1
|
Moghimianavval H, Gispert I, Castillo SR, Corning OBWH, Liu AP, Cuba Samaniego C. Engineering Sequestration-Based Biomolecular Classifiers with Shared Resources. ACS Synth Biol 2024; 13:3231-3245. [PMID: 39303290 PMCID: PMC11494701 DOI: 10.1021/acssynbio.4c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Constructing molecular classifiers that enable cells to recognize linear and nonlinear input patterns would expand the biocomputational capabilities of engineered cells, thereby unlocking their potential in diagnostics and therapeutic applications. While several biomolecular classifier schemes have been designed, the effects of biological constraints such as resource limitation and competitive binding on the function of those classifiers have been left unexplored. Here, we first demonstrate the design of a sigma factor-based perceptron as a molecular classifier working based on the principles of molecular sequestration between the sigma factor and its antisigma molecule. We then investigate how the output of the biomolecular perceptron, i.e., its response pattern or decision boundary, is affected by the competitive binding of sigma factors to a pool of shared and limited resources of core RNA polymerase. Finally, we reveal the influence of sharing limited resources on multilayer perceptron neural networks and outline design principles that enable the construction of nonlinear classifiers using sigma-based biomolecular neural networks in the presence of competitive resource-sharing effects.
Collapse
Affiliation(s)
- Hossein Moghimianavval
- CSHL Course
in Synthetic Biology 2022, Cold Spring Harbor
Laboratory, Cold Spring Harbor, New York 11724, United States
- Department
of Mechanical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Ignacio Gispert
- CSHL Course
in Synthetic Biology 2022, Cold Spring Harbor
Laboratory, Cold Spring Harbor, New York 11724, United States
- Chemical
Engineering Department, Imperial College
London, London SW7 2AZ, U.K.
| | - Santiago R. Castillo
- CSHL Course
in Synthetic Biology 2022, Cold Spring Harbor
Laboratory, Cold Spring Harbor, New York 11724, United States
- Department
of Biochemistry and Molecular Biology, Mayo
Clinic, Rochester, Minnesota 55905, United States
| | - Olaf B. W. H. Corning
- CSHL Course
in Synthetic Biology 2022, Cold Spring Harbor
Laboratory, Cold Spring Harbor, New York 11724, United States
- Department
of Bioengineering, University of Washington, Seattle, Washington 98125, United States
| | - Allen P. Liu
- Department
of Mechanical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Cellular
and Molecular Biology Program, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christian Cuba Samaniego
- CSHL Course
in Synthetic Biology 2022, Cold Spring Harbor
Laboratory, Cold Spring Harbor, New York 11724, United States
- Computational
Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Parres-Gold J, Levine M, Emert B, Stuart A, Elowitz MB. Principles of Computation by Competitive Protein Dimerization Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564854. [PMID: 37961250 PMCID: PMC10634983 DOI: 10.1101/2023.10.30.564854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Many biological signaling pathways employ proteins that competitively dimerize in diverse combinations. These dimerization networks can perform biochemical computations, in which the concentrations of monomers (inputs) determine the concentrations of dimers (outputs). Despite their prevalence, little is known about the range of input-output computations that dimerization networks can perform (their "expressivity") and how it depends on network size and connectivity. Using a systematic computational approach, we demonstrate that even small dimerization networks (3-6 monomers) are expressive, performing diverse multi-input computations. Further, dimerization networks are versatile, performing different computations when their protein components are expressed at different levels, such as in different cell types. Remarkably, individual networks with random interaction affinities, when large enough (≥8 proteins), can perform nearly all (~90%) potential one-input network computations merely by tuning their monomer expression levels. Thus, even the simple process of competitive dimerization provides a powerful architecture for multi-input, cell-type-specific signal processing.
Collapse
Affiliation(s)
- Jacob Parres-Gold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Matthew Levine
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin Emert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrew Stuart
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael B. Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
3
|
Hu X, Wang Y. Protocol to identify receptors of secreted proteins through CRISPR-Cas9 whole-genome screening technology. STAR Protoc 2024; 5:103315. [PMID: 39277866 PMCID: PMC11419825 DOI: 10.1016/j.xpro.2024.103315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
The interaction between cell surface receptors and their ligands is crucial for intercellular communication. However, current techniques for identifying direct receptor-ligand interactions remain limited. Here, we present a protocol to identify receptors of secreted proteins using a genome-scale CRISPR-Cas9 knockout genetic screening approach. We describe steps for creating a single-guide RNA (sgRNA) lentivirus library, infecting stable Cas9-MCF7 cells, staining with tagged Cholesin, and sorting non-binding cells via flow cytometry. We then detail procedures for extracting DNA, amplifying sgRNAs, and sequencing. For complete details on the use and execution of this protocol, please refer to Hu et al.1.
Collapse
Affiliation(s)
- Xiaoli Hu
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Yiguo Wang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Zaballa VD, Hui EE. Reducing Uncertainty Through Mutual Information in Structural and Systems Biology. ARXIV 2024:arXiv:2407.08612v1. [PMID: 39040647 PMCID: PMC11261965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Systems biology models are useful models of complex biological systems that may require a large amount of experimental data to fit each model's parameters or to approximate a likelihood function. These models range from a few to thousands of parameters depending on the complexity of the biological system modeled, potentially making the task of fitting parameters to the model difficult - especially when new experimental data cannot be gathered. We demonstrate a method that uses structural biology predictions to augment systems biology models to improve systems biology models' predictions without having to gather more experimental data. Additionally, we show how systems biology models' predictions can help evaluate novel structural biology hypotheses, which may also be expensive or infeasible to validate.
