1
|
Loftus AEP, Romano MS, Phuong AN, McKinnel BJ, Muir MT, Furqan M, Dawson JC, Avalle L, Douglas AT, Mort RL, Byron A, Carragher NO, Pollard SM, Brunton VG, Frame MC. An ILK/STAT3 pathway controls glioblastoma stem cell plasticity. Dev Cell 2024:S1534-5807(24)00531-8. [PMID: 39326421 DOI: 10.1016/j.devcel.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 04/16/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Glioblastoma (GBM) is driven by malignant neural stem-like cells that display extensive heterogeneity and phenotypic plasticity, which drive tumor progression and therapeutic resistance. Here, we show that the extracellular matrix-cell adhesion protein integrin-linked kinase (ILK) stimulates phenotypic plasticity and mesenchymal-like, invasive behavior in a murine GBM stem cell model. ILK is required for the interconversion of GBM stem cells between malignancy-associated glial-like states, and its loss produces cells that are unresponsive to multiple cell state transition cues. We further show that an ILK/STAT3 signaling pathway controls the plasticity that enables transition of GBM stem cells to an astrocyte-like state in vitro and in vivo. Finally, we find that ILK expression correlates with expression of STAT3-regulated proteins and protein signatures describing astrocyte-like and mesenchymal states in patient tumors. This work identifies ILK as a pivotal regulator of multiple malignancy-associated GBM phenotypes, including phenotypic plasticity and mesenchymal state.
Collapse
Affiliation(s)
- Alexander E P Loftus
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK.
| | - Marianna S Romano
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Anh Nguyen Phuong
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Ben J McKinnel
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Morwenna T Muir
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Muhammad Furqan
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - John C Dawson
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Adam T Douglas
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Richard L Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Adam Byron
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Neil O Carragher
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Valerie G Brunton
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Margaret C Frame
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK.
| |
Collapse
|
2
|
Friess D, Brauer S, Pöysti A, Choudhury C, Harris L. Tools to study neural and glioma stem cell quiescence. Trends Neurosci 2024; 47:736-748. [PMID: 39191628 DOI: 10.1016/j.tins.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Quiescence is a prolonged but reversible state of cell-cycle arrest that is an adaptive feature of most adult stem cell populations. In the brain, quiescence helps to protect adult neural stem cells from stress and supports lifelong neurogenesis. Unfortunately however, entry into a quiescent or a slow-cycling state is also a malignant feature of brain cancer stem cells. In glioblastoma, where the process has been best characterised, quiescent glioma stem cells preferentially survive chemoradiation, and after therapy, reactivate to regrow the tumour and drive recurrence. In this Review, we discuss the in vitro and in vivo models that have been developed for studying neural stem cell quiescence and how these tools may be used to deepen biological understanding and to develop novel therapies targeting quiescent glioma stem cells.
Collapse
Affiliation(s)
- Dana Friess
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia; The University of Queensland, Brisbane, School of Biomedical Sciences, QLD, 4067, Australia
| | - Stephanie Brauer
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia; Queensland University of Technology, School of Biomedical Sciences, QLD, 4059, Australia
| | - Anni Pöysti
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, WC1E 6DD London, UK
| | - Chandra Choudhury
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia; The University of Queensland, Brisbane, School of Biomedical Sciences, QLD, 4067, Australia
| | - Lachlan Harris
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia; The University of Queensland, Brisbane, School of Biomedical Sciences, QLD, 4067, Australia; Queensland University of Technology, School of Biomedical Sciences, QLD, 4059, Australia.
