1
|
Zhao X, Shang L, Shen C. Daphnetin ameliorates diabetic cardiomyopathy by regulating inflammation and endoplasmic reticulum stress-induced apoptosis. Exp Anim 2025; 74:49-57. [PMID: 39111852 PMCID: PMC11742473 DOI: 10.1538/expanim.24-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/31/2024] [Indexed: 01/15/2025] Open
Abstract
Daphnetin has been demonstrated to exert beneficial effects on diabetes mellitus and renal complications. However, the role and molecular mechanism of daphnetin in diabetic cardiomyopathy (DCM) remain unclear. In this study, rats were injected with streptozotocin (STZ) to induce diabetes. The diabetic rats were then administered daphnetin (1 and 4 mg/kg) or dimethyl sulfoxide (DMSO) daily for 12 weeks. The results demonstrated that the diabetic rats exhibited elevated blood glucose levels, which were dose-dependently ameliorated by daphnetin. At 13 weeks following STZ injection, the rats exhibited typical diabetic signs, cardiac dysfunction, and evident pathological alterations in myocardial tissues. The administration of daphnetin to diabetic rats resulted in improvement in cardiac function, reductions in myocardial injury biomarkers, and the inhibition of myocardial fibrosis. Furthermore, daphnetin treatment suppressed inflammation and endoplasmic reticulum stress-induced apoptosis in a dose-dependent manner. Additionally, daphnetin exhibited partial blockade of the activation of mitogen-activated protein kinase pathways induced by diabetes. These findings indicate that daphnetin may be a promising therapeutic agent for the treatment of DCM.
Collapse
Affiliation(s)
- Xiaolong Zhao
- Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P.R. China
| | - Longqi Shang
- Department of Nursing, The Second Affiliated Hospital of Shenyang Medical College, No. 20 Beijiu Road, Shenyang, Liaoning Province 110000, P.R. China
| | - Chunjian Shen
- Department of Cardiothoracic Surgery, The Fourth People's Hospital of Shenyang, 20 Huanghe South Street,, Shenyang, Liaoning Province 110000, P.R. China
| |
Collapse
|
2
|
Xiao J, Yang D, Hu B, Zha W, Li W, Wang Y, Liu F, Liao X, Li H, Tao Q, Zhang S, Cao Z. Perfluorodecanoic acid induces the increase of innate cells in zebrafish embryos by upregulating oxidative stress levels. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110037. [PMID: 39245430 DOI: 10.1016/j.cbpc.2024.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Several studies reported that the widespread use of perfluoroalkyl and polyfluoroalkyl substances (PFASs) causes increased environmental pollution, subsequently impacting aquatic organisms. Perfluoroalkyl substances such as perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) reportedly cause cardiotoxicity, neurotoxicity, and developmental toxicity in different organisms. However, whether perfluorodecanoic acid (PFDA), a widely used perfluoroalkyl substance, induces animal embryos developmental toxicity remain unknown. Here, we explored the immunotoxicity and associated mechanisms of PFDA in zebrafish embryos via RNA sequencing, morphological assessment and behavioral alteration detection following exposure to 0.5, 1 and 2 mg/L of PFDA. Interestingly, We found that with the increase of PFDA to drug concentration, including neutrophils and macrophages, significantly increased the number of inherent cells, immune related genes expression. Furthermore, oxidative stress increased in the PFDA-treated embryos in a dose-dependent manner and inhibition of oxidative stress levels effectively rescued the number of neutrophils. Changes in embryonic behavior were observed after exposure to PFDA. Overall, our results suggest that PFDA may induce innate immune response by accumulation of oxidative stress in zebrafish at early developmental stages, and concern is needed about its environmental exposure risks for animals embryos development. ENVIRONMENTAL IMPLICATION: Perfluorinated and polyfluorinated alkyl substances (PFASs) are a class of synthetic organic compounds containing fluorine widely used as lubricants, surfactants, insecticides, etc. The PFDA, a typical perfluorinated compound, is often used as a wetting agent and flame retardant in industries. Several studies showed that PFASs can cause serious environmental pollution, leading to developmental toxicity to various animals, including reproductive toxicity, liver toxicity, heart toxicity, neurotoxicity, and immunotoxicity. However, there are still limited studies on the effects and mechanisms of PFDA on aquatic organisms. Therefore, there is a need to evaluate the ecological risks of PFDA in animals.