Collapse
Affiliation(s)
- Vincent D Zaballa
- Department of Biomedical Engineering, University of California,Irvine, United States
| | - Elliot E Hui
- Department of Biomedical Engineering, University of California,Irvine, United States
| |
Collapse
|
5
|
Demesa-Arevalo E, Narasimhan M, Simon R. Intercellular Communication in Shoot Meristems. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:319-344. [PMID: 38424066 DOI: 10.1146/annurev-arplant-070523-035342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The shoot meristem of land plants maintains the capacity for organ generation throughout its lifespan due to a group of undifferentiated stem cells. Most meristems are shaped like a dome with a precise spatial arrangement of functional domains, and, within and between these domains, cells interact through a network of interconnected signaling pathways. Intercellular communication in meristems is mediated by mobile transcription factors, small RNAs, hormones, and secreted peptides that are perceived by membrane-localized receptors. In recent years, we have gained deeper insight into the underlying molecular processes of the shoot meristem, and we discuss here how plants integrate internal and external inputs to control shoot meristem activities.
Collapse
Affiliation(s)
- Edgar Demesa-Arevalo
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany;
| | - Madhumitha Narasimhan
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany;
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany;
| |
Collapse
|
6
|
Armingol E, Baghdassarian HM, Lewis NE. The diversification of methods for studying cell-cell interactions and communication. Nat Rev Genet 2024; 25:381-400. [PMID: 38238518 PMCID: PMC11139546 DOI: 10.1038/s41576-023-00685-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 05/20/2024]
Abstract
No cell lives in a vacuum, and the molecular interactions between cells define most phenotypes. Transcriptomics provides rich information to infer cell-cell interactions and communication, thus accelerating the discovery of the roles of cells within their communities. Such research relies heavily on algorithms that infer which cells are interacting and the ligands and receptors involved. Specific pressures on different research niches are driving the evolution of next-generation computational tools, enabling new conceptual opportunities and technological advances. More sophisticated algorithms now account for the heterogeneity and spatial organization of cells, multiple ligand types and intracellular signalling events, and enable the use of larger and more complex datasets, including single-cell and spatial transcriptomics. Similarly, new high-throughput experimental methods are increasing the number and resolution of interactions that can be analysed simultaneously. Here, we explore recent progress in cell-cell interaction research and highlight the diversification of the next generation of tools, which have yielded a rich ecosystem of tools for different applications and are enabling invaluable discoveries.
Collapse
Affiliation(s)
- Erick Armingol
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA.
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA.
| | - Hratch M Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Bell CC, Balic JJ, Talarmain L, Gillespie A, Scolamiero L, Lam EYN, Ang CS, Faulkner GJ, Gilan O, Dawson MA. Comparative cofactor screens show the influence of transactivation domains and core promoters on the mechanisms of transcription. Nat Genet 2024; 56:1181-1192. [PMID: 38769457 DOI: 10.1038/s41588-024-01749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Eukaryotic transcription factors (TFs) activate gene expression by recruiting cofactors to promoters. However, the relationships between TFs, promoters and their associated cofactors remain poorly understood. Here we combine GAL4-transactivation assays with comparative CRISPR-Cas9 screens to identify the cofactors used by nine different TFs and core promoters in human cells. Using this dataset, we associate TFs with cofactors, classify cofactors as ubiquitous or specific and discover transcriptional co-dependencies. Through a reductionistic, comparative approach, we demonstrate that TFs do not display discrete mechanisms of activation. Instead, each TF depends on a unique combination of cofactors, which influences distinct steps in transcription. By contrast, the influence of core promoters appears relatively discrete. Different promoter classes are constrained by either initiation or pause-release, which influences their dynamic range and compatibility with cofactors. Overall, our comparative cofactor screens characterize the interplay between TFs, cofactors and core promoters, identifying general principles by which they influence transcription.
Collapse
Affiliation(s)
- Charles C Bell
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, Queensland, Australia.
| | - Jesse J Balic
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Laure Talarmain
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrea Gillespie
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Laura Scolamiero
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Enid Y N Lam
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Omer Gilan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Okur Z, Schlauri N, Bitsikas V, Panopoulou M, Ortiz R, Schwaiger M, Karmakar K, Schreiner D, Scheiffele P. Control of neuronal excitation-inhibition balance by BMP-SMAD1 signalling. Nature 2024; 629:402-409. [PMID: 38632412 PMCID: PMC11078759 DOI: 10.1038/s41586-024-07317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Throughout life, neuronal networks in the mammalian neocortex maintain a balance of excitation and inhibition, which is essential for neuronal computation1,2. Deviations from a balanced state have been linked to neurodevelopmental disorders, and severe disruptions result in epilepsy3-5. To maintain balance, neuronal microcircuits composed of excitatory and inhibitory neurons sense alterations in neural activity and adjust neuronal connectivity and function. Here we identify a signalling pathway in the adult mouse neocortex that is activated in response to increased neuronal network activity. Overactivation of excitatory neurons is signalled to the network through an increase in the levels of BMP2, a growth factor that is well known for its role as a morphogen in embryonic development. BMP2 acts on parvalbumin-expressing (PV) interneurons through the transcription factor SMAD1, which controls an array of glutamatergic synapse proteins and components of perineuronal nets. PV-interneuron-specific disruption of BMP2-SMAD1 signalling is accompanied by a loss of glutamatergic innervation in PV cells, underdeveloped perineuronal nets and decreased excitability. Ultimately, this impairment of the functional recruitment of PV interneurons disrupts the cortical excitation-inhibition balance, with mice exhibiting spontaneous epileptic seizures. Our findings suggest that developmental morphogen signalling is repurposed to stabilize cortical networks in the adult mammalian brain.
