1
|
He L, Wu Q, Zhang Z, Chen L, Yu K, Li L, Jia Q, Wang Y, Ni J, Wang C, Li Q, Zhai X, Zhao J, Liu Y, Fan R, Li YP. Development of Broad-Spectrum Nanobodies for the Therapy and Diagnosis of SARS-CoV-2 and Its Multiple Variants. Mol Pharm 2024; 21:3866-3879. [PMID: 38920116 DOI: 10.1021/acs.molpharmaceut.4c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evaded the efficacy of previously developed antibodies and vaccines, thus remaining a significant global public health threat. Therefore, it is imperative to develop additional antibodies that are capable of neutralizing emerging variants. Nanobodies, as the smallest functional single-domain antibodies, exhibit enhanced stability and penetration ability, enabling them to recognize numerous concealed epitopes that are inaccessible to conventional antibodies. Herein, we constructed an immune library based on the immunization of alpaca with the S1 subunit of the SARS-CoV-2 spike protein, from which two nanobodies, Nb1 and Nb2, were selected using phage display technology for further characterization. Both nanobodies, with the binding residues residing within the receptor-binding domain (RBD) region of the spike, exhibited high affinity toward the S1 subunit. Moreover, they displayed cross-neutralizing activity against both wild-type SARS-CoV-2 and 10 ο variants, including BA.1, BA.2, BA.3, BA.5, BA.2.75, BF.7, BQ.1, EG.5.1, XBB.1.5, and JN.1. Molecular modeling and dynamics simulations predicted that both nanobodies interacted with the viral RBD through their complementarity determining region 1 (CDR1) and CDR2. These two nanobodies are novel tools for the development of therapeutic and diagnostic countermeasures targeting SARS-CoV-2 variants and potentially emerging coronaviruses.
Collapse
Affiliation(s)
- Lei He
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- China Animal Disease Control Center, Beijing 102618, China
| | - Qian Wu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Lingling Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- China Animal Disease Control Center, Beijing 102618, China
| | - Kuai Yu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Leibin Li
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- China Animal Disease Control Center, Beijing 102618, China
| | - Qiong Jia
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jianqiang Ni
- China Animal Disease Control Center, Beijing 102618, China
| | - Chuanbin Wang
- China Animal Disease Control Center, Beijing 102618, China
| | - Qi Li
- China Animal Disease Control Center, Beijing 102618, China
| | - Xinyan Zhai
- China Animal Disease Control Center, Beijing 102618, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yuliang Liu
- China Animal Disease Control Center, Beijing 102618, China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Yi-Ping Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
2
|
Du P, Li N, Tang S, Zhou Z, Liu Z, Wang T, Li J, Zeng S, Chen J. Development and evaluation of vaccination strategies for addressing the continuous evolution SARS-CoV-2 based on recombinant trimeric protein technology: Potential for cross-neutralizing activity and broad coronavirus response. Heliyon 2024; 10:e34492. [PMID: 39148990 PMCID: PMC11324815 DOI: 10.1016/j.heliyon.2024.e34492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Given the significant decline in vaccine efficacy against Omicron, the development of novel vaccines with specific or broad-spectrum effectiveness is paramount. In this study, we formulated four monovalent vaccines based on recombinant spike trimer proteins, along with three bivalent vaccines, and five monovalent vaccines based on recombinant spike proteins. We evaluated the efficacy of different vaccination regimens in eliciting neutralizing antibodies in mice through pseudovirus neutralization assays. Following two doses of primary immunization with D614G, mice received subsequent immunizations with Omicron (BA.1, BA.2, BA.4/5) boosters individually, which led to the generation of broader and more potent cross-neutralizing activity compared to D614G boosters. Notably, the BA.4/5 booster exhibited superior efficacy. Following two doses of primary immunization with Omicron (BA.1, BA.2, BA.4/5), mice were subsequently immunized with one dose of D614G booster which resulted in broader neutralizing activity compared to one dose of Omicron (BA.1, BA.2, or BA.4/5). In unvaccinated mice, full-course immunization with different bivalent vaccines induced broad neutralizing activity against Omicron and pre-Omicron variants, with D614G&BA.4/5 demonstrating superior efficacy. However, compared to other variants, the neutralizing activity against XBB.1.5/1.9.1 is notably reduced. This observation emphasizes the necessity of timely updates to the vaccine antigen composition. Based on these findings and existing studies, we propose a vaccination strategy aimed at preserving the epitope repertoire to its maximum potential: (1) Individuals previously vaccinated or infected with pre-Omicron variants should inoculate a monovalent vaccine containing Omicron components; (2) Individuals who have only been vaccinated or infected with Omicron should be inoculated a monovalent vaccine containing pre-Omicron variants components; (3) Individuals without SARS-CoV-2 infection and vaccination should inoculate a bivalent vaccine comprising both pre-Omicron and Omicron components for primary immunization. Additionally, through cross-inoculation of SARS-CoV-2 D614G spike trimer protein and SARS-CoV-1 spike protein in mice, we preliminarily demonstrated the possibility of cross-reaction between different coronavirus vaccines to produce resistance to the pan-coronavirus.