Collapse
Affiliation(s)
- Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Dou Yang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Boxi Hu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Wenwen Zha
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Weirong Li
- College of Pharmacy, Nanchang University, Nangchang, 330027, Jiangxi, China
| | - Ying Wang
- College of Pharmacy, Nanchang University, Nangchang, 330027, Jiangxi, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Huimin Li
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Qiang Tao
- Department of General Surgery, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang Medical College, 330006, Jiangxi, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang Medical College, 330006, Jiangxi, China.
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
3
|
Lu X, Xie Q, Pan X, Zhang R, Zhang X, Peng G, Zhang Y, Shen S, Tong N. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduct Target Ther 2024; 9:262. [PMID: 39353925 PMCID: PMC11445387 DOI: 10.1038/s41392-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 10/03/2024] Open
Abstract
Type 2 diabetes (T2D) is a disease characterized by heterogeneously progressive loss of islet β cell insulin secretion usually occurring after the presence of insulin resistance (IR) and it is one component of metabolic syndrome (MS), and we named it metabolic dysfunction syndrome (MDS). The pathogenesis of T2D is not fully understood, with IR and β cell dysfunction playing central roles in its pathophysiology. Dyslipidemia, hyperglycemia, along with other metabolic disorders, results in IR and/or islet β cell dysfunction via some shared pathways, such as inflammation, endoplasmic reticulum stress (ERS), oxidative stress, and ectopic lipid deposition. There is currently no cure for T2D, but it can be prevented or in remission by lifestyle intervention and/or some medication. If prevention fails, holistic and personalized management should be taken as soon as possible through timely detection and diagnosis, considering target organ protection, comorbidities, treatment goals, and other factors in reality. T2D is often accompanied by other components of MDS, such as preobesity/obesity, metabolic dysfunction associated steatotic liver disease, dyslipidemia, which usually occurs before it, and they are considered as the upstream diseases of T2D. It is more appropriate to call "diabetic complications" as "MDS-related target organ damage (TOD)", since their development involves not only hyperglycemia but also other metabolic disorders of MDS, promoting an up-to-date management philosophy. In this review, we aim to summarize the underlying mechanism, screening, diagnosis, prevention, and treatment of T2D, especially regarding the personalized selection of hypoglycemic agents and holistic management based on the concept of "MDS-related TOD".
Collapse
Affiliation(s)
- Xi Lu
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxing Xie
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Pan
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ruining Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Sumin Shen
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Niu F, Liu W, Ren Y, Tian Y, Shi W, Li M, Li Y, Xiong Y, Qian L. β-cell neogenesis: A rising star to rescue diabetes mellitus. J Adv Res 2024; 62:71-89. [PMID: 37839502 PMCID: PMC11331176 DOI: 10.1016/j.jare.2023.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Diabetes Mellitus (DM), a chronic metabolic disease characterized by elevated blood glucose, is caused by various degrees of insulin resistance and dysfunctional insulin secretion, resulting in hyperglycemia. The loss and failure of functional β-cells are key mechanisms resulting in type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). AIM OF REVIEW Elucidating the underlying mechanisms of β-cell failure, and exploring approaches for β-cell neogenesis to reverse β-cell dysfunction may provide novel strategies for DM therapy. KEY SCIENTIFIC CONCEPTS OF REVIEW Emerging studies reveal that genetic susceptibility, endoplasmic reticulum (ER) stress, oxidative stress, islet inflammation, and protein modification linked to multiple signaling pathways contribute to DM pathogenesis. Over the past few years, replenishing functional β-cell by β-cell neogenesis to restore the number and function of pancreatic β-cells has remarkably exhibited a promising therapeutic approach for DM therapy. In this review, we provide a comprehensive overview of the underlying mechanisms of β-cell failure in DM, highlight the effective approaches for β-cell neogenesis, as well as discuss the current clinical and preclinical agents research advances of β-cell neogenesis. Insights into the challenges of translating β-cell neogenesis into clinical application for DM treatment are also offered.
