1
|
Li Y, Piao C, Kong C. Stearoyl CoA desaturase inhibition can effectively induce apoptosis in bladder cancer stem cells. Cancer Cell Int 2024; 24:357. [PMID: 39472909 PMCID: PMC11520891 DOI: 10.1186/s12935-024-03540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Bladder cancer stands as one of the most prevalent cancers worldwide. While our previous research confirmed the significant role of stearoyl-CoA desaturase (SCD) in bladder cancer, the underlying reasons for its abnormal overexpression remain largely unknown. Moreover, the distinct response to SCD inhibitors between cancer stem cells (CSCs) and adherent cultured cell lines lacks clear elucidation. Therefore, in this experiment, we aim to conduct an analysis and screening of the SCD transcription start site, further seeking critical transcription factors involved. Simultaneously, through experimental validation, we aim to explore the pivotal role of endoplasmic reticulum stress/unfolded protein response in drug sensitivity among cancer stem cells. Additionally, our RNA-seq and lipid metabolism analysis revealed the significant impact of nervonic acid on altering the proliferative capacity of bladder cancer cell lines.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang City, 110000, Liaoning Province, People's Republic of China
| | - Chiyuan Piao
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang City, 110000, Liaoning Province, People's Republic of China.
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang City, 110000, Liaoning Province, People's Republic of China.
| |
Collapse
|
2
|
Uzay B, Donmez-Demir B, Ozcan SY, Kocak EE, Yemisci M, Ozdemir YG, Dalkara T, Karatas H. The effect of P2X7 antagonism on subcortical spread of optogenetically-triggered cortical spreading depression and neuroinflammation. J Headache Pain 2024; 25:120. [PMID: 39044141 PMCID: PMC11267761 DOI: 10.1186/s10194-024-01807-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/06/2024] [Indexed: 07/25/2024] Open
Abstract
Migraine is a neurological disorder characterized by episodes of severe headache. Cortical spreading depression (CSD), the electrophysiological equivalent of migraine aura, results in opening of pannexin 1 megachannels that release ATP and triggers parenchymal neuroinflammatory signaling cascade in the cortex. Migraine symptoms suggesting subcortical dysfunction bring subcortical spread of CSD under the light. Here, we investigated the role of purinergic P2X7 receptors on the subcortical spread of CSD and its consequent neuroinflammation using a potent and selective P2X7R antagonist, JNJ-47965567. P2X7R antagonism had no effect on the CSD threshold and characteristics but increased the latency to hypothalamic voltage deflection following CSD suggesting that ATP acts as a mediator in the subcortical spread. P2X7R antagonism also prevented cortical and subcortical neuronal activation following CSD, revealed by bilateral decrease in c-fos positive neuron count, and halted CSD-induced neuroinflammation revealed by decreased neuronal HMGB1 release and decreased nuclear translocation of NF-kappa B-p65 in astrocytes. In conclusion, our data suggest that P2X7R plays a role in CSD-induced neuroinflammation, subcortical spread of CSD and CSD-induced neuronal activation hence can be a potential target.
Collapse
Affiliation(s)
- Burak Uzay
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Buket Donmez-Demir
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
| | - Sinem Yilmaz Ozcan
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
| | - Emine Eren Kocak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
- Department of Psychiatry, Hacettepe University, Ankara, Türkiye
| | - Muge Yemisci
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
- Department of Neurology, Hacettepe University, Ankara, Türkiye
| | - Yasemin Gursoy Ozdemir
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
- School of Medicine, Koc University, Istanbul, Türkiye
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
- Department of Neurology, Hacettepe University, Ankara, Türkiye
| | - Hulya Karatas
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye.