Collapse
Affiliation(s)
- Zeynep Okur
- Biozentrum, University of Basel, Basel, Switzerland
| | - Nadia Schlauri
- Biozentrum, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | - Raul Ortiz
- Biozentrum, University of Basel, Basel, Switzerland
| | - Michaela Schwaiger
- Swiss Institute of Bioinformatics, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Kajari Karmakar
- Biozentrum, University of Basel, Basel, Switzerland
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | | |
Collapse
|
9
|
Li Y, Deng D, Höfer CT, Kim J, Do Heo W, Xu Q, Liu X, Zi Z. Liebig's law of the minimum in the TGF-β/SMAD pathway. PLoS Comput Biol 2024; 20:e1012072. [PMID: 38753874 PMCID: PMC11135686 DOI: 10.1371/journal.pcbi.1012072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Cells use signaling pathways to sense and respond to their environments. The transforming growth factor-β (TGF-β) pathway produces context-specific responses. Here, we combined modeling and experimental analysis to study the dependence of the output of the TGF-β pathway on the abundance of signaling molecules in the pathway. We showed that the TGF-β pathway processes the variation of TGF-β receptor abundance using Liebig's law of the minimum, meaning that the output-modifying factor is the signaling protein that is most limited, to determine signaling responses across cell types and in single cells. We found that the abundance of either the type I (TGFBR1) or type II (TGFBR2) TGF-β receptor determined the responses of cancer cell lines, such that the receptor with relatively low abundance dictates the response. Furthermore, nuclear SMAD2 signaling correlated with the abundance of TGF-β receptor in single cells depending on the relative expression levels of TGFBR1 and TGFBR2. A similar control principle could govern the heterogeneity of signaling responses in other signaling pathways.
Collapse
Affiliation(s)
- Yuchao Li
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory, Berlin, Germany
| | - Difan Deng
- German Federal Institute for Risk Assessment, Department of Experimental Toxicology and ZEBET, Berlin, Germany
| | - Chris Tina Höfer
- German Federal Institute for Risk Assessment, Department of Experimental Toxicology and ZEBET, Berlin, Germany
| | - Jihye Kim
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Won Do Heo
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Quanbin Xu
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Xuedong Liu
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Zhike Zi
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory, Berlin, Germany
- German Federal Institute for Risk Assessment, Department of Experimental Toxicology and ZEBET, Berlin, Germany
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
10
|
Ramirez Flores RO, Schäfer PSL, Küchenhoff L, Saez-Rodriguez J. Complementing Cell Taxonomies with a Multicellular Analysis of Tissues. Physiology (Bethesda) 2024; 39:0. [PMID: 38319138 DOI: 10.1152/physiol.00001.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The application of single-cell molecular profiling coupled with spatial technologies has enabled charting of cellular heterogeneity in reference tissues and in disease. This new wave of molecular data has highlighted the expected diversity of single-cell dynamics upon shared external queues and spatial organizations. However, little is known about the relationship between single-cell heterogeneity and the emergence and maintenance of robust multicellular processes in developed tissues and its role in (patho)physiology. Here, we present emerging computational modeling strategies that use increasingly available large-scale cross-condition single-cell and spatial datasets to study multicellular organization in tissues and complement cell taxonomies. This perspective should enable us to better understand how cells within tissues collectively process information and adapt synchronized responses in disease contexts and to bridge the gap between structural changes and functions in tissues.
Collapse
Affiliation(s)
- Ricardo Omar Ramirez Flores
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Sven Lars Schäfer
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Leonie Küchenhoff
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
11
|
Baghdassarian HM, Lewis NE. Resource allocation in mammalian systems. Biotechnol Adv 2024; 71:108305. [PMID: 38215956 PMCID: PMC11182366 DOI: 10.1016/j.biotechadv.2023.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Cells execute biological functions to support phenotypes such as growth, migration, and secretion. Complementarily, each function of a cell has resource costs that constrain phenotype. Resource allocation by a cell allows it to manage these costs and optimize their phenotypes. In fact, the management of resource constraints (e.g., nutrient availability, bioenergetic capacity, and macromolecular machinery production) shape activity and ultimately impact phenotype. In mammalian systems, quantification of resource allocation provides important insights into higher-order multicellular functions; it shapes intercellular interactions and relays environmental cues for tissues to coordinate individual cells to overcome resource constraints and achieve population-level behavior. Furthermore, these constraints, objectives, and phenotypes are context-dependent, with cells adapting their behavior according to their microenvironment, resulting in distinct steady-states. This review will highlight the biological insights gained from probing resource allocation in mammalian cells and tissues.
Collapse
Affiliation(s)
- Hratch M Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Akiyama T, Raftery LA, Wharton KA. Bone morphogenetic protein signaling: the pathway and its regulation. Genetics 2024; 226:iyad200. [PMID: 38124338 PMCID: PMC10847725 DOI: 10.1093/genetics/iyad200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
In the mid-1960s, bone morphogenetic proteins (BMPs) were first identified in the extracts of bone to have the remarkable ability to induce heterotopic bone. When the Drosophila gene decapentaplegic (dpp) was first identified to share sequence similarity with mammalian BMP2/BMP4 in the late-1980s, it became clear that secreted BMP ligands can mediate processes other than bone formation. Following this discovery, collaborative efforts between Drosophila geneticists and mammalian biochemists made use of the strengths of their respective model systems to identify BMP signaling components and delineate the pathway. The ability to conduct genetic modifier screens in Drosophila with relative ease was critical in identifying the intracellular signal transducers for BMP signaling and the related transforming growth factor-beta/activin signaling pathway. Such screens also revealed a host of genes that encode other core signaling components and regulators of the pathway. In this review, we provide a historical account of this exciting time of gene discovery and discuss how the field has advanced over the past 30 years. We have learned that while the core BMP pathway is quite simple, composed of 3 components (ligand, receptor, and signal transducer), behind the versatility of this pathway lies multiple layers of regulation that ensures precise tissue-specific signaling output. We provide a sampling of these discoveries and highlight many questions that remain to be answered to fully understand the complexity of BMP signaling.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Rich and Robin Porter Cancer Research Center, The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
13
|
Pong A, Mah CK, Yeo GW, Lewis NE. Computational cell-cell interaction technologies drive mechanistic and biomarker discovery in the tumor microenvironment. Curr Opin Biotechnol 2024; 85:103048. [PMID: 38142648 PMCID: PMC11168798 DOI: 10.1016/j.copbio.2023.103048] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023]
Abstract
Complex networks of cell-cell interactions (CCIs) within the tumor microenvironment (TME) play a crucial role in cancer persistence. These communication axes represent prime targets for therapeutic intervention, but our incomplete understanding of the cellular heterogeneity and interacting partners within the TME remains a stubborn barrier to complete drug responses. This review outlines recent advances in the study of CCIs that leverage single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) technologies that can clarify TME dynamics. We anticipate that these strategies will promote discovery of CCIs critical to the tumor-immune interface and will, by extension, expand the repertoire of druggable tumor biomarkers.