Collapse
Affiliation(s)
- Fanglin Niu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wenxuan Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Neurology, Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Wenzhen Shi
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Medical Research Center, the affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Man Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yujia Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Rampazzo Morelli N, Pipella J, Thompson PJ. Establishing evidence for immune surveillance of β-cell senescence. Trends Endocrinol Metab 2024; 35:576-585. [PMID: 38307810 DOI: 10.1016/j.tem.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
Cellular senescence is a programmed state of cell cycle arrest that involves a complex immunogenic secretome, eliciting immune surveillance and senescent cell clearance. Recent work has shown that a subpopulation of pancreatic β-cells becomes senescent in the context of diabetes; however, it is not known whether these cells are normally subject to immune surveillance. In this opinion article, we advance the hypothesis that immune surveillance of β-cells undergoing a senescence stress response normally limits their accumulation during aging and that the breakdown of these mechanisms is a driver of senescent β-cell accumulation in diabetes. Elucidation and therapeutic activation of immune surveillance mechanisms in the pancreas holds promise for the improvement of approaches to target stressed senescent β-cells in the treatment of diabetes.
Collapse
Affiliation(s)
- Nayara Rampazzo Morelli
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jasmine Pipella
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Peter J Thompson
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
6
|
Jiang K, Hwa J, Xiang Y. Novel strategies for targeting neutrophil against myocardial infarction. Pharmacol Res 2024; 205:107256. [PMID: 38866263 DOI: 10.1016/j.phrs.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Inflammation is a crucial factor in cardiac remodeling after acute myocardial infarction (MI). Neutrophils, as the first wave of leukocytes to infiltrate the injured myocardium, exacerbate inflammation and cardiac injury. However, therapies that deplete neutrophils to manage cardiac remodeling after MI have not consistently produced promising outcomes. Recent studies have revealed that neutrophils at different time points and locations may have distinct functions. Thus, transferring neutrophil phenotypes, rather than simply blocking their activities, potentially meet the needs of cardiac repair. In this review, we focus on discussing the fate, heterogeneity, functions of neutrophils, and attempt to provide a more comprehensive understanding of their roles and targeting strategies in MI. We highlight the strategies and translational potential of targeting neutrophils to limit cardiac injury to reduce morbidity and mortality from MI.
Collapse
Affiliation(s)
- Kai Jiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yaozu Xiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
7
|
Ermis E, Nargis T, Webster K, Tersey SA, Anderson RM, Mirmira RG. Leukotriene B4 receptor 2 governs macrophage migration during tissue inflammation. J Biol Chem 2024; 300:105561. [PMID: 38097183 PMCID: PMC10790086 DOI: 10.1016/j.jbc.2023.105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/12/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024] Open
Abstract
Chronic inflammation is the underlying cause of many diseases, including type 1 diabetes, obesity, and non-alcoholic fatty liver disease. Macrophages are continuously recruited to tissues during chronic inflammation where they exacerbate or resolve the pro-inflammatory environment. Although leukotriene B4 receptor 2 (BLT2) has been characterized as a low affinity receptor to several key eicosanoids and chemoattractants, its precise roles in the setting of inflammation and macrophage function remain incompletely understood. Here we used zebrafish and mouse models to probe the role of BLT2 in macrophage function during inflammation. We detected BLT2 expression in bone marrow derived and peritoneal macrophages of mouse models. Transcriptomic analysis of Ltb4r2-/- and WT macrophages suggested a role for BLT2 in macrophage migration, and studies in vitro confirmed that whereas BLT2 does not mediate macrophage polarization, it is required for chemotactic function, possibly mediated by downstream genes Ccl5 and Lgals3. Using a zebrafish model of tailfin injury, we demonstrated that antisense morpholino-mediated knockdown of blt2a or chemical inhibition of BLT2 signaling impairs macrophage migration. We further replicated these findings in zebrafish models of islet injury and liver inflammation. Moreover, we established the applicability of our zebrafish findings to mammals by showing that macrophages of Ltb4r2-/- mice have defective migration during lipopolysaccharide stimulation in vivo. Collectively, our results demonstrate that BLT2 mediates macrophage migration during inflammation, which implicates it as a potential therapeutic target for inflammatory pathologies.