| |
Collapse
|
3
|
de Dios O, Ramírez-González MA, Gómez-Soria I, Segura-Collar B, Manosalva J, Megías D, De Andrea CE, Fernández-Rubio L, Hernández-Laín A, Sepúlveda-Sánchez JM, Rodriguez-Ruiz ME, Pérez-Núñez Á, Wainwright DA, Gargini R, Sánchez-Gómez P. NKG2C/ KLRC2 tumor cell expression enhances immunotherapeutic efficacy against glioblastoma. J Immunother Cancer 2024; 12:e009210. [PMID: 39214651 PMCID: PMC11367385 DOI: 10.1136/jitc-2024-009210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Activating and inhibitory receptors of natural killer (NK) cells such as NKp, NKG2, or CLEC are highly relevant to cold tumors including glioblastoma (GBM). Here, we aimed to characterize the expression of these receptors in GBM to gain insight into their potential role as modulators of the intratumoral microenvironment. METHODS We performed a transcriptomic analysis of several NK receptors with a focus on the activating receptor encoded by KLRC2, NKG2C, among bulk and single-cell RNA sequencing GBM data sets. We also evaluated the effects of KLRC2-overexpressing GL261 cells in mice treated with or without programmed cell death protein-1 (PD-1) monoclonal antibody (mAb). Finally, we analyzed samples from two clinical trials evaluating PD-1 mAb effects in patients with GBM to determine the potential of NKG2C to serve as a biomarker of response. RESULTS We observed significant expression of several inhibitory NK receptors on GBM-infiltrating NK and T cells, which contrasts with the strong expression of KLRC2 on tumor cells, mainly at the infiltrative margin. Neoplastic KLRC2 expression was associated with a reduction in the number of myeloid-derived suppressor cells and with a higher level of tumor-resident lymphocytes. A stronger antitumor activity after PD-1 mAb treatment was observed in NKG2Chigh-expressing tumors both in mouse models and patients with GBM whereas the expression of inhibitory NK receptors showed an inverse association. CONCLUSIONS This study explored the role of neoplastic NKG2C/KLRC2 expression in shaping the immune profile of GBM and suggests that it is a predictive biomarker for positive responses to immune checkpoint inhibitor treatment in patients with GBM. Future studies could further validate this finding in prospective trials.
Collapse
Affiliation(s)
- Olaya de Dios
- Neurooncology Unit, Chronic Disease Deparment (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - M Angeles Ramírez-González
- Neurooncology Unit, Chronic Disease Deparment (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Irene Gómez-Soria
- Neurooncology Unit, Chronic Disease Deparment (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Berta Segura-Collar
- Neurooncology Unit, Instituto de Investigaciones Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Anatomical Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Juliana Manosalva
- Advanced Microscopy Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Diego Megías
- Advanced Microscopy Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Carlos E De Andrea
- Department of Anatomy, Physiology and Pathology, Universidad de Navarra, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Leticia Fernández-Rubio
- Division of Immunology and Immunotherapy, Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Navarra, Spain
| | - Aurelio Hernández-Laín
- Neurooncology Unit, Instituto de Investigaciones Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Neuropathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Juan M Sepúlveda-Sánchez
- Neurooncology Unit, Instituto de Investigaciones Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Hospital HM Sanchinarro, Centro Integral Oncologico Clara Campal, Madrid, Spain
| | - Maria E Rodriguez-Ruiz
- Division of Immunology and Immunotherapy, Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Navarra, Spain
- Department of Radiation Oncology, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Ángel Pérez-Núñez
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Surgery, Universidad Complutense de Madrid, Facultad de Medicina, Madrid, Spain
| | - Derek A Wainwright
- Department of Neurological Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Ricardo Gargini
- Neurooncology Unit, Instituto de Investigaciones Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Anatomical Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Pilar Sánchez-Gómez
- Neurooncology Unit, Chronic Disease Deparment (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
4
