1
|
Bosch B, DeJesus MA, Schnappinger D, Rock JM. Weak links: Advancing target-based drug discovery by identifying the most vulnerable targets. Ann N Y Acad Sci 2024; 1535:10-19. [PMID: 38595325 DOI: 10.1111/nyas.15139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Mycobacterium tuberculosis remains the most common infectious killer worldwide despite decades of antitubercular drug development. Effectively controlling the tuberculosis (TB) pandemic will require innovation in drug discovery. In this review, we provide a brief overview of the two main approaches to discovering new TB drugs-phenotypic screens and target-based drug discovery-and outline some of the limitations of each method. We then explore recent advances in genetic tools that aim to overcome some of these limitations. In particular, we highlight a novel metric to prioritize essential targets, termed vulnerability. Stratifying targets based on their vulnerability presents new opportunities for future target-based drug discovery campaigns.
Collapse
Affiliation(s)
- Barbara Bosch
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, USA
| | - Michael A DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Jeremy M Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
2
|
Roberti A, Tejedor JR, Díaz-Moreno I, López V, Santamarina-Ojeda P, Pérez RF, Urdinguio RG, Concellón C, Martínez-Chantar ML, Fernández-Morera JL, Díaz-Quintana A, Del Amo V, Fernández AF, Fraga MF. Nicotinamide N-methyltransferase (NNMT) regulates the glucocorticoid signaling pathway during the early phase of adipogenesis. Sci Rep 2023; 13:8293. [PMID: 37217546 DOI: 10.1038/s41598-023-34916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Obesity is associated with adipose tissue dysfunction through the differentiation and expansion of pre-adipocytes to adipocytes (hyperplasia) and/or increases in size of pre-existing adipocytes (hypertrophy). A cascade of transcriptional events coordinates the differentiation of pre-adipocytes into fully differentiated adipocytes; the process of adipogenesis. Although nicotinamide N-methyltransferase (NNMT) has been associated with obesity, how NNMT is regulated during adipogenesis, and the underlying regulatory mechanisms, remain undefined. In present study we used genetic and pharmacological approaches to elucidate the molecular signals driving NNMT activation and its role during adipogenesis. Firstly, we demonstrated that during the early phase of adipocyte differentiation NNMT is transactivated by CCAAT/Enhancer Binding Protein beta (CEBPB) in response to glucocorticoid (GC) induction. We found that Nnmt knockout, using CRISPR/Cas9 approach, impaired terminal adipogenesis by influencing the timing of cellular commitment and cell cycle exit during mitotic clonal expansion, as demonstrated by cell cycle analysis and RNA sequencing experiments. Biochemical and computational methods showed that a novel small molecule, called CC-410, stably binds to and highly specifically inhibits NNMT. CC-410 was, therefore, used to modulate protein activity during pre-adipocyte differentiation stages, demonstrating that, in line with the genetic approach, chemical inhibition of NNMT at the early stages of adipogenesis impairs terminal differentiation by deregulating the GC network. These congruent results conclusively demonstrate that NNMT is a key component of the GC-CEBP axis during the early stages of adipogenesis and could be a potential therapeutic target for both early-onset obesity and glucocorticoid-induced obesity.