Collapse
Affiliation(s)
- Peng Du
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Ning Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Shengjun Tang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Zhongcheng Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Zhihai Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Taorui Wang
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Jiahui Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Simiao Zeng
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Juan Chen
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, #466 Xin-Gang-Zhong-Lu, Haizhu District, Guangzhou, 510317, China
| |
Collapse
|
3
|
Zhao XJ, Ji B, Shang C, Li DY, Zhang S, Gu HJ, Peng HH, Qian C, Zhang CL, Shi C, Shen Y, Chen JJ, Xu Q, Lv CL, Jiang BG, Wang H, Li X, Wang GL, Fang LQ. Humoral and cellular immune responses following Omicron BA.2.2 breakthrough infection and Omicron BA.5 reinfection. iScience 2024; 27:110283. [PMID: 39040063 PMCID: PMC11260851 DOI: 10.1016/j.isci.2024.110283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
The emergence of novel Omicron subvariants has raised concerns regarding the efficacy of immunity induced by prior Omicron subvariants breakthrough infection (BTI) or reinfection against current circulating Omicron subvariants. Here, we prospectively investigated the durability of antibody and T cell responses in individuals post Omicron BA.2.2 BTI, with or without subsequent Omicron BA.5 reinfection. Our findings reveal that the emerging Omicron subvariants, including CH.1.1, XBB, and JN.1, exhibit extensive immune evasion induced by previous infections. Notably, the level of IgG and neutralizing antibodies were found to correlate with subsequent Omicron BA.5 reinfection. Fortunately, T cell responses recognizing both Omicron BA.2 and CH.1.1 peptides were observed. Furthermore, Omicron BA.5 reinfection may alleviate immune imprinting induced by WT-vaccination, bolster virus-specific ICS+ T cell responses, and promote the phenotypic differentiation of virus-specific memory CD8+ T cells. Antigen-updated or T cell-conserved vaccines are needed to control the transmission of diverse emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Xin-Jing Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Bin Ji
- Department of Disease Control, the Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - De-Yu Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Sheng Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Hong-Jing Gu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Hong-Hong Peng
- Department of Disease Control, the Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Cheng Qian
- Jiangyin Center for Disease Control and Prevention, Jiangyin, China
| | - Cui-Ling Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chao Shi
- Department of Disease Control, the Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Yuan Shen
- Department of Disease Control, the Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Hui Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guo-Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Li-Qun Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| |
Collapse
|
4
|
Chen Z, Liu Z, Feng Y, Shi A, Wu L, Sang Y, Li C. Global research on RNA vaccines for COVID-19 from 2019 to 2023: a bibliometric analysis. Front Immunol 2024; 15:1259788. [PMID: 38426106 PMCID: PMC10902429 DOI: 10.3389/fimmu.2024.1259788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Background Since the global pandemic of COVID-19 has broken out, thousands of pieces of literature on COVID-19 RNA vaccines have been published in various journals. The overall measurement and analysis of RNA vaccines for COVID-19, with the help of sophisticated mathematical tools, could provide deep insights into global research performance and the collaborative architectural structure within the scientific community of COVID-19 mRNA vaccines. In this bibliometric analysis, we aim to determine the extent of the scientific output related to COVID-19 RNA vaccines between 2019 and 2023. Methods We applied the Bibliometrix R package for comprehensive science mapping analysis of extensive bibliographic metadata