Collapse
Affiliation(s)
- Ebru Ermis
- Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA; The College, The University of Chicago, Chicago, Illinois, USA
| | - Titli Nargis
- Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA; Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Kierstin Webster
- Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA; Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Sarah A Tersey
- Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA; Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Ryan M Anderson
- Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA; Department of Medicine, The University of Chicago, Chicago, Illinois, USA.
| | - Raghavendra G Mirmira
- Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA; The College, The University of Chicago, Chicago, Illinois, USA; Department of Medicine, The University of Chicago, Chicago, Illinois, USA; Department of Pediatrics, The University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
8
|
Vived C, Lee-Papastavros A, Aparecida da Silva Pereira J, Yi P, MacDonald TL. β Cell Stress and Endocrine Function During T1D: What Is Next to Discover? Endocrinology 2023; 165:bqad162. [PMID: 37947352 DOI: 10.1210/endocr/bqad162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Canonically, type 1 diabetes (T1D) is a disease characterized by autoreactive T cells as perpetrators of endocrine dysfunction and β cell death in the spiral toward loss of β cell mass, hyperglycemia, and insulin dependence. β Cells have mostly been considered as bystanders in a flurry of autoimmune processes. More recently, our framework for understanding and investigating T1D has evolved. It appears increasingly likely that intracellular β cell stress is an important component of T1D etiology/pathology that perpetuates autoimmunity during the progression to T1D. Here we discuss the emerging and complex role of β cell stress in initiating, provoking, and catalyzing T1D. We outline the bridges between hyperglycemia, endoplasmic reticulum stress, oxidative stress, and autoimmunity from the viewpoint of intrinsic β cell (dys)function, and we extend this discussion to the potential role for a therapeutic β cell stress-metabolism axis in T1D. Lastly, we mention research angles that may be pursued to improve β cell endocrine function during T1D. Biology gleaned from studying T1D will certainly overlap to innovate therapeutic strategies for T2D, and also enhance the pursuit of creating optimized stem cell-derived β cells as endocrine therapy.
Collapse
Affiliation(s)
- Celia Vived
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jéssica Aparecida da Silva Pereira
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Peng Yi
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Diabetes Program, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Tara L MacDonald
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Wang Y, Drum DL, Sun R, Zhang Y, Chen F, Sun F, Dal E, Yu L, Jia J, Arya S, Jia L, Fan S, Isakoff SJ, Kehlmann AM, Dotti G, Liu F, Zheng H, Ferrone CR, Taghian AG, DeLeo AB, Ventin M, Cattaneo G, Li Y, Jounaidi Y, Huang P, Maccalli C, Zhang H, Wang C, Yang J, Boland GM, Sadreyev RI, Wong L, Ferrone S, Wang X. Stressed target cancer cells drive nongenetic reprogramming of CAR T cells and solid tumor microenvironment. Nat Commun 2023; 14:5727. [PMID: 37714830 PMCID: PMC10504259 DOI: 10.1038/s41467-023-41282-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
The poor efficacy of chimeric antigen receptor T-cell therapy (CAR T) for solid tumors is due to insufficient CAR T cell tumor infiltration, in vivo expansion, persistence, and effector function, as well as exhaustion, intrinsic target antigen heterogeneity or antigen loss of target cancer cells, and immunosuppressive tumor microenvironment (TME). Here we describe a broadly applicable nongenetic approach that simultaneously addresses the multiple challenges of CAR T as a therapy for solid tumors. The approach reprograms CAR T cells by exposing them to stressed target cancer cells which have been exposed to the cell stress inducer disulfiram (DSF) and copper (Cu)(DSF/Cu) plus ionizing irradiation (IR). The reprogrammed CAR T cells acquire early memory-like characteristics, potent cytotoxicity, enhanced in vivo expansion, persistence, and decreased exhaustion. Tumors stressed by DSF/Cu and IR also reprogram and reverse the immunosuppressive TME in humanized mice. The reprogrammed CAR T cells, derived from peripheral blood mononuclear cells of healthy donors or metastatic female breast cancer patients, induce robust, sustained memory and curative anti-solid tumor responses in multiple xenograft mouse models, establishing proof of concept for empowering CAR T by stressing tumor as a promising therapy for solid tumors.