Collapse
Affiliation(s)
- Annalisa Roberti
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Spain
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011, Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario, 33011, Oviedo, Asturias, Spain
- University Institute of Oncology (IUOPA), University of Oviedo, 33006, Oviedo, Spain
| | - Juan Ramon Tejedor
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Spain
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011, Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario, 33011, Oviedo, Asturias, Spain
- University Institute of Oncology (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 28029, Madrid, Spain
| | - Irene Díaz-Moreno
- Institute for Chemical Research (IIQ), Scientific Research Centre Isla de la Cartuja (cicCartuja), University of Seville - Spanish National Research Council (CSIC), Seville, Spain
| | - Virginia López
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011, Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario, 33011, Oviedo, Asturias, Spain
- University Institute of Oncology (IUOPA), University of Oviedo, 33006, Oviedo, Spain
| | - Pablo Santamarina-Ojeda
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011, Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario, 33011, Oviedo, Asturias, Spain
- University Institute of Oncology (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 28029, Madrid, Spain
| | - Raúl F Pérez
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Spain
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011, Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario, 33011, Oviedo, Asturias, Spain
- University Institute of Oncology (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 28029, Madrid, Spain
| | - Rocío G Urdinguio
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011, Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario, 33011, Oviedo, Asturias, Spain
- University Institute of Oncology (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 28029, Madrid, Spain
| | - Carmen Concellón
- Department of Organic and Inorganic Chemistry, University of Oviedo, Oviedo, Spain
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Juan Luis Fernández-Morera
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011, Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario, 33011, Oviedo, Asturias, Spain
- Endocrinology and Nutrition Department, Hospital Vital Alvarez Buylla (HVAB), 33611, Mieres, Spain
| | - Antonio Díaz-Quintana
- Institute for Chemical Research (IIQ), Scientific Research Centre Isla de la Cartuja (cicCartuja), University of Seville - Spanish National Research Council (CSIC), Seville, Spain
| | - Vicente Del Amo
- Department of Organic and Inorganic Chemistry, University of Oviedo, Oviedo, Spain
| | - Agustín F Fernández
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Spain.
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011, Oviedo, Spain.
- Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario, 33011, Oviedo, Asturias, Spain.
- University Institute of Oncology (IUOPA), University of Oviedo, 33006, Oviedo, Spain.
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 28029, Madrid, Spain.
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Spain.
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011, Oviedo, Spain.
- Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario, 33011, Oviedo, Asturias, Spain.
- University Institute of Oncology (IUOPA), University of Oviedo, 33006, Oviedo, Spain.
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 28029, Madrid, Spain.
| |
Collapse
|
3
|
Babaei M, Evers TMJ, Shokri F, Altucci L, de Lange ECM, Mashaghi A. Biochemical reaction network topology defines dose-dependent Drug-Drug interactions. Comput Biol Med 2023; 155:106584. [PMID: 36805215 DOI: 10.1016/j.compbiomed.2023.106584] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
Drug combination therapy is a promising strategy to enhance the desired therapeutic effect, while reducing side effects. High-throughput pairwise drug combination screening is a commonly used method for discovering favorable drug interactions, but is time-consuming and costly. Here, we investigate the use of reaction network topology-guided design of combination therapy as a predictive in silico drug-drug interaction screening approach. We focused on three-node enzymatic networks, with general Michaelis-Menten kinetics. The results revealed that drug-drug interactions critically depend on the choice of target arrangement in a given topology, the nature of the drug, and the desired level of change in the network output. The results showed a negative correlation between antagonistic interactions and the dosage of drugs. Overall, the negative feedback loops showed the highest synergistic interactions (the lowest average combination index) and, intriguingly, required the highest drug doses compared to other topologies under the same condition.
Collapse
Affiliation(s)
- Mehrad Babaei
- Medical Systems Biophysics and Bioengineering, Systems Pharmacology and Pharmacy Division, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333CC, the Netherlands; Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy.
| | - Tom M J Evers
- Medical Systems Biophysics and Bioengineering, Systems Pharmacology and Pharmacy Division, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333CC, the Netherlands.
| | - Fereshteh Shokri
- Leiden University Medical Center, Leiden, 2333ZA, the Netherlands.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy; BIOGEM, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy.
| | - Elizabeth C M de Lange
- Predictive Pharmacology, Systems Pharmacology and Pharmacy Division, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333CC, the Netherlands.
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Systems Pharmacology and Pharmacy Division, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333CC, the Netherlands.