retrieved from the Web of Science Core Collection database. On January 11th, 2024, the Web of Science database was searched for COVID-19 RNA vaccine-related publications using predetermined search keywords with specific restrictions. Bradford's law was applied to evaluate the core journals in this field. The data was analyzed with various bibliometric indicators using the Bibliometrix R package. Results The final analysis included 2962 publications published between 2020 and 2023 while there is no related publication in 2019. The most productive year was 2022. The most relevant leading authors in terms of publications were Ugur Sahin and Pei-Yong, Shi, who had the highest total citations in this field. The core journals were Vaccines, Frontiers in Immunology, and Viruses-Basel. The most frequently used author's keywords were COVID-19, SARS-CoV-2, and vaccine. Recent COVID-19 RNA vaccine-related topics included mental health, COVID-19 vaccines in humans, people, and the pandemic. Harvard University was the top-ranked institution. The leading country in terms of publications, citations, corresponding author country, and international collaboration was the United States. The United States had the most robust collaboration with China. Conclusion The research hotspots include COVID-19 vaccines and the pandemic in people. We identified international collaboration and research expenditure strongly associated with COVID-19 vaccine research productivity. Researchers' collaboration among developed countries should be extended to low-income countries to expand COVID-19 vaccine-related research and understanding.
Collapse
Affiliation(s)
- Ziyi Chen
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, the First Hospital of Nanchang, Nanchang, China
| | - Zhiliang Liu
- Department of Pathology, Jiangxi Cancer Hospital, Nanchang, China
| | - Yali Feng
- Department of Pathology, Jiangxi Provincial Chest Hospital, Nanchang, China
| | - Aochen Shi
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, the First Hospital of Nanchang, Nanchang, China
| | - Liqing Wu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, the First Hospital of Nanchang, Nanchang, China
| | - Yi Sang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, the First Hospital of Nanchang, Nanchang, China
| | - Chenxi Li
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, the First Hospital of Nanchang, Nanchang, China
| |
Collapse
|
5
|
Springer DN, Höltl E, Prüger K, Puchhammer-Stöckl E, Aberle JH, Stiasny K, Weseslindtner L. Measuring Variant-Specific Neutralizing Antibody Profiles after Bivalent SARS-CoV-2 Vaccinations Using a Multivariant Surrogate Virus Neutralization Microarray. Vaccines (Basel) 2024; 12:94. [PMID: 38250907 PMCID: PMC10818493 DOI: 10.3390/vaccines12010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
The capability of antibodies to neutralize different SARS-CoV-2 variants varies among individuals depending on the previous exposure to wild-type or Omicron-specific immunogens by mono- or bivalent vaccinations or infections. Such profiles of neutralizing antibodies (nAbs) usually have to be assessed via laborious live-virus neutralization tests (NTs). We therefore analyzed whether a novel multivariant surrogate-virus neutralization test (sVNT) (adapted from a commercial microarray) that quantifies the antibody-mediated inhibition between the receptor angiotensin-converting enzyme 2 (ACE2) and variant-specific receptor-binding domains (RBDs) can assess the neutralizing activity against the SARS-CoV-2 wild-type, and Delta Omicron BA.1, BA.2, and BA.5 subvariants after a booster with Omicron-adapted bivalent vaccines in a manner similar to live-virus NTs. Indeed, by using the live-virus NTs as a reference, we found a significant correlation between the variant-specific NT titers and levels of ACE2-RBD binding inhibition (p < 0.0001, r ≤ 0.78 respectively). Furthermore, the sVNTs identified higher inhibition values against BA.5 and BA.1 in individuals vaccinated with Omicron-adapted vaccines than in those with monovalent wild-type vaccines. Our data thus demonstrate the ability of sVNTs to detect variant-specific nAbs following a booster with bivalent vaccines.