Collapse
Affiliation(s)
- Yufeng Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - David L Drum
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruochuan Sun
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Gastrointestinal Surgery and General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yida Zhang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Feng Chen
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fengfei Sun
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emre Dal
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ling Yu
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jingyu Jia
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shahrzad Arya
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lin Jia
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Song Fan
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven J Isakoff
- Termeer Center for Targeted Therapies, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Allison M Kehlmann
- Termeer Center for Targeted Therapies, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Fubao Liu
- Department of Hepatobiliary & Pancreatic Surgery and Liver Transplantation, Anhui Medical University, Hefei, Anhui, China
| | - Hui Zheng
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina R Ferrone
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alphonse G Taghian
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Albert B DeLeo
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Ventin
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giulia Cattaneo
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yongxiang Li
- Department of Gastrointestinal Surgery and General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peigen Huang
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Hanyu Zhang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cheng Wang
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jibing Yang
- Center for Comparative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Genevieve M Boland
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - LaiPing Wong
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopaedics, Massachusetts General Hospital, Boston, MA, USA
| | - Xinhui Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Yang B, Zhang Y, Yang L, Chen W. Optimized protocol for live imaging of overnutrition-elicited interactions between immune cells and β cells in zebrafish. STAR Protoc 2023; 4:102039. [PMID: 36853669 PMCID: PMC9860484 DOI: 10.1016/j.xpro.2022.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/18/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Here, we provide an optimized protocol to observe the interactions between infiltrating immune cells and islet β cells using live imaging. This protocol is useful for the characterization of cell-cell interactions and for the direct visualization of immune cell migration to the principal pancreatic islet during islet inflammation. We describe the preparation of zebrafish transgenic lines and detail steps for setting up the fish for live confocal imaging. For more details on the use and execution of this protocol, please refer to Yang et al. (2022).1.
Collapse
Affiliation(s)
- Bingyuan Yang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yue Zhang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Liu Yang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai 200072, China
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
11
|
Research Progress on the Construction and Application of a Diabetic Zebrafish Model. Int J Mol Sci 2023; 24:ijms24065195. [PMID: 36982274 PMCID: PMC10048833 DOI: 10.3390/ijms24065195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Diabetes is a metabolic disease characterized by high blood glucose levels. With economic development and lifestyle changes, the prevalence of diabetes is increasing yearly. Thus, it has become an increasingly serious public health problem in countries around the world. The etiology of diabetes is complex, and its pathogenic mechanisms are not completely clear. The use of diabetic animal models is helpful in the study of the pathogenesis of diabetes and the development of drugs. The emerging vertebrate model of zebrafish has many advantages, such as its small size, large number of eggs, short growth cycle, simple cultivation of adult fish, and effective improvement of experimental efficiency. Thus, this model is highly suitable for research as an animal model of diabetes. This review not only summarizes the advantages of zebrafish as a diabetes model, but also summarizes the construction methods and challenges of zebrafish models of type 1 diabetes, type 2 diabetes, and diabetes complications. This study provides valuable reference information for further study of the pathological mechanisms of diabetes and the research and development of new related therapeutic drugs.
Collapse
|