| |
Collapse
|
4
|
Raynard C, Tessier N, Huna A, Warnier M, Flaman JM, Van Coppenolle F, Ducreux S, Martin N, Bernard D. Expression of the Calcium-Binding Protein CALB1 Is Induced and Controls Intracellular Ca 2+ Levels in Senescent Cells. Int J Mol Sci 2022; 23:ijms23169376. [PMID: 36012633 PMCID: PMC9409414 DOI: 10.3390/ijms23169376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 01/10/2023] Open
Abstract
In response to many stresses, such as oncogene activation or DNA damage, cells can enter cellular senescence, a state of proliferation arrest accompanied by a senescence-associated secretory phenotype (SASP). Cellular senescence plays a key role in many physiopathological contexts, including cancer, aging and aging-associated diseases, therefore, it is critical to understand how senescence is regulated. Calcium ions (Ca2+) recently emerged as pivotal regulators of cellular senescence. However, how Ca2+ levels are controlled during this process is barely known. Here, we report that intracellular Ca2+ contents increase in response to many senescence inducers in immortalized human mammary epithelial cells (HMECs) and that expression of calbindin 1 (CALB1), a Ca2+-binding protein, is upregulated in this context, through the Ca2+-dependent calcineurin/NFAT pathway. We further show that overexpression of CALB1 buffers the rise in intracellular Ca2+ levels observed in senescent cells. Finally, we suggest that increased expression of Ca2+-binding proteins calbindins is a frequent mark of senescent cells. This work thus supports that, together with Ca2+channels, Ca2+-binding proteins modulate Ca2+ levels and flux during cellular senescence. This opens potential avenues of research to better understand the role of Ca2+ and of Ca2+-binding proteins in regulating cellular senescence.
Collapse
Affiliation(s)
- Clotilde Raynard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, 69373 Lyon, France
| | - Nolwenn Tessier
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Anda Huna
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, 69373 Lyon, France
| | - Marine Warnier
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, 69373 Lyon, France
| | - Jean-Michel Flaman
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, 69373 Lyon, France
| | - Fabien Van Coppenolle
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Sylvie Ducreux
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Nadine Martin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, 69373 Lyon, France
- Correspondence: (N.M.); (D.B.)
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, 69373 Lyon, France
- Correspondence: (N.M.); (D.B.)
| |
Collapse
|
5
|
Cellular mechanism of action of 2-nitroimidzoles as hypoxia-selective therapeutic agents. Redox Biol 2022; 52:102300. [PMID: 35430547 PMCID: PMC9038562 DOI: 10.1016/j.redox.2022.102300] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
Solid tumours are often poorly oxygenated, which confers resistance to standard treatment modalities. Targeting hypoxic tumours requires compounds, such as nitroimidazoles (NIs), equipped with the ability to reach and become activated within diffusion limited tumour niches. NIs become selectively entrapped in hypoxic cells through bioreductive activation, and have shown promise as hypoxia directed therapeutics. However, little is known about their mechanism of action, hindering the broader clinical usage of NIs. Iodoazomycin arabinofuranoside (IAZA) and fluoroazomycin arabinofuranoside (FAZA) are clinically validated 2-NI hypoxic radiotracers with excellent tumour uptake properties. Hypoxic cancer cells have also shown preferential susceptibility to IAZA and FAZA treatment, making them ideal candidates for an in-depth study in a therapeutic setting. Using a head and neck cancer model, we show that hypoxic cells display higher sensitivity to IAZA and FAZA, where the drugs alter cell morphology, compromise DNA replication, slow down cell cycle progression and induce replication stress, ultimately leading to cytostasis. Effects of IAZA and FAZA on target cellular macromolecules (DNA, proteins and glutathione) were characterized to uncover potential mechanism(s) of action. Covalent binding of these NIs was only observed to cellular proteins, but not to DNA, under hypoxia. While protein levels remained unaffected, catalytic activities of NI target proteins, such as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the detoxification enzyme glutathione S-transferase (GST) were significantly curtailed in response to drug treatment under hypoxia. Intraperitoneal administration of IAZA was well-tolerated in mice and produced early (but transient) growth inhibition of subcutaneous mouse tumours. Hypoxic cells display preferential sensitivity to IAZA and FAZA. They alter cell morphology and induce cytostasis. IAZA and FAZA generate covalent adducts of proteins but not DNA. GAPDH and GST activities, but not protein levels, are significantly reduced.