Collapse
Affiliation(s)
- David Niklas Springer
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | - Eva Höltl
- Center for Public Health, Medical University of Vienna, A-1090 Vienna, Austria;
| | - Katja Prüger
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | | | - Judith Helene Aberle
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | - Lukas Weseslindtner
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| |
Collapse
|
6
|
Zou J, Kurhade C, Chang HC, Hu Y, Meza JA, Beaver D, Trinh K, Omlid J, Elghetany B, Desai R, McCaffrey P, Garcia JD, Shi PY, Ren P, Xie X. An Integrated Research-Clinical BSL-2 Platform for a Live SARS-CoV-2 Neutralization Assay. Viruses 2023; 15:1855. [PMID: 37766263 PMCID: PMC10536566 DOI: 10.3390/v15091855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
A reliable and efficient serological test is crucial for monitoring neutralizing antibodies against SARS-CoV-2 and its variants of concern (VOCs). Here, we present an integrated research-clinical platform for a live SARS-CoV-2 neutralization assay, utilizing highly attenuated SARS-CoV-2 (Δ3678_WA1-spike). This strain contains mutations in viral transcription regulation sequences and deletion in the open-reading-frames 3, 6, 7, and 8, allowing for safe handling in biosafety level 2 (BSL-2) laboratories. Building on this backbone, we constructed a genetically stable reporter virus (mGFP Δ3678_WA1-spike) by incorporating a modified green fluorescent protein sequence (mGFP). We also constructed mGFP Δ3678_BA.5-spike and mGFP Δ3678_XBB.1.5-spike by substituting the WA1 spike with variants BA.5 and XBB.1.5 spike, respectively. All three viruses exhibit robust fluorescent signals in infected cells and neutralization titers in an optimized fluorescence reduction neutralization assay that highly correlates with a conventional plaque reduction assay. Furthermore, we established that a streamlined robot-aided Bench-to-Clinics COVID-19 Neutralization Test workflow demonstrated remarkably sensitive, specific, reproducible, and accurate characteristics, allowing the assessment of neutralization titers against SARS-CoV-2 variants within 24 h after sample receiving. Overall, our innovative approach provides a valuable avenue for large-scale testing of clinical samples against SARS-CoV-2 and VOCs at BSL-2, supporting pandemic preparedness and response strategies.
Collapse
Affiliation(s)
- Jing Zou
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chaitanya Kurhade
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hope C Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yanping Hu
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jose A Meza
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - David Beaver
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ky Trinh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joseph Omlid
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bassem Elghetany
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ragini Desai
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Peter McCaffrey
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Juan D Garcia
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ping Ren
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xuping Xie
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
7
|
Chong Y, Goto T, Watanabe H, Tani N, Yonekawa A, Ikematsu H, Shimono N, Tanaka Y, Akashi K. Achievement of sufficient antibody response after a fourth dose of wild-type SARS-CoV-2 mRNA vaccine in nursing home residents. Immun Inflamm Dis 2023; 11:e962. [PMID: 37647452 PMCID: PMC10461422 DOI: 10.1002/iid3.962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Infection control during COVID-19 outbreaks in nursing facilities is a critical public health issue. Antibody responses before and after the fourth (second booster) dose of wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in nursing home residents have not been fully characterized. METHODS This study included 112 individuals: 54 nursing home residents (mean age: 84.4 years; 35 SARS-CoV-2-naive and 19 previously infected) and 58 healthcare workers (mean age: 47.7 years; 25 SARS-CoV-2-naive and 33 previously infected). Antispike and antinucleocapsid antibody responses to messenger RNA vaccination were evaluated using serum samples collected shortly and 5 months after the third dose, and shortly after the fourth dose. RESULTS The median immunoglobulin G (IgG) level in SARS-CoV-2-naive residents was similar to that in SARS-CoV-2-naive healthcare workers after the fourth dose (24,026.3 vs. 30,328.6 AU/mL, p = .79), whereas after the third dose the IgG level of SARS-CoV-2-naive residents was approximately twofold lower than that in SARS-CoV-2-naive healthcare workers. In residents with previous SARS-CoV-2 infection, timing of infection in relation to vaccination affected the kinetics of antibody responses. Residents infected after the third dose showed the highest IgG levels after the fourth dose among all groups (median: 64,328.8 AU/mL), in contrast to residents infected before initiating vaccination with antibody levels similar to those of SARS-CoV-2-naive residents. CONCLUSIONS Advanced aged nursing home residents, poor responders in the initial SARS-CoV-2 vaccine series, could achieve sufficient antibody responses after the fourth (second booster) vaccination, comparable to those of younger adults.