Collapse
Affiliation(s)
- Avery Pong
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Clarence K Mah
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Nathan E Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Yin X, Wang L, Niu Y, Xie D, Zhang Q, Xiao J, Dong L, Wang C. Unmasking Chemokine-Inducing Specificity in Oligosaccharide Biomaterial to Promote Hair Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304655. [PMID: 37567583 DOI: 10.1002/adma.202304655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/23/2023] [Indexed: 08/13/2023]
Abstract
Hair loss affects over 50 million people worldwide with limited therapeutic options. Despite evidence highlighting the vital role of local immune cells in regulating the life cycle of hair follicles (HFs), accurate regulation of immunocytes to directly promote hair growth remains unachieved. Here, inspired by the physiological feedback in the skin immunity to suppress microbe-triggered inflammation, an oligosaccharide biomaterial with "unmasked" specific activity is developed to recruit regulatory T (Treg ) cells around HFs, leading to accelerated hair growth in mice. By processing the glucomannan polysaccharide via controllable enzymatic cleavage, a series of oligosaccharide fractions with more specific chemokine-inducing functions is obtained. Notably, a hexasaccharide-based fraction (OG6) stimulates macrophages to selectively express Treg -chemoattractant C-C Motif Chemokine Ligand 5 (CCL5) through a mannose receptor-mediated endocytosis and NOD1/2-dependent signaling, as evidenced by molecular docking, inhibition assays, and a Foxp3-reporter mouse model. Intradermal delivery of OG6 to the depilated mouse skin promotes Treg mobilization around HFs and stimulates de novo regeneration of robust hairs. This study demonstrates that unmasking precise immunomodulatory functions in oligosaccharides from their parental polysaccharide can potentially solve the long-lasting dilemma with polysaccharide biomaterials that are widely renowned for versatile activities yet high heterogeneity, opening new avenues to designing glycan-based therapeutic tools with improved specificity and safety.
Collapse
Affiliation(s)
- Xiaoyu Yin
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
- State Key Laboratory in Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lintao Wang
- State Key Laboratory in Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yiming Niu
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Daping Xie
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Qingwen Zhang
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lei Dong
- State Key Laboratory in Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- National Resource Center For Mutant Mice, Nanjing, 210023, China
| | - Chunming Wang
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
- Zhuhai UM Science & Technology Research Institute, University of Macau, Hengqin, 519000, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
15
|
Wu M, Wu S, Chen W, Li YP. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res 2024; 34:101-123. [PMID: 38267638 PMCID: PMC10837209 DOI: 10.1038/s41422-023-00918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Transforming growth factor-βs (TGF-βs) and bone morphometric proteins (BMPs) belong to the TGF-β superfamily and perform essential functions during osteoblast and chondrocyte lineage commitment and differentiation, skeletal development, and homeostasis. TGF-βs and BMPs transduce signals through SMAD-dependent and -independent pathways; specifically, they recruit different receptor heterotetramers and R-Smad complexes, resulting in unique biological readouts. BMPs promote osteogenesis, osteoclastogenesis, and chondrogenesis at all differentiation stages, while TGF-βs play different roles in a stage-dependent manner. BMPs and TGF-β have opposite functions in articular cartilage homeostasis. Moreover, TGF-β has a specific role in maintaining the osteocyte network. The precise activation of BMP and TGF-β signaling requires regulatory machinery at multiple levels, including latency control in the matrix, extracellular antagonists, ubiquitination and phosphorylation in the cytoplasm, nucleus-cytoplasm transportation, and transcriptional co-regulation in the nuclei. This review weaves the background information with the latest advances in the signaling facilitated by TGF-βs and BMPs, and the advanced understanding of their diverse physiological functions and regulations. This review also summarizes the human diseases and mouse models associated with disordered TGF-β and BMP signaling. A more precise understanding of the BMP and TGF-β signaling could facilitate the development of bona fide clinical applications in treating bone and cartilage disorders.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shali Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
16
|
Kögler AC, Müller P. Modes and motifs in multicellular communication. Cell Syst 2024; 15:1-3. [PMID: 38237550 DOI: 10.1016/j.cels.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Signaling pathways feature multiple interacting ligand and receptor variants, which are thought to act in a combinatorial manner to elicit different cellular responses. Transcriptome analyses now suggest that many signaling pathways use their components in combinations that are surprisingly often shared between otherwise dissimilar cell states.
Collapse
|
17
|
Ung CY, Correia C, Li H, Adams CM, Westendorf JJ, Zhu S. Multiorgan locked-state model of chronic diseases and systems pharmacology opportunities. Drug Discov Today 2024; 29:103825. [PMID: 37967790 PMCID: PMC11109989 DOI: 10.1016/j.drudis.2023.103825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/29/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
With increasing human life expectancy, the global medical burden of chronic diseases is growing. Hence, chronic diseases are a pressing health concern and will continue to be in decades to come. Chronic diseases often involve multiple malfunctioning organs in the body. An imminent question is how interorgan crosstalk contributes to the etiology of chronic diseases. We conceived the locked-state model (LoSM), which illustrates how interorgan communication can give rise to body-wide memory-like properties that 'lock' healthy or pathological conditions. Next, we propose cutting-edge systems biology and artificial intelligence strategies to decipher chronic multiorgan locked states. Finally, we discuss the clinical implications of the LoSM and assess the power of systems-based therapies to dismantle pathological multiorgan locked states while improving treatments for chronic diseases.