|
Škarková A, Pelantová M, Tolde O, Legátová A, Mateu R, Bušek P, Garcia-Borja E, Šedo A, Etienne-Manneville S, Rösel D, Brábek J. Microtubule-associated NAV3 regulates invasive phenotypes in glioblastoma cells. Brain Pathol 2024:e13294. [PMID: 39097525 DOI: 10.1111/bpa.13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/17/2024] [Indexed: 08/05/2024] Open
Abstract
Glioblastomas are aggressive brain tumors for which effective therapy is still lacking, resulting in dismal survival rates. These tumors display significant phenotypic plasticity, harboring diverse cell populations ranging from tumor core cells to dispersed, highly invasive cells. Neuron navigator 3 (NAV3), a microtubule-associated protein affecting microtubule growth and dynamics, is downregulated in various cancers, including glioblastoma, and has thus been considered a tumor suppressor. In this study, we challenge this designation and unveil distinct expression patterns of NAV3 across different invasion phenotypes. Using glioblastoma cell lines and patient-derived glioma stem-like cell cultures, we disclose an upregulation of NAV3 in invading glioblastoma cells, contrasting with its lower expression in cells residing in tumor spheroid cores. Furthermore, we establish an association between low and high NAV3 expression and the amoeboid and mesenchymal invasive phenotype, respectively, and demonstrate that overexpression of NAV3 directly stimulates glioblastoma invasive behavior in both 2D and 3D environments. Consistently, we observed increased NAV3 expression in cells migrating along blood vessels in mouse xenografts. Overall, our results shed light on the role of NAV3 in glioblastoma invasion, providing insights into this lethal aspect of glioblastoma behavior.
Collapse
Affiliation(s)
- Aneta Škarková
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Markéta Pelantová
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Ondřej Tolde
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Anna Legátová
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Rosana Mateu
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Bušek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Elena Garcia-Borja
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Aleksi Šedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Université Paris Cité, UMR3691 CNRS, Institut Pasteur, Paris, France
| | - Daniel Rösel
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Jan Brábek
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| |
Collapse
|
5
|
Schupp PG, Shelton SJ, Brody DJ, Eliscu R, Johnson BE, Mazor T, Kelley KW, Potts MB, McDermott MW, Huang EJ, Lim DA, Pieper RO, Berger MS, Costello JF, Phillips JJ, Oldham MC. Deconstructing Intratumoral Heterogeneity through Multiomic and Multiscale Analysis of Serial Sections. Cancers (Basel) 2024; 16:2429. [PMID: 39001492 PMCID: PMC11240479 DOI: 10.3390/cancers16132429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Tumors may contain billions of cells, including distinct malignant clones and nonmalignant cell types. Clarifying the evolutionary histories, prevalence, and defining molecular features of these cells is essential for improving clinical outcomes, since intratumoral heterogeneity provides fuel for acquired resistance to targeted therapies. Here we present a statistically motivated strategy for deconstructing intratumoral heterogeneity through multiomic and multiscale analysis of serial tumor sections (MOMA). By combining deep sampling of IDH-mutant astrocytomas with integrative analysis of single-nucleotide variants, copy-number variants, and gene expression, we reconstruct and validate the phylogenies, spatial distributions, and transcriptional profiles of distinct malignant clones. By genotyping nuclei analyzed by single-nucleus RNA-seq for truncal mutations, we further show that commonly used algorithms for identifying cancer cells from single-cell transcriptomes may be inaccurate. We also demonstrate that correlating gene expression with tumor purity in bulk samples can reveal optimal markers of malignant cells and use this approach to identify a core set of genes that are consistently expressed by astrocytoma truncal clones, including AKR1C3, whose expression is associated with poor outcomes in several types of cancer. In summary, MOMA provides a robust and flexible strategy for precisely deconstructing intratumoral heterogeneity and clarifying the core molecular properties of distinct cellular populations in solid tumors.