Collapse
Affiliation(s)
- Yong Chong
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of Medical Sciences (The First Department of Internal Medicine)FukuokaJapan
| | - Takeyuki Goto
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of Medical Sciences (The First Department of Internal Medicine)FukuokaJapan
| | - Haruka Watanabe
- Department of Clinical Immunology, Rheumatology, and Infectious DiseaseKyushu University HospitalFukuokaJapan
| | - Naoki Tani
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of Medical Sciences (The First Department of Internal Medicine)FukuokaJapan
| | - Akiko Yonekawa
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of Medical Sciences (The First Department of Internal Medicine)FukuokaJapan
| | - Hideyuki Ikematsu
- Division of Influenza ResearchJapan Physicians AssociationTokyoJapan
| | - Nobuyuki Shimono
- Department of Center for the Study of Global InfectionCenter for the Study of Global Infection, Kyushu University HospitalFukuokaJapan
| | - Yosuke Tanaka
- Department of Internal MedicineMedical Corporation SOUSEIKAI, Kanenokuma HospitalFukuokaJapan
| | - Koichi Akashi
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of Medical Sciences (The First Department of Internal Medicine)FukuokaJapan
| |
Collapse
|
8
|
Firouzabadi N, Ghasemiyeh P, Moradishooli F, Mohammadi-Samani S. Update on the effectiveness of COVID-19 vaccines on different variants of SARS-CoV-2. Int Immunopharmacol 2023; 117:109968. [PMID: 37012880 PMCID: PMC9977625 DOI: 10.1016/j.intimp.2023.109968] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
It has been more than three years since the first emergence of coronavirus disease 2019 (COVID-19) and millions of lives have been taken to date. Like most pandemics caused by viral infections, massive public vaccination is the most promising approach to cease COVID-19 infection. In this regard, several vaccine platforms including inactivated virus, nucleic acid-based (mRNA and DNA vaccines), adenovirus-based, and protein-based vaccines have been designed and developed for COVID-19 prevention and many of them have received FDA or WHO approval. Fortunately, after global vaccination, the transmission rate, disease severity, and mortality rate of COVID-19 infection have diminished significantly. However, a rapid increase in COVID-19 cases due to the omicron variant in vaccinated countries has raised concerns about the effectiveness of these vaccines. In this review, articles published between January 2020 and January 2023 were reviewed using PubMed, Google Scholar, and Web of Science search engines with appropriate related keywords. The related papers were selected and discussed in detail. The current review mainly focuses on the effectiveness and safety of COVID-19 vaccines against SARS-CoV-2 variants. Along with discussing the available and approved vaccines, characteristics of different variants of COVID-19 have also been discussed in brief. Finally, the currently circulating COVID-19 variant i.e Omicron, along with the effectiveness of available COVID-19 vaccines against these new variants are discussed in detail. In conclusion, based on the available data, administration of newly developed bivalent mRNA COVID-19 vaccines, as booster shots, would be crucial to prevent further circulation of the newly developed variants.