Collapse
Affiliation(s)
- Choong Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Cristina Correia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Christopher M Adams
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer J Westendorf
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Shizhen Zhu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
18
|
Kizilirmak C, Monteleone E, García-Manteiga JM, Brambilla F, Agresti A, Bianchi ME, Zambrano S. Small transcriptional differences among cell clones lead to distinct NF-κB dynamics. iScience 2023; 26:108573. [PMID: 38144455 PMCID: PMC10746373 DOI: 10.1016/j.isci.2023.108573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/06/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Transcription factor dynamics is fundamental to determine the activation of accurate transcriptional programs and yet is heterogeneous at a single-cell level, even within homogeneous populations. We asked how such heterogeneity emerges for the nuclear factor κB (NF-κB). We found that clonal populations of immortalized fibroblasts derived from a single mouse embryo display robustly distinct NF-κB dynamics upon tumor necrosis factor ɑ (TNF-ɑ) stimulation including persistent, oscillatory, and weak activation, giving rise to differences in the transcription of its targets. By combining transcriptomics and simulations we show how less than two-fold differences in the expression levels of genes coding for key proteins of the signaling cascade and feedback system are predictive of the differences of the NF-κB dynamic response of the clones to TNF-ɑ and IL-1β. We propose that small transcriptional differences in the regulatory circuit of a transcription factor can lead to distinct signaling dynamics in cells within homogeneous cell populations and among different cell types.
Collapse
Affiliation(s)
- Cise Kizilirmak
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Emanuele Monteleone
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Francesca Brambilla
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Agresti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco E. Bianchi
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Samuel Zambrano
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
19
|
Richardson L, Wilcockson SG, Guglielmi L, Hill CS. Context-dependent TGFβ family signalling in cell fate regulation. Nat Rev Mol Cell Biol 2023; 24:876-894. [PMID: 37596501 DOI: 10.1038/s41580-023-00638-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/20/2023]
Abstract
The transforming growth factor-β (TGFβ) family are a large group of evolutionarily conserved cytokines whose signalling modulates cell fate decision-making across varying cellular contexts at different stages of life. Here we discuss new findings in early embryos that reveal how, in contrast to our original understanding of morphogen interpretation, robust cell fate specification can originate from a noisy combination of signalling inputs and a broad range of signalling levels. We compare this evidence with novel findings on the roles of TGFβ family signalling in tissue maintenance and homeostasis during juvenile and adult life, spanning the skeletal, haemopoietic and immune systems. From these comparisons, it emerges that in contrast to robust developing systems, relatively small perturbations in TGFβ family signalling have detrimental effects at later stages in life, leading to aberrant cell fate specification and disease, for example in cancer or congenital disorders. Finally, we highlight novel strategies to target and amend dysfunction in signalling and discuss how gleaning knowledge from different fields of biology can help in the development of therapeutics for aberrant TGFβ family signalling in disease.
Collapse
Affiliation(s)
- Louise Richardson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Scott G Wilcockson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
20
|
Li S, Wang Q, Jia Z, Da M, Zhao J, Yang R, Chen D. Recent advances in glucose oxidase-based nanocarriers for tumor targeting therapy. Heliyon 2023; 9:e20407. [PMID: 37780773 PMCID: PMC10539972 DOI: 10.1016/j.heliyon.2023.e20407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
Glucose oxidase (GOx) can specifically catalyze the conversion of β-d-glucose into gluconic acid and hydrogen peroxide (H2O2) in the presence of oxygen, making it promising for tumor starvation therapy and oxidative therapy. However, GOx's immunogenicity, poor in vivo stability, short half-life, and potential systemic toxicity, limit its application in cancer therapy. Nanocarriers are capable of improving the pharmacological properties of therapeutic drugs (e.g. stability, circulating half-life, and tumor accumulation) and lower toxicity, hence resolving GOx issues and enhancing its efficacy. Although the application of targeted nanocarriers based on GOx has recently flourished, this field has not yet been reviewed and evaluated. Herein, we initially examined the mechanism of GOx-based nanocarriers for enhanced tumor therapy. Also, we present a comprehensive and up-to-date review that highlights GOx-based nanocarriers for tumor targeting therapy. This review expands on GOx-based nano-targeted combination therapies from both passive and active targeting perspectives, meanwhile, active targeting is further classified into ligand-mediated targeting and physical-mediated targeting. Furthermore, this review also emphasizes the present challenges and promising advancements.
Collapse
Affiliation(s)
- Su Li
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Qinghua Wang
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China
| | - Zhen Jia
- Department of Obstetrics and Gynecology, Haidong No. 2 People's Hospital, Haidong, 810699, China
| | - Mengting Da
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, 810001, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, 810001, China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, China
- Department of Obstetrics and Gynecology, Haidong No. 2 People's Hospital, Haidong, 810699, China
| |
Collapse
|
21
|
Bonjoch L, Fernandez-Rozadilla C, Alvarez-Barona M, Lopez-Novo A, Herrera-Pariente C, Amigo J, Bujanda L, Remedios D, Dacal A, Cubiella J, Balaguer F, Fernández-Bañares F, Carracedo A, Jover R, Castellvi-Bel S, Ruiz-Ponte C. BMPR2 as a Novel Predisposition Gene for Hereditary Colorectal Polyposis. Gastroenterology 2023; 165:162-172.e5. [PMID: 36907526 DOI: 10.1053/j.gastro.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND & AIMS Colorectal cancer (CRC) is one of the most prevalent tumors worldwide, with incidence quickly increasing (particularly in the context of early-onset cases), despite important prevention efforts, mainly in the form of population-wide screening programs. Although many cases present a clear familial component, the current list of hereditary CRC genes leaves a considerable proportion of the cases unexplained. METHODS In this work, we used whole-exome sequencing approaches on 19 unrelated patients with unexplained colonic polyposis to identify candidate CRC predisposition genes. The candidate genes were then validated in an additional series of 365 patients. CRISPR-Cas9 models were used to validate BMPR2 as a potential candidate for CRC risk. RESULTS We found 8 individuals carrying 6 different variants in the BMPR2 gene (approximately 2% of our cohort of patients with unexplained colonic polyposis). CRISPR-Cas9 models of 3 of these variants showed that the p.(Asn442Thrfs∗32) truncating variant completely abrogated BMP pathway function in a similar way to the BMPR2 knockout. Missense variants p.(Asn565Ser), p.(Ser967Pro) had varying effects on cell proliferation levels, with the former impairing cell control inhibition via noncanonical pathways. CONCLUSIONS Collectively, these results support loss-of-function BMPR2 variants as candidates to be involved in CRC germline predisposition.