| |
Collapse
|
3
|
Yang C, Zheng C, Zhuang Y, Xu S, Li J, Hu C. Synaptic Vesicle-Related Proteins and Ubiquilin 2 in Cortical Synaptosomes Mediate Cognitive Impairment in Vascular Dementia Rats. Mol Neurobiol 2024:10.1007/s12035-024-04327-w. [PMID: 38990251 DOI: 10.1007/s12035-024-04327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
Synaptic dysfunction is considered the best neuropathological correlate of cognitive decline in vascular dementia (VaD). However, the alterations of synaptic proteins at the synaptosomal level in VaD remain unclear. In this study, a VaD model was established in male rats using bilateral common carotid artery occlusion (2VO). We performed a novel object recognition task to evaluate cognitive impairment. Immunohistochemistry was used to assess the expression of neuron-specific nuclear binding protein (NeuN). Brain synaptosomes were isolated and subjected to label-free proteomic analysis to quantify and identify the synaptic features of differentially expressed proteins (DEPs). Synaptic and hub protein expression was detected in synaptosomes using western blotting. We found that male rats with VaD presented impaired memory and decreased NeuN protein expression in the cortex. Synaptosome proteomic analysis revealed 604 DEPs, with 493 and 111 markedly downregulated and upregulated proteins, respectively. KEGG analysis and SynGO annotation revealed that the synaptic vesicle (SV) cycle may be a key signaling pathway in VaD. Hub protein analysis of the main nodes in the protein network identified UBQLN2 and SV-related proteins, including CLTC, SNAP91, AP2S1, CLTA, VAMP2, EPN1, UBQLN2, AP2B1, AP2A2, and AP2M1. Western blotting showed that the levels of SV2A, CLTC, AP2S1, and VAMP2 decreased in the synaptosomes of 2VO rats, while UBQLN2 expression significantly increased. Our results suggest that the disruption in the presynaptic SV cycle is a key event in male rats with VaD, which could be characterized by the aberrant SV2A expression. SV-related proteins and UBQLN2 may be essential in synaptopathy. Thus, targeting the specific molecular markers in synaptosomes may be critical for the development of mechanism-directed therapies against VaD.
Collapse
Affiliation(s)
- Cuicui Yang
- Department of Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China.
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Cengceng Zheng
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yuming Zhuang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Shuhong Xu
- Department of Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China
| | - Jian Li
- Department of Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China
| | - Chaoying Hu
- Phase I Clinical Trial Unit, Beijing Ditan Hospital of Capital Medical University, No. 8 East Jingshun Road, Beijing, 100015, China.
| |
Collapse
|
4
|
Houcek A, Ma ZZ, Trauterman B, Uzay B, Monteggia LM, Kavalali ET. CRISPR-Cas9 editing of synaptic genes in human embryonic stem cells for functional analysis in induced human neurons. STAR Protoc 2024; 5:103089. [PMID: 38795356 PMCID: PMC11152723 DOI: 10.1016/j.xpro.2024.103089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 05/27/2024] Open
Abstract
Generating stable human embryonic stem cells (hESCs) with targeted genetic mutations allows for the interrogation of protein function in numerous cellular contexts while maintaining a relatively high degree of isogenicity. We describe a step-by-step protocol for generating knockout hESC lines with mutations in genes involved in synaptic transmission using CRISPR-Cas9. We describe steps for gRNA design, cloning, stem cell transfection, and clone isolation. We then detail procedures for gene knockout validation and differentiation of stem cells into functional induced neurons.