Collapse
|
6
|
Sharma VK, Marla S, Zheng W, Mishra D, Huang J, Zhang W, Morris GP, Cook DE. CRISPR guides induce gene silencing in plants in the absence of Cas. Genome Biol 2022; 23:6. [PMID: 34980227 PMCID: PMC8722000 DOI: 10.1186/s13059-021-02586-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND RNA-targeting CRISPR-Cas can provide potential advantages over DNA editing, such as avoiding pleiotropic effects of genome editing, providing precise spatiotemporal regulation, and expanded function including antiviral immunity. RESULTS Here, we report the use of CRISPR-Cas13 in plants to reduce both viral and endogenous RNA. Unexpectedly, we observe that crRNA designed to guide Cas13 could, in the absence of the Cas13 protein, cause substantial reduction in RNA levels as well. We demonstrate Cas13-independent guide-induced gene silencing (GIGS) in three plant species, including stable transgenic Arabidopsis. Small RNA sequencing during GIGS identifies the production of small RNA that extend beyond the crRNA expressed sequence in samples expressing multi-guide crRNA. Additionally, we demonstrate that mismatches in guide sequences at position 10 and 11 abolish GIGS. Finally, we show that GIGS is elicited by guides that lack the Cas13 direct repeat and can extend to Cas9 designed crRNA of at least 28 base pairs, indicating that GIGS can be elicited through a variety of guide designs and is not dependent on Cas13 crRNA sequences or design. CONCLUSIONS Collectively, our results suggest that GIGS utilizes endogenous RNAi machinery despite the fact that crRNA are unlike canonical triggers of RNAi such as miRNA, hairpins, or long double-stranded RNA. Given similar evidence of Cas13-independent silencing in an insect system, it is likely GIGS is active across many eukaryotes. Our results show that GIGS offers a novel and flexible approach to RNA reduction with potential benefits over existing technologies for crop improvement and functional genomics.
Collapse
Affiliation(s)
| | - Sandeep Marla
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Wenguang Zheng
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Divya Mishra
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Jun Huang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Wei Zhang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | - David Edward Cook
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
7
|
Tomita H, Cornejo F, Aranda-Pino B, Woodard CL, Rioseco CC, Neel BG, Alvarez AR, Kaplan DR, Miller FD, Cancino GI. The Protein Tyrosine Phosphatase Receptor Delta Regulates Developmental Neurogenesis. Cell Rep 2021; 30:215-228.e5. [PMID: 31914388 DOI: 10.1016/j.celrep.2019.11.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 10/10/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022] Open
Abstract
PTPRD is a receptor protein tyrosine phosphatase that is genetically associated with neurodevelopmental disorders. Here, we asked whether Ptprd mutations cause aberrant neural development by perturbing neurogenesis in the murine cortex. We show that loss of Ptprd causes increases in neurogenic transit-amplifying intermediate progenitor cells and cortical neurons and perturbations in neuronal localization. These effects are intrinsic to neural precursor cells since acute Ptprd knockdown causes similar perturbations. PTPRD mediates these effects by dephosphorylating receptor tyrosine kinases, including TrkB and PDGFRβ, and loss of Ptprd causes the hyperactivation of TrkB and PDGFRβ and their downstream MEK-ERK signaling pathway in neural precursor cells. Moreover, inhibition of aberrant TrkB or MEK activation rescues the increased neurogenesis caused by knockdown or homozygous loss of Ptprd. These results suggest that PTPRD regulates receptor tyrosine kinases to ensure appropriate numbers of intermediate progenitor cells and neurons, suggesting a mechanism for its genetic association with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hideaki Tomita
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada
| | - Francisca Cornejo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Begoña Aranda-Pino
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Cameron L Woodard
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada
| | - Constanza C Rioseco
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Alejandra R Alvarez
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada; Institute of Medical Science, University of Toronto, Toronto M5S 1A8, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, ON, Canada
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada; Institute of Medical Science, University of Toronto, Toronto M5S 1A8, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, ON, Canada; Department of Physiology, University of Toronto, Toronto M5S 1A8, ON, Canada
| | - Gonzalo I Cancino
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada; Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile.