Collapse
Affiliation(s)
- Patrick G. Schupp
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Samuel J. Shelton
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Daniel J. Brody
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Rebecca Eliscu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Brett E. Johnson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Tali Mazor
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kevin W. Kelley
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew B. Potts
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Michael W. McDermott
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Eric J. Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA;
| | - Daniel A. Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Russell O. Pieper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Joseph F. Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Joanna J. Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA;
| | - Michael C. Oldham
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| |
Collapse
|
6
|
Haley MJ, Bere L, Minshull J, Georgaka S, Garcia-Martin N, Howell G, Coope DJ, Roncaroli F, King A, Wedge DC, Allan SM, Pathmanaban ON, Brough D, Couper KN. Hypoxia coordinates the spatial landscape of myeloid cells within glioblastoma to affect survival. SCIENCE ADVANCES 2024; 10:eadj3301. [PMID: 38758780 PMCID: PMC11100569 DOI: 10.1126/sciadv.adj3301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Myeloid cells are highly prevalent in glioblastoma (GBM), existing in a spectrum of phenotypic and activation states. We now have limited knowledge of the tumor microenvironment (TME) determinants that influence the localization and the functions of the diverse myeloid cell populations in GBM. Here, we have utilized orthogonal imaging mass cytometry with single-cell and spatial transcriptomic approaches to identify and map the various myeloid populations in the human GBM tumor microenvironment (TME). Our results show that different myeloid populations have distinct and reproducible compartmentalization patterns in the GBM TME that is driven by tissue hypoxia, regional chemokine signaling, and varied homotypic and heterotypic cellular interactions. We subsequently identified specific tumor subregions in GBM, based on composition of identified myeloid cell populations, that were linked to patient survival. Our results provide insight into the spatial organization of myeloid cell subpopulations in GBM, and how this is predictive of clinical outcome.
Collapse
Affiliation(s)
- Michael J. Haley
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Inflammation and Immunology, University of Manchester, Manchester, UK
| | - Leoma Bere
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Inflammation and Immunology, University of Manchester, Manchester, UK
| | - James Minshull
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Neuroscience, University of Manchester, Manchester, UK
| | - Sokratia Georgaka
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK
| | | | - Gareth Howell
- Flow Cytometry Core Research Facility, University of Manchester, Manchester, UK
| | - David J. Coope
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Neuroscience, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Manchester, UK
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Neuroscience, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Manchester, UK
| | - Andrew King
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Manchester, UK
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - David C. Wedge
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Stuart M. Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Neuroscience, University of Manchester, Manchester, UK
| | - Omar N. Pathmanaban
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Neuroscience, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Manchester, UK
| | - David Brough
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Inflammation and Immunology, University of Manchester, Manchester, UK
- Division of Neuroscience, University of Manchester, Manchester, UK
| | - Kevin N. Couper
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Inflammation and Immunology, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Liu R, Zhao Y, Su S, Kwabil A, Njoku PC, Yu H, Li X. Unveiling cancer dormancy: Intrinsic mechanisms and extrinsic forces. Cancer Lett 2024; 591:216899. [PMID: 38649107 DOI: 10.1016/j.canlet.2024.216899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Tumor cells disseminate in various distant organs at early stages of cancer progression. These disseminated tumor cells (DTCs) can stay dormant/quiescent without causing patient symptoms for years or decades. These dormant tumor cells survive despite curative treatments by entering growth arrest, escaping immune surveillance, and/or developing drug resistance. However, these dormant cells can reactivate to proliferate, causing metastatic progression and/or relapse, posing a threat to patients' survival. It's unclear how cancer cells maintain dormancy and what triggers their reactivation. What are better approaches to prevent metastatic progression and relapse through harnessing cancer dormancy? To answer these remaining questions, we reviewed the studies of tumor dormancy and reactivation in various types of cancer using different model systems, including the brief history of dormancy studies, the intrinsic characteristics of dormant cells, and the external cues at the cellular and molecular levels. Furthermore, we discussed future directions in the field and the strategies for manipulating dormancy to prevent metastatic progression and recurrence.