Collapse
Affiliation(s)
- Aiden Houcek
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Z Zack Ma
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | - Brent Trauterman
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Burak Uzay
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Lisa M Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Bullmann T, Kaas T, Ritzau-Jost A, Wöhner A, Kirmann T, Rizalar FS, Holzer M, Nerlich J, Puchkov D, Geis C, Eilers J, Kittel RJ, Arendt T, Haucke V, Hallermann S. Human iPSC-Derived Neurons with Reliable Synapses and Large Presynaptic Action Potentials. J Neurosci 2024; 44:e0971232024. [PMID: 38724283 PMCID: PMC11170674 DOI: 10.1523/jneurosci.0971-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/14/2024] Open
Abstract
Understanding the function of the human brain requires determining basic properties of synaptic transmission in human neurons. One of the most fundamental parameters controlling neurotransmitter release is the presynaptic action potential, but its amplitude and duration remain controversial. Presynaptic action potentials have so far been measured with high temporal resolution only in a limited number of vertebrate but not in human neurons. To uncover properties of human presynaptic action potentials, we exploited recently developed tools to generate human glutamatergic neurons by transient expression of Neurogenin 2 (Ngn2) in pluripotent stem cells. During maturation for 3 to 9 weeks of culturing in different established media, the proportion of cells with multiple axon initial segments decreased, while the amount of axonal tau protein and neuronal excitability increased. Super-resolution microscopy revealed the alignment of the pre- and postsynaptic proteins, Bassoon and Homer. Synaptic transmission was surprisingly reliable at frequencies of 20, 50, and 100 Hz. The synchronicity of synaptic transmission during high-frequency transmission increased during 9 weeks of neuronal maturation. To analyze the mechanisms of synchronous high-frequency glutamate release, we developed direct presynaptic patch-clamp recordings from human neurons. The presynaptic action potentials had large overshoots to ∼25 mV and short durations of ∼0.5 ms. Our findings show that Ngn2-induced neurons represent an elegant model system allowing for functional, structural, and molecular analyses of glutamatergic synaptic transmission with high spatiotemporal resolution in human neurons. Furthermore, our data predict that glutamatergic transmission is mediated by large and rapid presynaptic action potentials in the human brain.
Collapse
Affiliation(s)
- Torsten Bullmann
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Thomas Kaas
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Andreas Ritzau-Jost
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Anne Wöhner
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Toni Kirmann
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Filiz Sila Rizalar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
| | - Max Holzer
- Paul-Flechsig-Institute for Brain Research, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Jana Nerlich
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Jens Eilers
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Robert J Kittel
- Institute of Biology, Department of Animal Physiology, Leipzig University, Leipzig 04103, Germany
| | - Thomas Arendt
- Paul-Flechsig-Institute for Brain Research, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Stefan Hallermann
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
6
|
Aktar S, Ferdousi F, Kondo S, Kagawa T, Isoda H. Transcriptomics and biochemical evidence of trigonelline ameliorating learning and memory decline in the senescence-accelerated mouse prone 8 (SAMP8) model by suppressing proinflammatory cytokines and elevating neurotransmitter release. GeroScience 2024; 46:1671-1691. [PMID: 37721682 PMCID: PMC10828270 DOI: 10.1007/s11357-023-00919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
In recent years, exploring natural compounds with functional properties to ameliorate aging-associated cognitive decline has become a research priority to ensure healthy aging. In the present study, we investigated the effects of Trigonelline (TG), a plant alkaloid, on memory and spatial learning in 16-week-old senescence-accelerated mouse model SAMP8 using an integrated approach for cognitive and molecular biology aspects. After 30 days of oral administration of TG at the dose of 5 mg/kg/day, the mice were trained in Morris Water Maze task. TG-treated SAMP8 mice exhibited significant improvement in the parameters of escape latency, distance moved, and annulus crossing index. Next, we performed a whole-genome transcriptome profiling of the mouse hippocampus using microarrays. Gene ontology analyses showed that a wide range of biological processes, including nervous system development, mitochondrial function, ATP synthesis, and several signaling pathways related to inflammation, autophagy, and neurotransmitter release, were significantly enriched in TG-treated SAMP8 compared to nontreated. Further, a nonlinear dimensionality reduction technique, Uniform Manifold Approximation and Projection (UMAP), was applied to identify clusters of functions that revealed TG primarily regulated pathways related to inflammation, followed by those involved in neurotransmitter release. In addition, a protein-protein interaction network analysis indicated that TG may exert its biological effects through negatively modulating Traf6-mediated NF-κB activation. Finally, ELISA test showed that TG treatment significantly decreased proinflammatory cytokines- TNFα and IL6 and increased neurotransmitters- dopamine, noradrenaline, and serotonin in mouse hippocampus. Altogether, our integrated bio-cognitive approach highlights the potential of TG in alleviating age-related memory and spatial impairment.