| |
Collapse
|
8
|
Ta HQ, Dworak N, Ivey ML, Roller DG, Gioeli D. AR phosphorylation and CHK2 kinase activity regulates IR-stabilized AR-CHK2 interaction and prostate cancer survival. eLife 2020; 9:51378. [PMID: 32579110 PMCID: PMC7338052 DOI: 10.7554/elife.51378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
We have previously demonstrated that checkpoint kinase 2 (CHK2) is a critical negative regulator of androgen receptor (AR) transcriptional activity, prostate cancer (PCa) cell growth, and androgen sensitivity. We have now uncovered that the AR directly interacts with CHK2 and ionizing radiation (IR) increases this interaction. This IR-induced increase in AR-CHK2 interactions requires AR phosphorylation and CHK2 kinase activity. PCa associated CHK2 mutants with impaired kinase activity reduced IR-induced AR-CHK2 interactions. The destabilization of AR - CHK2 interactions induced by CHK2 variants impairs CHK2 negative regulation of cell growth. CHK2 depletion increases transcription of DNAPK and RAD54, increases clonogenic survival, and increases resolution of DNA double strand breaks. The data support a model where CHK2 sequesters the AR through direct binding decreasing AR transcription and suppressing PCa cell growth. CHK2 mutation or loss of expression thereby leads to increased AR transcriptional activity and survival in response to DNA damage.
Collapse
Affiliation(s)
- Huy Q Ta
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, United States
| | - Natalia Dworak
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, United States
| | - Melissa L Ivey
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, United States
| | - Devin G Roller
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, United States
| | - Daniel Gioeli
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, United States.,Cancer Center Member, University of Virginia, Charlottesville, United States
| |
Collapse
|
9
|
Zhang JD, Sach-Peltason L, Kramer C, Wang K, Ebeling M. Multiscale modelling of drug mechanism and safety. Drug Discov Today 2020; 25:519-534. [DOI: 10.1016/j.drudis.2019.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/06/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
|
10
|
Abstract
Stewart Cole and colleagues determined the complete genome sequence of Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB), in 1998 [1]. This was a landmark achievement that heralded a new age in TB drug discovery. With the genome sequence in hand, drug discoverers suddenly had thousands of new potential targets to explore. But the excitement has since faded [2]. It is unquestioned that genomics has transformed our understanding of the biology of this pathogen. However, the expectation that the Mtb genome sequence would rapidly lead to new therapeutic interventions remains unfulfilled [3]. One of the (many) reasons for this unrealized potential is that our tools to systematically interrogate the Mtb genome and its drug targets-so-called functional genomics-have been limited. In this Pearl, I argue that the recent development of robust CRISPR-based genetics in Mtb [4] overcomes many prior limitations and holds the potential to close the gap between genomics and TB drug discovery.
Collapse
Affiliation(s)
- Jeremy Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
11
|
Grimbs A, Klosik DF, Bornholdt S, Hütt MT. A system-wide network reconstruction of gene regulation and metabolism in Escherichia coli. PLoS Comput Biol 2019; 15:e1006962. [PMID: 31050661 PMCID: PMC6519848 DOI: 10.1371/journal.pcbi.1006962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 05/15/2019] [Accepted: 03/18/2019] [Indexed: 11/19/2022] Open
Abstract
Genome-scale metabolic models have become a fundamental tool for examining metabolic principles. However, metabolism is not solely characterized by the underlying biochemical reactions and catalyzing enzymes, but also affected by regulatory events. Since the pioneering work of Covert and co-workers as well as Shlomi and co-workers it is debated, how regulation and metabolism synergistically characterize a coherent cellular state. The first approaches started from metabolic models, which were extended by the regulation of the encoding genes of the catalyzing enzymes. By now, bioinformatics databases in principle allow addressing the challenge of integrating regulation and metabolism on a system-wide level. Collecting information from several databases we provide a network representation of the integrated gene regulatory and metabolic system for Escherichia coli, including major cellular processes, from metabolic processes via protein modification to a variety of regulatory events. Besides transcriptional regulation, we also take into account regulation of translation, enzyme activities and reactions. Our network model provides novel topological characterizations of system components based on their positions in the network. We show that network characteristics suggest a representation of the integrated system as three network domains (regulatory, metabolic and interface networks) instead of two. This new three-domain representation reveals the structural centrality of components with known high functional relevance. This integrated network can serve as a platform for understanding coherent cellular states as active subnetworks and to elucidate crossover effects between metabolism and gene regulation.