Collapse
Affiliation(s)
- Ruihua Liu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China; Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Yawei Zhao
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Shang Su
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Augustine Kwabil
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Prisca Chinonso Njoku
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Haiquan Yu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China.
| | - Xiaohong Li
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
9
|
Virtuoso A, D’Amico G, Scalia F, De Luca C, Papa M, Maugeri G, D’Agata V, Caruso Bavisotto C, D’Amico AG. The Interplay between Glioblastoma Cells and Tumor Microenvironment: New Perspectives for Early Diagnosis and Targeted Cancer Therapy. Brain Sci 2024; 14:331. [PMID: 38671983 PMCID: PMC11048111 DOI: 10.3390/brainsci14040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) stands out as the most tremendous brain tumor, constituting 60% of primary brain cancers, accompanied by dismal survival rates. Despite advancements in research, therapeutic options remain limited to chemotherapy and surgery. GBM molecular heterogeneity, the intricate interaction with the tumor microenvironment (TME), and non-selective treatments contribute to the neoplastic relapse. Diagnostic challenges arise from GBM advanced-stage detection, necessitating the exploration of novel biomarkers for early diagnosis. Using data from the literature and a bioinformatic tool, the current manuscript delineates the molecular interplay between human GBM, astrocytes, and myeloid cells, underscoring selected protein pathways belonging to astroglia and myeloid lineage, which can be considered for targeted therapies. Moreover, the pivotal role of extracellular vesicles (EVs) in orchestrating a favorable microenvironment for cancer progression is highlighted, suggesting their utility in identifying biomarkers for GBM early diagnosis.
Collapse
Affiliation(s)
- Assunta Virtuoso
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.); (M.P.)
| | - Giuseppa D’Amico
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), Human Anatomy Section, University of Palermo, 90127 Palermo, Italy; (G.D.); (F.S.)
| | - Federica Scalia
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), Human Anatomy Section, University of Palermo, 90127 Palermo, Italy; (G.D.); (F.S.)
| | - Ciro De Luca
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.); (M.P.)
| | - Michele Papa
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.); (M.P.)
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (V.D.)
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (V.D.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), Human Anatomy Section, University of Palermo, 90127 Palermo, Italy; (G.D.); (F.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Agata Grazia D’Amico
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
| |
Collapse
|
10
|
Ohnishi T. Current Status and Future Perspective in Glioma Invasion Research. Brain Sci 2024; 14:309. [PMID: 38671961 PMCID: PMC11047970 DOI: 10.3390/brainsci14040309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor in adults and shows an extremely poor prognosis, with a median survival of 15 months [...].
Collapse
Affiliation(s)
- Takanori Ohnishi
- Department of Neurosurgery, Washoukai Sadamoto Hospital, Advanced Brain Disease Center, 1-6-1 Takehara, Matsuyama 790-0052, Japan
| |
Collapse
|
11
|
Schupp PG, Shelton SJ, Brody DJ, Eliscu R, Johnson BE, Mazor T, Kelley KW, Potts MB, McDermott MW, Huang EJ, Lim DA, Pieper RO, Berger MS, Costello JF, Phillips JJ, Oldham MC. Deconstructing intratumoral heterogeneity through multiomic and multiscale analysis of serial sections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.21.545365. [PMID: 37645893 PMCID: PMC10461981 DOI: 10.1101/2023.06.21.545365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tumors may contain billions of cells including distinct malignant clones and nonmalignant cell types. Clarifying the evolutionary histories, prevalence, and defining molecular features of these cells is essential for improving clinical outcomes, since intratumoral heterogeneity provides fuel for acquired resistance to targeted therapies. Here we present a statistically motivated strategy for deconstructing intratumoral heterogeneity through multiomic and multiscale analysis of serial tumor sections (MOMA). By combining deep sampling of IDH-mutant astrocytomas with integrative analysis of single-nucleotide variants, copy-number variants, and gene expression, we reconstruct and validate the phylogenies, spatial distributions, and transcriptional profiles of distinct malignant clones. By genotyping nuclei analyzed by single-nucleus RNA-seq for truncal mutations, we further show that commonly used algorithms for identifying cancer cells from single-cell transcriptomes may be inaccurate. We also demonstrate that correlating gene expression with tumor purity in bulk samples can reveal optimal markers of malignant cells and use this approach to identify a core set of genes that is consistently expressed by astrocytoma truncal clones, including AKR1C3, whose expression is associated with poor outcomes in several types of cancer. In summary, MOMA provides a robust and flexible strategy for precisely deconstructing intratumoral heterogeneity and clarifying the core molecular properties of distinct cellular populations in solid tumors.