Collapse
Affiliation(s)
- Negar Firouzabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moradishooli
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Santos da Silva E, Servais JY, Kohnen M, Arendt V, Gilson G, Staub T, Seguin-Devaux C, Perez-Bercoff D. Vaccine- and Breakthrough Infection-Elicited Pre-Omicron Immunity More Effectively Neutralizes Omicron BA.1, BA.2, BA.4 and BA.5 Than Pre-Omicron Infection Alone. Curr Issues Mol Biol 2023; 45:1741-1761. [PMID: 36826057 PMCID: PMC9955496 DOI: 10.3390/cimb45020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Since the emergence of SARS-CoV-2 Omicron BA.1 and BA.2, several Omicron sublineages have emerged, supplanting their predecessors. Here we compared the neutralization of Omicron sublineages BA.1, BA.2, BA.4 and BA.5 by human sera collected from individuals who were infected with the ancestral B.1 (D614G) strain, who were vaccinated (3 doses) or with breakthrough infection with pre-Omicron strains (Gamma or Delta). All Omicron sublineages exhibited extensive escape from all sera when compared to the ancestral B.1 strain and to Delta, albeit to different levels depending on the origin of the sera. Convalescent sera were unable to neutralize BA.1, and partly neutralized BA.2, BA.4 and BA.5. Vaccinee sera partly neutralized BA.2, but BA.1, BA.4 and BA.5 evaded neutralizing antibodies (NAb). Some breakthrough infections (BTI) sera were non-neutralizing. Neutralizing BTI sera had similar neutralizing ability against all Omicron sublineages. Despite similar levels of anti-Spike and anti-Receptor Binding Domain (RBD) antibodies in all groups, BTI sera had the highest cross-neutralizing ability against all Omicron sublineages and convalescent sera were the least neutralizing. Antibody avidity inferred from the NT50:antibody titer ratio was highest in sera from BTI patients, underscoring qualitative differences in antibodies elicited by infection or vaccination. Together, these findings highlight the importance of vaccination to trigger highly cross-reactive antibodies that neutralize phylogenetically and antigenically distant strains, and suggest that immune imprinting by first generation vaccines may restrict, but not abolish, cross-neutralization.
Collapse
Affiliation(s)
- Eveline Santos da Silva
- HIV Clinical and Translational Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Jean-Yves Servais
- HIV Clinical and Translational Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Michel Kohnen
- Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Victor Arendt
- Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Georges Gilson
- Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Therese Staub
- Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Carole Seguin-Devaux
- HIV Clinical and Translational Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Danielle Perez-Bercoff
- HIV Clinical and Translational Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
10
|
Kurhade C, Zou J, Xia H, Liu M, Chang HC, Ren P, Xie X, Shi PY. Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1 and XBB.1 by parental mRNA vaccine or a BA.5 bivalent booster. Nat Med 2023; 29:344-347. [PMID: 36473500 DOI: 10.1038/s41591-022-02162-x] [Citation(s) in RCA: 235] [Impact Index Per Article: 235.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages, including the BA.2-derived BA.2.75.2 and the BA.5-derived BQ.1.1 and XBB.1, have accumulated additional spike mutations that may affect vaccine effectiveness. Here we report neutralizing activities of three human serum panels collected from individuals 23-94 days after dose 4 of a parental mRNA vaccine; 14-32 days after a BA.5 bivalent booster from individuals with 2-4 previous doses of parental mRNA vaccine; or 14-32 days after a BA.5 bivalent booster from individuals with previous SARS-CoV-2 infection and 2-4 doses of parental mRNA vaccine. The results showed that a BA.5 bivalent booster elicited a high neutralizing titer against BA.4/5 measured at 14-32 days after boost; however, the BA.5 bivalent booster did not produce robust neutralization against the newly emerged BA.2.75.2, BQ.1.1 or XBB.1. Previous infection substantially enhanced the magnitude and breadth of BA.5 bivalent booster-elicited neutralization. Our data support a vaccine update strategy that future boosters should match newly emerged circulating SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Chaitanya Kurhade
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mingru Liu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hope C Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ping Ren
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
11
|