Collapse
Affiliation(s)
- Sharmin Aktar
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shinji Kondo
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | | | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibarak, 305-8572, Japan.
| |
Collapse
|
7
|
Ciceri G, Baggiolini A, Cho HS, Kshirsagar M, Benito-Kwiecinski S, Walsh RM, Aromolaran KA, Gonzalez-Hernandez AJ, Munguba H, Koo SY, Xu N, Sevilla KJ, Goldstein PA, Levitz J, Leslie CS, Koche RP, Studer L. An epigenetic barrier sets the timing of human neuronal maturation. Nature 2024; 626:881-890. [PMID: 38297124 PMCID: PMC10881400 DOI: 10.1038/s41586-023-06984-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/15/2023] [Indexed: 02/02/2024]
Abstract
The pace of human brain development is highly protracted compared with most other species1-7. The maturation of cortical neurons is particularly slow, taking months to years to develop adult functions3-5. Remarkably, such protracted timing is retained in cortical neurons derived from human pluripotent stem cells (hPSCs) during in vitro differentiation or upon transplantation into the mouse brain4,8,9. Those findings suggest the presence of a cell-intrinsic clock setting the pace of neuronal maturation, although the molecular nature of this clock remains unknown. Here we identify an epigenetic developmental programme that sets the timing of human neuronal maturation. First, we developed a hPSC-based approach to synchronize the birth of cortical neurons in vitro which enabled us to define an atlas of morphological, functional and molecular maturation. We observed a slow unfolding of maturation programmes, limited by the retention of specific epigenetic factors. Loss of function of several of those factors in cortical neurons enables precocious maturation. Transient inhibition of EZH2, EHMT1 and EHMT2 or DOT1L, at progenitor stage primes newly born neurons to rapidly acquire mature properties upon differentiation. Thus our findings reveal that the rate at which human neurons mature is set well before neurogenesis through the establishment of an epigenetic barrier in progenitor cells. Mechanistically, this barrier holds transcriptional maturation programmes in a poised state that is gradually released to ensure the prolonged timeline of human cortical neuron maturation.
Collapse
Affiliation(s)
- Gabriele Ciceri
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Arianna Baggiolini
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS+), Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Hyein S Cho
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meghana Kshirsagar
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Microsoft AI for Good Research, Redmond, WA, USA
| | - Silvia Benito-Kwiecinski
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan M Walsh
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - So Yeon Koo
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Neuroscience PhD Program, New York, NY, USA
| | - Nan Xu
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaylin J Sevilla
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Christina S Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
8
|
Uzay B, Kavalali ET. Genetic disorders of neurotransmitter release machinery. Front Synaptic Neurosci 2023; 15:1148957. [PMID: 37066095 PMCID: PMC10102358 DOI: 10.3389/fnsyn.2023.1148957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
Synaptic neurotransmitter release is an evolutionarily conserved process that mediates rapid information transfer between neurons as well as several peripheral tissues. Release of neurotransmitters are ensured by successive events such as synaptic vesicle docking and priming that prepare synaptic vesicles for rapid fusion. These events are orchestrated by interaction of different presynaptic proteins and are regulated by presynaptic calcium. Recent studies have identified various mutations in different components of neurotransmitter release machinery resulting in aberrant neurotransmitter release, which underlie a wide spectrum of psychiatric and neurological symptoms. Here, we review how these genetic alterations in different components of the core neurotransmitter release machinery affect the information transfer between neurons and how aberrant synaptic release affects nervous system function.
Collapse
Affiliation(s)
- Burak Uzay
- Vanderbilt Brain Institute, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Ege T. Kavalali
- Vanderbilt Brain Institute, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|