Collapse
Affiliation(s)
- Anne Grimbs
- Computational Systems Biology, Department of Life Sciences & Chemistry, Jacobs University, Bremen, Germany
| | - David F. Klosik
- Institute for Theoretical Physics, University of Bremen, Bremen, Germany
| | - Stefan Bornholdt
- Institute for Theoretical Physics, University of Bremen, Bremen, Germany
| | - Marc-Thorsten Hütt
- Computational Systems Biology, Department of Life Sciences & Chemistry, Jacobs University, Bremen, Germany
| |
Collapse
|
12
|
Álvarez-Buylla Roces ME, Martínez-García JC, Dávila-Velderrain J, Domínguez-Hüttinger E, Martínez-Sánchez ME. Medical Systems Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1069:1-33. [PMID: 30076565 DOI: 10.1007/978-3-319-89354-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The aim of this volume is to encourage the use of systems-level methodologies to contribute to the improvement of human-health . We intend to motivate biomedical researchers to complement their current theoretical and empirical practice with up-to-date systems biology conceptual approaches. Our perspective is based on the deep understanding of the key biomolecular regulatory mechanisms that underlie health, as well as the emergence and progression of human-disease . We strongly believe that the contemporary systems biology perspective opens the door to the effective development of novel methodologies to the improvement of prevention . This requires a deeper and integrative understanding of the involved underlying systems-level mechanisms. In order to explain our proposal in a simple way, in this chapter we privilege the conceptual exposition of our chosen framework over formal considerations. The formal exposition of our proposal will be expanded and discussed later in the next chapters.
Collapse
|
13
|
Sun X, Bao J, You Z, Chen X, Cui J. Modeling of signaling crosstalk-mediated drug resistance and its implications on drug combination. Oncotarget 2018; 7:63995-64006. [PMID: 27590512 PMCID: PMC5325420 DOI: 10.18632/oncotarget.11745] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
The efficacy of pharmacological perturbation to the signaling transduction network depends on the network topology. However, whether and how signaling dynamics mediated by crosstalk contributes to the drug resistance are not fully understood and remain to be systematically explored. In this study, motivated by a realistic signaling network linked by crosstalk between EGF/EGFR/Ras/MEK/ERK pathway and HGF/HGFR/PI3K/AKT pathway, we develop kinetic models for several small networks with typical crosstalk modules to investigate the role of the architecture of crosstalk in inducing drug resistance. Our results demonstrate that crosstalk inhibition diminishes the response of signaling output to the external stimuli. Moreover, we show that signaling crosstalk affects the relative sensitivity of drugs, and some types of crosstalk modules that could yield resistance to the targeted drugs were identified. Furthermore, we quantitatively evaluate the relative efficacy and synergism of drug combinations. For the modules that are resistant to the targeted drug, we identify drug targets that can not only increase the relative drug efficacy but also act synergistically. In addition, we analyze the role of the strength of crosstalk in switching a module between drug-sensitive and drug-resistant. Our study provides mechanistic insights into the signaling crosstalk-mediated mechanisms of drug resistance and provides implications for the design of synergistic drug combinations to reduce drug resistance.
Collapse
Affiliation(s)
- Xiaoqiang Sun
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,School of Mathematical and Computational Science, Sun Yat-Sen University, Guangzhou, 510000, China.,School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiguang Bao
- School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhuhong You
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xing Chen
- School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| | - Jun Cui
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China.,Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060, China
| |
Collapse
|
14
|