Collapse
Affiliation(s)
- Laia Bonjoch
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ceres Fernandez-Rozadilla
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Miriam Alvarez-Barona
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Anael Lopez-Novo
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Cristina Herrera-Pariente
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Jorge Amigo
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Luis Bujanda
- Hospital Universitario de Donostia, Instituto Biodonostia, Universidad del Pais Vasco, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, San Sebastián, Spain
| | - David Remedios
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Ourense, Spain
| | - Andrés Dacal
- Department of Gastroenterology, Hospital Lucus Augusti, Lugo, Spain; Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Joaquín Cubiella
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Ourense, Spain
| | - Francesc Balaguer
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Fernando Fernández-Bañares
- Hospital Universitari Mutua Terrassa, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas, Ourense, Madrid, Spain
| | - Angel Carracedo
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Rodrigo Jover
- Digestive Medicine Department, Instituto de Investigación Biomédica, Hospital General Universitario de Alicante, Departamento de Medicina Clínica, Universidad Miguel Hernández, Alicante, Spain
| | - Sergi Castellvi-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Hospital Clinic, University of Barcelona, Barcelona, Spain.
| | - Clara Ruiz-Ponte
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.
| |
Collapse
|
22
|
Klumpe HE, Garcia-Ojalvo J, Elowitz MB, Antebi YE. The computational capabilities of many-to-many protein interaction networks. Cell Syst 2023; 14:430-446. [PMID: 37348461 PMCID: PMC10318606 DOI: 10.1016/j.cels.2023.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 06/24/2023]
Abstract
Many biological circuits comprise sets of protein variants that interact with one another in a many-to-many, or promiscuous, fashion. These architectures can provide powerful computational capabilities that are especially critical in multicellular organisms. Understanding the principles of biochemical computations in these circuits could allow more precise control of cellular behaviors. However, these systems are inherently difficult to analyze, due to their large number of interacting molecular components, partial redundancies, and cell context dependence. Here, we discuss recent experimental and theoretical advances that are beginning to reveal how promiscuous circuits compute, what roles those computations play in natural biological contexts, and how promiscuous architectures can be applied for the design of synthetic multicellular behaviors.
Collapse
Affiliation(s)
- Heidi E Klumpe
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain.
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Yaron E Antebi
- Department of Molecular Genetics, Weizmann Institute of Science 76100, Rehovot, Israel.
| |
Collapse
|
23
|
Farahani PE, Yang X, Mesev EV, Fomby KA, Brumbaugh-Reed EH, Bashor CJ, Nelson CM, Toettcher JE. pYtags enable spatiotemporal measurements of receptor tyrosine kinase signaling in living cells. eLife 2023; 12:82863. [PMID: 37212240 DOI: 10.7554/elife.82863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/24/2023] [Indexed: 05/23/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are major signaling hubs in metazoans, playing crucial roles in cell proliferation, migration, and differentiation. However, few tools are available to measure the activity of a specific RTK in individual living cells. Here, we present pYtags, a modular approach for monitoring the activity of a user-defined RTK by live-cell microscopy. pYtags consist of an RTK modified with a tyrosine activation motif that, when phosphorylated, recruits a fluorescently labeled tandem SH2 domain with high specificity. We show that pYtags enable the monitoring of a specific RTK on seconds-to-minutes time scales and across subcellular and multicellular length scales. Using a pYtag biosensor for epidermal growth factor receptor (EGFR), we quantitatively characterize how signaling dynamics vary with the identity and dose of activating ligand. We show that orthogonal pYtags can be used to monitor the dynamics of EGFR and ErbB2 activity in the same cell, revealing distinct phases of activation for each RTK. The specificity and modularity of pYtags open the door to robust biosensors of multiple tyrosine kinases and may enable engineering of synthetic receptors with orthogonal response programs.
Collapse
Affiliation(s)
- Payam E Farahani
- Department of Chemical & Biological Engineering, Princeton University, Princeton, United States
| | - Xiaoyu Yang
- Department of Bioengineering, Rice University, Houston, United States
- Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Emily V Mesev
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Kaylan A Fomby
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Ellen H Brumbaugh-Reed
- Department of Molecular Biology, Princeton University, Princeton, United States
- IRCC International Research Collaboration Center, National Institutes of Natural Sciences, Tokyo, Japan
| | - Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, United States
- Department of Biosciences, Rice University, Houston, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, United States
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
24
|
Barua A, Hatzikirou H. Cell Decision Making through the Lens of Bayesian Learning. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25040609. [PMID: 37190396 PMCID: PMC10137733 DOI: 10.3390/e25040609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
Cell decision making refers to the process by which cells gather information from their local microenvironment and regulate their internal states to create appropriate responses. Microenvironmental cell sensing plays a key role in this process. Our hypothesis is that cell decision-making regulation is dictated by Bayesian learning. In this article, we explore the implications of this hypothesis for internal state temporal evolution. By using a timescale separation between internal and external variables on the mesoscopic scale, we derive a hierarchical Fokker-Planck equation for cell-microenvironment dynamics. By combining this with the Bayesian learning hypothesis, we find that changes in microenvironmental entropy dominate the cell state probability distribution. Finally, we use these ideas to understand how cell sensing impacts cell decision making. Notably, our formalism allows us to understand cell state dynamics even without exact biochemical information about cell sensing processes by considering a few key parameters.