Collapse
Affiliation(s)
- Patrick G. Schupp
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, USA
| | - Samuel J. Shelton
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Daniel J. Brody
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Rebecca Eliscu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Brett E. Johnson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Tali Mazor
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, USA
- Medical Scientist Training Program and Neuroscience Graduate Program, University of California San Francisco, San Francisco, California, USA
| | - Kevin W. Kelley
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
- Medical Scientist Training Program and Neuroscience Graduate Program, University of California San Francisco, San Francisco, California, USA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, California, USA
| | - Matthew B. Potts
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Michael W. McDermott
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Eric J. Huang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Daniel A. Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Russell O. Pieper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Joseph F. Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| | - Joanna J. Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | - Michael C. Oldham
- Department of Neurological Surgery, University of California, San Francisco, San Francisco,California, USA
| |
Collapse
|
12
|
Clements M, Simpson Ragdale H, Garcia-Diaz C, Parrinello S. Generation of immunocompetent somatic glioblastoma mouse models through in situ transformation of subventricular zone neural stem cells. STAR Protoc 2024; 5:102928. [PMID: 38430519 PMCID: PMC10914519 DOI: 10.1016/j.xpro.2024.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 03/04/2024] Open
Abstract
Disease-relevant in vivo tumor models are essential tools for both discovery and translational research. Here, we describe a highly genetically tractable technique for generating immunocompetent somatic glioblastoma (GBM) mouse models using piggyBac transposition and CRISPR-Cas9-mediated gene editing in wild-type mice. We describe steps to deliver plasmids into subventricular zone endogenous neural stem cells by injection and electroporation, leading to the development of adult tumors that closely recapitulate the histopathological, molecular, and cellular features of human GBM. For complete details on the use and execution of this protocol, please refer to Garcia-Diaz et al.1.
Collapse
Affiliation(s)
- Melanie Clements
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, WC1E 6DD London, UK.
| | | | - Claudia Garcia-Diaz
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, WC1E 6DD London, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, WC1E 6DD London, UK.
| |
Collapse
|
13
|
Chiariello M, Inzalaco G, Barone V, Gherardini L. Overcoming challenges in glioblastoma treatment: targeting infiltrating cancer cells and harnessing the tumor microenvironment. Front Cell Neurosci 2023; 17:1327621. [PMID: 38188666 PMCID: PMC10767996 DOI: 10.3389/fncel.2023.1327621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Glioblastoma (GB) is a highly malignant primary brain tumor with limited treatment options and poor prognosis. Despite current treatment approaches, including surgical resection, radiation therapy, and chemotherapy with temozolomide (TMZ), GB remains mostly incurable due to its invasive growth pattern, limited drug penetration beyond the blood-brain barrier (BBB), and resistance to conventional therapies. One of the main challenges in GB treatment is effectively eliminating infiltrating cancer cells that remain in the brain parenchyma after primary tumor resection. We've reviewed the most recent challenges and surveyed the potential strategies aimed at enhancing local treatment outcomes.