Zhang Y, Tsitkov S, Hess H. Complex dynamics in a two-enzyme reaction network with substrate competition. Nat Catal 2018. [DOI: 10.1038/s41929-018-0053-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Fertig EJ, Ozawa H, Thakar M, Howard JD, Kagohara LT, Krigsfeld G, Ranaweera RS, Hughes RM, Perez J, Jones S, Favorov AV, Carey J, Stein-O'Brien G, Gaykalova DA, Ochs MF, Chung CH. CoGAPS matrix factorization algorithm identifies transcriptional changes in AP-2alpha target genes in feedback from therapeutic inhibition of the EGFR network. Oncotarget 2018; 7:73845-73864. [PMID: 27650546 PMCID: PMC5342018 DOI: 10.18632/oncotarget.12075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/02/2016] [Indexed: 01/03/2023] Open
Abstract
Patients with oncogene driven tumors are treated with targeted therapeutics including EGFR inhibitors. Genomic data from The Cancer Genome Atlas (TCGA) demonstrates molecular alterations to EGFR, MAPK, and PI3K pathways in previously untreated tumors. Therefore, this study uses bioinformatics algorithms to delineate interactions resulting from EGFR inhibitor use in cancer cells with these genetic alterations. We modify the HaCaT keratinocyte cell line model to simulate cancer cells with constitutive activation of EGFR, HRAS, and PI3K in a controlled genetic background. We then measure gene expression after treating modified HaCaT cells with gefitinib, afatinib, and cetuximab. The CoGAPS algorithm distinguishes a gene expression signature associated with the anticipated silencing of the EGFR network. It also infers a feedback signature with EGFR gene expression itself increasing in cells that are responsive to EGFR inhibitors. This feedback signature has increased expression of several growth factor receptors regulated by the AP-2 family of transcription factors. The gene expression signatures for AP-2alpha are further correlated with sensitivity to cetuximab treatment in HNSCC cell lines and changes in EGFR expression in HNSCC tumors with low CDKN2A gene expression. In addition, the AP-2alpha gene expression signatures are also associated with inhibition of MEK, PI3K, and mTOR pathways in the Library of Integrated Network-Based Cellular Signatures (LINCS) data. These results suggest that AP-2 transcription factors are activated as feedback from EGFR network inhibition and may mediate EGFR inhibitor resistance.
Collapse
Affiliation(s)
- Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Hiroyuki Ozawa
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Manjusha Thakar
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Jason D Howard
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Luciane T Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Gabriel Krigsfeld
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ruchira S Ranaweera
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Robert M Hughes
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Jimena Perez
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Siân Jones
- Personal Genome Diagnostics, Baltimore, MD, USA
| | - Alexander V Favorov
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Vavilov Institute of General Genetics, Moscow, Russia.,Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia
| | - Jacob Carey
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Genevieve Stein-O'Brien
- Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.,Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Daria A Gaykalova
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael F Ochs
- Department of Mathematics and Statistics, The College of New Jersey, Ewing Township, NJ, USA
| | - Christine H Chung
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
16
|
Saidak Z, Giacobbi AS, Morisse MC, Mammeri Y, Galmiche A. [Mathematical modeling: an essential tool for the study of therapeutic targeting in solid tumors]. Med Sci (Paris) 2017; 33:1055-1062. [PMID: 29261493 DOI: 10.1051/medsci/20173312012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent progress in biology has made the study of the medical treatment of cancer more effective, but it has also revealed the large complexity of carcinogenesis and cell signaling. For many types of cancer, several therapeutic targets are known and in some cases drugs against these targets exist. Unfortunately, the target proteins often work in networks, resulting in functional adaptation and the development of resilience/resistance to medical treatment. The use of mathematical modeling makes it possible to carry out system-level analyses for improved study of therapeutic targeting in solid tumours. We present the main types of mathematical models used in cancer research and we provide examples illustrating the relevance of these approaches in molecular oncobiology.