Collapse
Affiliation(s)
- Arnab Barua
- Departement de Biochimie, Université de Montréal, Montréal, QC H3T 1C5, Canada
- Centre Robert-Cedergren en Bio-Informatique et Génomique, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Haralampos Hatzikirou
- Center for Information Services and High Performance Computing, Technische Univesität Dresden, 01062 Dresden, Germany
- Mathematics Department, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
25
|
Zafar A, Arshad R, Ur.Rehman A, Ahmed N, Akhtar H. Recent Developments in Oral Delivery of Vaccines Using Nanocarriers. Vaccines (Basel) 2023; 11:490. [PMID: 36851367 PMCID: PMC9964829 DOI: 10.3390/vaccines11020490] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
As oral administration of vaccines is the preferred route due to its high patient compliance and ability to stimulate both cellular and humoral immune responses, it is also associated with several challenges that include denaturation of vaccine components in the acidic environment of the stomach, degradation from proteolytic enzymes, and poor absorption through the intestinal membrane. To achieve effective delivery of such biomolecules, there is a need to investigate novel strategies of formulation development that can overcome the barriers associated with conventional vaccine delivery systems. Nanoparticles are advanced drug delivery carriers that provide target-oriented delivery by encapsulating vaccine components within them, thus making them stable against unfavorable conditions. This review provides a detailed overview of the different types of nanocarriers and various approaches that can enhance oral vaccine delivery.
Collapse
Affiliation(s)
- Amna Zafar
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Raffia Arshad
- Yusra Institute of Pharmaceutical Sciences, Yusra Medical and Dental College, Islamabad 45730, Pakistan
| | - Asim Ur.Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hashaam Akhtar
- Yusra Institute of Pharmaceutical Sciences, Yusra Medical and Dental College, Islamabad 45730, Pakistan
| |
Collapse
|
26
|
Cockx B, Van Bael S, Boelen R, Vandewyer E, Yang H, Le TA, Dalzell JJ, Beets I, Ludwig C, Lee J, Temmerman L. Mass Spectrometry-Driven Discovery of Neuropeptides Mediating Nictation Behavior of Nematodes. Mol Cell Proteomics 2023; 22:100479. [PMID: 36481452 PMCID: PMC9881375 DOI: 10.1016/j.mcpro.2022.100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/27/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022] Open
Abstract
Neuropeptides regulate animal physiology and behavior, making them widely studied targets of functional genetics research. While the field often relies on differential -omics approaches to build hypotheses, no such method exists for neuropeptidomics. It would nonetheless be valuable for studying behaviors suspected to be regulated by neuropeptides, especially when little information is otherwise available. This includes nictation, a phoretic strategy of Caenorhabditis elegans dauers that parallels host-finding strategies of infective juveniles of many pathogenic nematodes. We here developed a targeted peptidomics method for the model organism C. elegans and show that 161 quantified neuropeptides are more abundant in its dauer stage compared with L3 juveniles. Many of these have orthologs in the commercially relevant pathogenic nematode Steinernema carpocapsae, in whose infective juveniles, we identified 126 neuropeptides in total. Through further behavioral genetics experiments, we identify flp-7 and flp-11 as novel regulators of nictation. Our work advances knowledge on the genetics of nictation behavior and adds comparative neuropeptidomics as a tool to functional genetics workflows.
Collapse
Affiliation(s)
- Bram Cockx
- Animal Physiology & Neurobiology, Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Sven Van Bael
- Animal Physiology & Neurobiology, Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Rose Boelen
- Animal Physiology & Neurobiology, Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Elke Vandewyer
- Animal Physiology & Neurobiology, Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Heeseung Yang
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Tuan Anh Le
- Animal Physiology & Neurobiology, Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Johnathan J Dalzell
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Isabel Beets
- Animal Physiology & Neurobiology, Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Liesbet Temmerman
- Animal Physiology & Neurobiology, Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium.
| |
Collapse
|
27
|
Quist-Løkken I, Andersson-Rusch C, Kastnes MH, Kolos JM, Jatzlau J, Hella H, Olsen OE, Sundan A, Knaus P, Hausch F, Holien T. FKBP12 is a major regulator of ALK2 activity in multiple myeloma cells. Cell Commun Signal 2023; 21:25. [PMID: 36717825 PMCID: PMC9885706 DOI: 10.1186/s12964-022-01033-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/28/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The immunophilin FKBP12 binds to TGF-β family type I receptors, including the BMP type I receptor ALK2. FKBP12 keeps the type I receptor in an inactive state and controls signaling activity. Removal of FKBP12 with drugs such as the FKBP-ligand FK506 enhances BMP activity in various cell types. In multiple myeloma cells, activation of SMAD1/5/8 leads to apoptosis. We hypothesized that removing FKBP12 from ALK2 in myeloma cells would potentiate BMP-induced ALK2-SMAD1/5/8 activity and in consequence cell death. METHODS Multiple myeloma cell lines were treated with FK506, or other FKBP-binding compounds, combined with different BMPs before analyzing SMAD1/5/8 activity and cell viability. SMAD1/5/8 activity was also investigated using a reporter cell line, INA-6 BRE-luc. To characterize the functional signaling receptor complex, we genetically manipulated receptor expression by siRNA, shRNA and CRISPR/Cas9 technology. RESULTS FK506 potentiated BMP-induced SMAD1/5/8 activation and apoptosis in multiple myeloma cell lines. By using FKBP-binding compounds with different affinity profiles, and siRNA targeting FKBP12, we show that the FK506 effect is mediated by binding to FKBP12. Ligands that typically signal via ALK3 in myeloma cells, BMP2, BMP4, and BMP10, did not induce apoptosis in cells lacking ALK3. Notably, BMP10 competed with BMP6 and BMP9 and antagonized their activity via ALK2. However, upon addition of FK506, we saw a surprising shift in specificity, as the ALK3 ligands gained the ability to signal via ALK2 and induce apoptosis. This indicates that the receptor complex can switch from an inactive non-signaling complex (NSC) to an active one by adding FK506. This gain of activity was also seen in other cell types, indicating that the observed effects have broader relevance. BMP2, BMP4 and BMP10 depended on BMPR2 as type II receptor to signal, which contrasts with BMP6 and BMP9, that activate ALK2 more potently when BMPR2 is knocked down. CONCLUSIONS In summary, our data suggest that FKBP12 is a major regulator of ALK2 activity in multiple myeloma cells, partly by switching an NSC into an active signaling complex. FKBP12 targeting compounds devoid of immunosuppressing activity could have potential in novel treatment strategies aiming at reducing multiple myeloma tumor load. Video Abstract.