Wang Y, Li J, Zhang W, Liu S, Miao L, Li Z, Fu A, Bao J, Huang L, Zheng L, Li E, Zhang Y, Yu J. Extending the dosing interval of COVID-19 vaccination leads to higher rates of seroconversion in people living with HIV. Front Immunol 2023; 14:1152695. [PMID: 36936952 PMCID: PMC10017959 DOI: 10.3389/fimmu.2023.1152695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is an effective way of protecting individuals from severe coronavirus disease 2019 (COVID-19). However, immune responses to vaccination vary considerably. This study dynamically assessed the neutralizing antibody (NAb) responses to the third dose of the inactivated COVID-19 vaccine administered to people living with human immunodeficiency virus (HIV; PLWH) with different inoculation intervals. Methods A total of 171 participants were recruited: 63 PLWH were placed in cohort 1 (with 3-month interval between the second and third doses), while 95 PLWH were placed in cohort 2 (with 5-month interval between the second and third doses); 13 individuals were enrolled as healthy controls (HCs). And risk factors associated with seroconversion failure after vaccination were identified via Cox regression analysis. Results At 6 months after the third vaccination, PLWH in cohort 2 had higher NAb levels (GMC: 64.59 vs 21.99, P < 0.0001) and seroconversion rate (68.42% vs 19.05%, P < 0.0001). A weaker neutralizing activity against the SARSCoV-2 Delta variant was observed (GMT: 3.38 and 3.63, P < 0.01) relative to the wildtype strain (GMT: 13.68 and 14.83) in both cohorts. None of the participants (including HCs or PLWH) could mount a NAb response against Omicron BA.5.2. In the risk model, independent risk factors for NAb seroconversion failure were the vaccination interval (hazed ration [HR]: 0.316, P < 0.001) and lymphocyte counts (HR: 0.409, P < 0.001). Additionally, PLWH who exhibited NAb seroconversion after vaccination had fewer initial COVID-19 symptoms when infected with Omicron. Discussion This study demonstrated that the third vaccination elicited better NAb responses in PLWH, when a longer interval was used between vaccinations. Since post-vaccination seroconversion reduced the number of symptoms induced by Omicron, efforts to protect PLWH with risk factors for NAb seroconversion failure may be needed during future Omicron surges. Clinical trial registration https://beta.clinicaltrials.gov/study/NCT05075070, identifier NCT05075070.
Collapse
Affiliation(s)
- Yi Wang
- Department of Infection, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Li
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention (CDC), Hangzhou, China
| | - Wenhui Zhang
- Department of Infection, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Nursing, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shourong Liu
- Department of Infection, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liangbin Miao
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoyi Li
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ai Fu
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianfeng Bao
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Huang
- Medical Laboratory, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Zheng
- Department of Nursing, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Er Li
- Department of Nursing, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanjun Zhang
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention (CDC), Hangzhou, China
- *Correspondence: Jianhua Yu, ; Yanjun Zhang,
| | - Jianhua Yu
- Department of Infection, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jianhua Yu, ; Yanjun Zhang,
| |
Collapse
|
12
|
Tian D, Nie W, Sun Y, Ye Q. The Epidemiological Features of the SARS-CoV-2 Omicron Subvariant BA.5 and Its Evasion of the Neutralizing Activity of Vaccination and Prior Infection. Vaccines (Basel) 2022; 10:1699. [PMID: 36298564 PMCID: PMC9612321 DOI: 10.3390/vaccines10101699] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022] Open
Abstract
From December 2021 to May 2022, the Omicron BA.1 and BA.2 subvariants successively became the most dominant strains in many countries around the world. Subsequently, Omicron subvariants have emerged, and Omicron has been classified into five main lineages, including BA.1, BA.2, BA.3, BA.4, BA.5, and some sublineages (BA.1.1, BA.2.12.1, BA.2.11, BA.2.75, BA.4.6, BA.5.1, and BA.5.2). The recent emergence of several Omicron subvariants has generated new concerns about further escape from immunity induced by prior infection and vaccination and the creation of new COVID-19 waves globally. In particular, BA.5 (first found in southern Africa, February 2022) displays a higher transmissibility than other Omicron subvariants and is replacing the previously circulating BA.1 and BA.2 in several countries.
Collapse
Affiliation(s)
| | | | | | - Qing Ye
- Department of Clinical Laboratory, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou 310052, China
| |
Collapse
|