Collapse
Affiliation(s)
- Mario Chiariello
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, Via Fiorentina, Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina, Siena, Italy
| | - Giovanni Inzalaco
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, Via Fiorentina, Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina, Siena, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Lisa Gherardini
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, Via Fiorentina, Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina, Siena, Italy
| |
Collapse
|
14
|
Alshahrany N, Begum A, Siebzehnrubl D, Jimenez-Pascual A, Siebzehnrubl FA. Spatial distribution and functional relevance of FGFR1 and FGFR2 expression for glioblastoma tumor invasion. Cancer Lett 2023; 571:216349. [PMID: 37579831 PMCID: PMC10840508 DOI: 10.1016/j.canlet.2023.216349] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Glioblastoma is the most lethal brain cancer in adults. These incurable tumors are characterized by profound heterogeneity, therapy resistance, and diffuse infiltration. These traits have been linked to cancer stem cells, which are important for glioblastoma tumor progression and recurrence. The fibroblast growth factor receptor 1 (FGFR1) signaling pathway is a known regulator of therapy resistance and cancer stemness in glioblastoma. FGFR1 expression shows intertumoral heterogeneity and higher FGFR1 expression is associated with a significantly poorer survival in glioblastoma patients. The role of FGFR1 in tumor invasion has been studied in many cancers, but whether and how FGFR1 mediates glioblastoma invasion remains to be determined. Here, we investigated the distribution and functional relevance of FGFR1 and FGFR2 in human glioblastoma xenograft models. We found FGFR1, but not FGFR2, expressed in invasive glioblastoma cells. Loss of FGFR1, but not FGFR2, significantly reduced cell migration in vitro and tumor invasion in human glioblastoma xenografts. Comparative analysis of RNA-sequencing data of FGFR1 and FGFR2 knockdown glioblastoma cells revealed a FGFR1-specific gene regulatory network associated with tumor invasion. Our study reveals new gene candidates linked to FGFR1-mediated glioblastoma invasion.
Collapse
Affiliation(s)
- Nawal Alshahrany
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, CF24 4HQ, United Kingdom; Cardiff University School of Pharmacy and Pharmaceutical Sciences, Cardiff, CF10 3NB, United Kingdom
| | - Ayesha Begum
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, CF24 4HQ, United Kingdom
| | - Dorit Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, CF24 4HQ, United Kingdom
| | - Ana Jimenez-Pascual
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, CF24 4HQ, United Kingdom
| | - Florian A Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, CF24 4HQ, United Kingdom.
| |
Collapse
|
15
|
Ortiz Rivera J, Velez Crespo G, Inyushin M, Kucheryavykh Y, Kucheryavykh L. Pyk2/FAK Signaling Is Upregulated in Recurrent Glioblastoma Tumors in a C57BL/6/GL261 Glioma Implantation Model. Int J Mol Sci 2023; 24:13467. [PMID: 37686276 PMCID: PMC10487692 DOI: 10.3390/ijms241713467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The majority of glioblastomas (GBMs) recur shortly after tumor resection and recurrent tumors differ significantly from newly diagnosed GBMs, phenotypically and genetically. In this study, using a Gl261-C57Bl/6 mouse glioma implantation model, we identified significant upregulation of proline-rich tyrosine kinase Pyk2 and focal adhesion kinase (FAK) phosphorylation levels-pPyk2 (579/580) and pFAK (925)-without significant modifications in total Pyk2 and FAK protein expression in tumors regrown after surgical resection, compared with primary implanted tumors. Previously, we demonstrated that Pyk2 and FAK are involved in the regulation of tumor cell invasion and proliferation and are associated with reduced overall survival. We hypothesized that the use of inhibitors of Pyk2/FAK in the postsurgical period may reduce the growth of recurrent tumors. Using Western blot analysis and confocal immunofluorescence approaches, we demonstrated upregulation of Cyclin D1 and the Ki67 proliferation index in tumors regrown after resection, compared with primary implanted tumors. Treatment with Pyk2/FAK inhibitor PF-562271, administered through oral gavage at 50 mg/kg daily for two weeks beginning 2 days before tumor resection, reversed Pyk2/FAK signaling upregulation in recurrent tumors, reduced tumor volume, and increased animal survival. In conclusion, the use of Pyk2/FAK inhibitors can contribute to a delay in GBM tumor regrowth after surgical resection.
Collapse
Affiliation(s)
- Jescelica Ortiz Rivera
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (G.V.C.); (M.I.); (Y.K.); (L.K.)
| | | | | | | | | |
Collapse
|