Collapse
Affiliation(s)
- Zuzana Saidak
- Laboratoire d'oncobiologie moléculaire, Centre de biologie humaine (CBH), CHU Amiens Sud, Amiens, France
| | - Anne-Sophie Giacobbi
- Laboratoire amiénois de mathématique fondamentale et appliquée (LAMFA), CNRS UMR7352, UFR des sciences, Université de Picardie Jules Verne, Amiens, France
| | - Mony Chenda Morisse
- Laboratoire de biochimie, Centre de biologie humaine (CBH), CHU Amiens Sud, Amiens, France
| | - Youcef Mammeri
- Laboratoire amiénois de mathématique fondamentale et appliquée (LAMFA), CNRS UMR7352, UFR des sciences, Université de Picardie Jules Verne, Amiens, France
| | - Antoine Galmiche
- Laboratoire de biochimie, Centre de biologie humaine (CBH), CHU Amiens Sud, Amiens, France - Équipe CHIMERE (Chirurgie et extrémité céphalique, caractérisation morphologique et fonctionnelle), Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
17
|
Dual-specificity phosphatase 5 controls the localized inhibition, propagation, and transforming potential of ERK signaling. Proc Natl Acad Sci U S A 2017; 114:E317-E326. [PMID: 28053233 DOI: 10.1073/pnas.1614684114] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Deregulated extracellular signal-regulated kinase (ERK) signaling drives cancer growth. Normally, ERK activity is self-limiting by the rapid inactivation of upstream kinases and delayed induction of dual-specificity MAP kinase phosphatases (MKPs/DUSPs). However, interactions between these feedback mechanisms are unclear. Here we show that, although the MKP DUSP5 both inactivates and anchors ERK in the nucleus, it paradoxically increases and prolongs cytoplasmic ERK activity. The latter effect is caused, at least in part, by the relief of ERK-mediated RAF inhibition. The importance of this spatiotemporal interaction between these distinct feedback mechanisms is illustrated by the fact that expression of oncogenic BRAFV600E, a feedback-insensitive mutant RAF kinase, reprograms DUSP5 into a cell-wide ERK inhibitor that facilitates cell proliferation and transformation. In contrast, DUSP5 deletion causes BRAFV600E-induced ERK hyperactivation and cellular senescence. Thus, feedback interactions within the ERK pathway can regulate cell proliferation and transformation, and suggest oncogene-specific roles for DUSP5 in controlling ERK signaling and cell fate.
Collapse
|
18
|
Archer TC, Fertig EJ, Gosline SJC, Hafner M, Hughes SK, Joughin BA, Meyer AS, Piccolo SR, Shajahan-Haq AN. Systems Approaches to Cancer Biology. Cancer Res 2016; 76:6774-6777. [PMID: 27864348 PMCID: PMC5135591 DOI: 10.1158/0008-5472.can-16-1580] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/27/2016] [Accepted: 09/12/2016] [Indexed: 01/30/2023]
Abstract
Cancer systems biology aims to understand cancer as an integrated system of genes, proteins, networks, and interactions rather than an entity of isolated molecular and cellular components. The inaugural Systems Approaches to Cancer Biology Conference, cosponsored by the Association of Early Career Cancer Systems Biologists and the National Cancer Institute of the NIH, focused on the interdisciplinary field of cancer systems biology and the challenging cancer questions that are best addressed through the combination of experimental and computational analyses. Attendees found that elucidating the many molecular features of cancer inevitably reveals new forms of complexity and concluded that ensuring the reproducibility and impact of cancer systems biology studies will require widespread method and data sharing and, ultimately, the translation of important findings to the clinic. Cancer Res; 76(23); 6774-7. ©2016 AACR.
Collapse
Affiliation(s)
- Tenley C Archer
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Elana J Fertig
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | | | - Marc Hafner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - Shannon K Hughes
- Division of Cancer Biology, National Cancer Institute of the NIH, Rockville, Maryland
| | - Brian A Joughin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Aaron S Meyer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | | | - Ayesha N Shajahan-Haq
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| |
Collapse
|
19
|
Fey D, Matallanas D, Rauch J, Rukhlenko OS, Kholodenko BN. The complexities and versatility of the RAS-to-ERK signalling system in normal and cancer cells. Semin Cell Dev Biol 2016; 58:96-107. [PMID: 27350026 DOI: 10.1016/j.semcdb.2016.06.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/18/2016] [Indexed: 12/19/2022]
Abstract
The intricate dynamic control and plasticity of RAS to ERK mitogenic, survival and apoptotic signalling has mystified researches for more than 30 years. Therapeutics targeting the oncogenic aberrations within this pathway often yield unsatisfactory, even undesired results, as in the case of paradoxical ERK activation in response to RAF inhibition. A direct approach of inhibiting single oncogenic proteins misses the dynamic network context governing the network signal processing. In this review, we discuss the signalling behaviour of RAS and RAF proteins in normal and in cancer cells, and the emerging systems-level properties of the RAS-to-ERK signalling network. We argue that to understand the dynamic complexities of this control system, mathematical models including mechanistic detail are required. Looking into the future, these dynamic models will build the foundation upon which more effective, rational approaches to cancer therapy will be developed.
Collapse
Affiliation(s)
- Dirk Fey
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David Matallanas
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jens Rauch
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Oleksii S Rukhlenko
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Boris N Kholodenko
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|