a transcriptomic profile associated with Th1-responses, Interferon-signaling, antigen-presentation, and inflammation. Analyzing longitudinal time points not only post-vaccination but also post-controlled human malaria infection further revealed that the transcriptomic profile of protected vs non-protected individuals was not static but continued to diverge over time. The results lay the foundation for comparing protective immune signatures induced by various vaccine platforms to uncover immune correlates of protection that are common across platforms.
Collapse
Affiliation(s)
- Marie Mura
- Immunology Core, Biologics Research & Development, WRAIR-Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Host-Pathogen Interactions, Microbiology and Infectious Diseases, IRBA-Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Burook Misganaw
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Vysnova Inc, Landover, MD, USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Tanisha Robinson
- Immunology Core, Biologics Research & Development, WRAIR-Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sidhartha Chaudhury
- Center of Enabling Capabilties, WRAIR-Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Neha Bansal
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Andrew J. Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - John Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Elke Bergmann-Leitner
- Immunology Core, Biologics Research & Development, WRAIR-Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
9
|
Marques-da-Silva C, Poudel B, Baptista RP, Peissig K, Hancox LS, Shiau JC, Pewe LL, Shears MJ, Kanneganti TD, Sinnis P, Kyle DE, Gurung P, Harty JT, Kurup SP. AIM2 sensors mediate immunity to Plasmodium infection in hepatocytes. Proc Natl Acad Sci U S A 2023; 120:e2210181120. [PMID: 36595704 PMCID: PMC9926219 DOI: 10.1073/pnas.2210181120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023] Open
Abstract
Malaria, caused by Plasmodium parasites is a severe disease affecting millions of people around the world. Plasmodium undergoes obligatory development and replication in the hepatocytes, before initiating the life-threatening blood-stage of malaria. Although the natural immune responses impeding Plasmodium infection and development in the liver are key to controlling clinical malaria and transmission, those remain relatively unknown. Here we demonstrate that the DNA of Plasmodium parasites is sensed by cytosolic AIM2 (absent in melanoma 2) receptors in the infected hepatocytes, resulting in Caspase-1 activation. Remarkably, Caspase-1 was observed to undergo unconventional proteolytic processing in hepatocytes, resulting in the activation of the membrane pore-forming protein, Gasdermin D, but not inflammasome-associated proinflammatory cytokines. Nevertheless, this resulted in the elimination of Plasmodium-infected hepatocytes and the control of malaria infection in the liver. Our study uncovers a pathway of natural immunity critical for the control of malaria in the liver.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA30605
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30605
| | - Barun Poudel
- Department of Internal Medicine, University of Iowa, Iowa City, IA52242
| | - Rodrigo P. Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30605
- Institute of Bioinformatics, University of Georgia, Athens, GA30605
| | - Kristen Peissig
- Department of Cellular Biology, University of Georgia, Athens, GA30605
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30605
| | - Lisa S. Hancox
- Department of Pathology, University of Iowa, Iowa City, IA52242
| | - Justine C. Shiau
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30605
- Department of Infectious Diseases, University of Georgia, Athens, GA30605
| | - Lecia L. Pewe
- Department of Pathology, University of Iowa, Iowa City, IA52242
| | - Melanie J. Shears
- Johns Hopkins Malaria Research Institute, Johns Hopkins University, Baltimore, MD21205
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD21205
| | | | - Photini Sinnis
- Johns Hopkins Malaria Research Institute, Johns Hopkins University, Baltimore, MD21205
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD21205
| | - Dennis E. Kyle
- Department of Cellular Biology, University of Georgia, Athens, GA30605
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30605
- Department of Infectious Diseases, University of Georgia, Athens, GA30605
| | - Prajwal Gurung
- Department of Internal Medicine, University of Iowa, Iowa City, IA52242
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA52242
| | - John T. Harty
- Department of Pathology, University of Iowa, Iowa City, IA52242
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA52242
| | - Samarchith P. Kurup
- Department of Cellular Biology, University of Georgia, Athens, GA30605
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30605
| |
Collapse
|
10
|
Cryopreservation of Plasmodium Sporozoites. Pathogens 2022; 11:pathogens11121487. [PMID: 36558821 PMCID: PMC9784981 DOI: 10.3390/pathogens11121487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Malaria is a deadly disease caused by the parasite, Plasmodium, and impacts the lives of millions of people around the world. Following inoculation into mammalian hosts by infected mosquitoes, the sporozoite stage of Plasmodium undergoes obligate development in the liver before infecting erythrocytes and causing clinical malaria. The most promising vaccine candidates for malaria rely on the use of attenuated live sporozoites to induce protective immune responses. The scope of widespread testing or clinical use of such vaccines is limited by the absence of efficient, reliable, or transparent strategies for the long-term preservation of live sporozoites. Here we outline a method to cryopreserve the sporozoites of various human and murine Plasmodium species. We found that the structural integrity, viability, and in vivo or in vitro infectiousness were conserved in the recovered cryopreserved sporozoites. Cryopreservation using our approach also retained the transgenic properties of sporozoites and immunization with cryopreserved radiation attenuated sporozoites (RAS) elicited strong immune responses. Our work offers a reliable protocol for the long-term storage and recovery of human and murine Plasmodium sporozoites and lays the groundwork for the widespread use of live sporozoites for research and clinical applications.
Collapse
|