Collapse
Affiliation(s)
- Ingrid Quist-Løkken
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Clara Andersson-Rusch
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Martin Haugrud Kastnes
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Centre of Molecular Inflammation Research, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Jürgen Markus Kolos
- grid.6546.10000 0001 0940 1669Department of Chemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Jerome Jatzlau
- grid.14095.390000 0000 9116 4836Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Hanne Hella
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Oddrun Elise Olsen
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Anders Sundan
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Centre of Molecular Inflammation Research, Norwegian University of Science and Technology - NTNU, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Hematology, St. Olav’s University Hospital, Trondheim, Norway
| | - Petra Knaus
- grid.14095.390000 0000 9116 4836Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Felix Hausch
- grid.6546.10000 0001 0940 1669Department of Chemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Toril Holien
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Immunology and Transfusion Medicine, St. Olav’s University Hospital, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Hematology, St. Olav’s University Hospital, Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Department of Biomedical Laboratory Science, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| |
Collapse
|
28
|
Furlan G, Huyghe A, Combémorel N, Lavial F. Molecular versatility during pluripotency progression. Nat Commun 2023; 14:68. [PMID: 36604434 PMCID: PMC9814743 DOI: 10.1038/s41467-022-35775-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
A challenge during development is to ensure lineage segregation while preserving plasticity. Using pluripotency progression as a paradigm, we review how developmental transitions are coordinated by redeployments, rather than global resettings, of cellular components. We highlight how changes in response to extrinsic cues (FGF, WNT, Activin/Nodal, Netrin-1), context- and stoichiometry-dependent action of transcription factors (Oct4, Nanog) and reconfigurations of epigenetic regulators (enhancers, promoters, TrxG, PRC) may confer robustness to naïve to primed pluripotency transition. We propose the notion of Molecular Versatility to regroup mechanisms by which molecules are repurposed to exert different, sometimes opposite, functions in close stem cell configurations.
Collapse
Affiliation(s)
- Giacomo Furlan
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, ON, Canada
| | - Aurélia Huyghe
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
| | - Noémie Combémorel
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
| | - Fabrice Lavial
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France.
| |
Collapse
|
29
|
Nikitin MP. Non-complementary strand commutation as a fundamental alternative for information processing by DNA and gene regulation. Nat Chem 2023; 15:70-82. [PMID: 36604607 DOI: 10.1038/s41557-022-01111-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/16/2022] [Indexed: 01/07/2023]
Abstract
The discovery of the DNA double helix has revolutionized our understanding of data processing in living systems, with the complementarity of the two DNA strands providing a reliable mechanism for the storage of hereditary information. Here I reveal the 'strand commutation' phenomenon-a fundamentally different mechanism of information storage and processing by DNA/RNA based on the reversible low-affinity interactions of essentially non-complementary nucleic acids. I demonstrate this mechanism by constructing a memory circuit, a 5-min square-root circuit for 4-bit inputs comprising only nine processing ssDNAs, simulating a 572-input AND gate (surpassing the bitness of current electronic computers), and elementary algebra systems with continuously changing variables. Most importantly, I show potential pathways of gene regulation with strands of maximum non-complementarity to the gene sequence that may be key to the reduction of off-target therapeutic effects. This Article uncovers the information-processing power of the low-affinity interactions that may underlie major processes in an organism-from short-term memory to cancer, ageing and evolution.
Collapse
Affiliation(s)
- Maxim P Nikitin
- Sirius University of Science and Technology, Sochi, Russia. .,Abisense LLC, Dolgoprudny, Moscow Region, Russia.
| |
Collapse
|
30
|
Narasimhan M, Simon R. Spatial range, temporal span, and promiscuity of CLE-RLK signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:906087. [PMID: 36092449 PMCID: PMC9459042 DOI: 10.3389/fpls.2022.906087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) signaling through receptor-like kinases (RLKs) regulates developmental transitions and responses to biotic and abiotic inputs by communicating the physiological state of cells and tissues. CLE peptides have varying signaling ranges, which can be defined as the distance between the source, i.e., the cells or tissue that secrete the peptide, and their destination, i.e., cells or tissue where the RLKs that bind the peptide and/or respond are expressed. Case-by-case analysis substantiates that CLE signaling is predominantly autocrine or paracrine, and rarely endocrine. Furthermore, upon CLE reception, the ensuing signaling responses extend from cellular to tissue, organ and whole organism level as the downstream signal gets amplified. CLE-RLK-mediated effects on tissue proliferation and differentiation, or on subsequent primordia and organ development have been widely studied. However, studying how CLE-RLK regulates different stages of proliferation and differentiation at cellular level can offer additional insights into these processes. Notably, CLE-RLK signaling also mediates diverse non-developmental effects, which are less often observed; however, this could be due to biased experimental approaches. In general, CLEs and RLKs, owing to the sequence or structural similarity, are prone to promiscuous interactions at least under experimental conditions in which they are studied. Importantly, there are regulatory mechanisms that suppress CLE-RLK cross-talk in vivo, thereby eliminating the pressure for co-evolving binding specificity. Alternatively, promiscuity in signaling may also offer evolutionary advantages and enable different CLEs to work in combination to activate or switch off different RLK signaling pathways.
Collapse
Affiliation(s)
- Madhumitha Narasimhan
- Institute for Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics and Cluster of Excellence in Plant Sciences, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|