1
|
Pach A, Szot A, Fitzner K, Luty-Błocho M. Opportunities and Challenges in the Synthesis of Noble Metal Nanoparticles via the Chemical Route in Microreactor Systems. MICROMACHINES 2024; 15:1119. [PMID: 39337779 PMCID: PMC11434062 DOI: 10.3390/mi15091119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
The process of noble metal nanoparticle synthesis is complex and consists of at least two steps: slow nucleation and fast autocatalytic growth. The kinetics of these two processes depends on the reductant "power" and the addition of stabilizers, as well as other factors (e.g., temperature, pH, ionic strength). Knowing these parameters, it is possible to synthesize materials with appropriate physicochemical properties, which can be simply adjusted by the type of the used metal, particle morphology and surface property. This, in turn, affects the possibility of their applications in various areas of life, including medicine, catalysis, engineering, fuel cells, etc. However, in some cases, the standard route, i.e., the chemical reduction of a metal precursor carried out in the batch reactor, is not sufficient due to problems with temperature control, properties of reagents, unstable or dangerous intermediates and products, etc. Therefore, in this review, we focused on an alternative approach to their chemical synthesis provided by microreactor systems. The use of microreactors for the synthesis of noble metal nanomaterials (e.g., Ag, Au, Pt, Pd), obtained by chemical reduction, is analyzed, taking into account investigations carried out in recent years. A particular emphasis is placed on the processes in which the use of microreactors removed the limitations associated with synthesis in a batch reactor. Moreover, the opportunities and challenges related to the synthesis of noble nanomaterials in the microreactor system are underlined. This review discusses the advantages as well as the problems of nanoparticle synthesis in microreactors.
Collapse
Affiliation(s)
| | | | | | - Magdalena Luty-Błocho
- AGH University of Krakow, Faculty of Non-Ferrous Metals, al. Adama Mickiewicza 30, 30-059 Krakow, Poland; (A.P.); (A.S.); (K.F.)
| |
Collapse
|
2
|
John R, Monpara J, Swaminathan S, Kalhapure R. Chemistry and Art of Developing Lipid Nanoparticles for Biologics Delivery: Focus on Development and Scale-Up. Pharmaceutics 2024; 16:131. [PMID: 38276502 PMCID: PMC10819224 DOI: 10.3390/pharmaceutics16010131] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Lipid nanoparticles (LNPs) have gained prominence as primary carriers for delivering a diverse array of therapeutic agents. Biological products have achieved a solid presence in clinical settings, and the anticipation of creating novel variants is increasing. These products predominantly encompass therapeutic proteins, nucleic acids and messenger RNA. The advancement of efficient LNP-based delivery systems for biologics that can overcome their limitations remains a highly favorable formulation strategy. Moreover, given their small size, biocompatibility, and biodegradation, LNPs can proficiently transport therapeutic moiety into the cells without significant toxicity and adverse reactions. This is especially crucial for the existing and upcoming biopharmaceuticals since large molecules as a group present several challenges that can be overcome by LNPs. This review describes the LNP technology for the delivery of biologics and summarizes the developments in the chemistry, manufacturing, and characterization of lipids used in the development of LNPs for biologics. Finally, we present a perspective on the potential opportunities and the current challenges pertaining to LNP technology.
Collapse
Affiliation(s)
- Rijo John
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA; (R.J.); (J.M.)
| | - Jasmin Monpara
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA; (R.J.); (J.M.)
| | - Shankar Swaminathan
- Drug Product Development, Astellas Institute of Regenerative Medicine, Westborough, MA 01581, USA;
| | - Rahul Kalhapure
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Odin Pharmaceuticals LLC, 300 Franklin Square Dr, Somerset, NJ 08873, USA
| |
Collapse
|
3
|
Khil NHS, Sharma S, Sharma PK, Alam A. Several Applications of Solid Lipid Nanoparticles in Drug Delivery. Curr Mol Med 2024; 24:1077-1090. [PMID: 37475554 DOI: 10.2174/1566524023666230720110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/12/2023] [Accepted: 05/08/2023] [Indexed: 07/22/2023]
Abstract
Rapid progress is being made in the area of nanotechnology; solid lipid nanoparticles are currently at the forefront of research and development. They have the capability of becoming employed in an extensive number of applications, including the delivery of medications, clinical treatment, and research, in addition to uses in other areas of academic inquiry that could benefit from their utilisation. This article presents a thorough analysis of solid lipid nanoparticles, covering subjects such as their goals, preparation strategy, applications, advantages, and possible remedies for the issues that have been raised. This review provides a discussion of solid lipids that is both in-depth and comprehensive. Studies that investigate the manner in which SLNs are prepared and the routes via which they are administered are typical. Aspects concerning the route of administration of SLNs as well as the destiny of the carriers in vivo are also investigated in this paper.
Collapse
Affiliation(s)
| | - Shaweta Sharma
- Department of Pharmacy, School of Medical & Allied Sciences, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical & Allied Sciences, Greater Noida, Uttar Pradesh, India
| | - Aftab Alam
- Department of Pharmacy, School of Medical & Allied Sciences, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
4
|
Review on the Scale-Up Methods for the Preparation of Solid Lipid Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14091886. [PMID: 36145632 PMCID: PMC9503303 DOI: 10.3390/pharmaceutics14091886] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022] Open
Abstract
Solid lipid nanoparticles (SLNs) are an alternate carrier system to liposomes, polymeric nanoparticles, and inorganic carriers. SLNs have attracted increasing attention in recent years for delivering drugs, nucleic acids, proteins, peptides, nutraceuticals, and cosmetics. These nanocarriers have attracted industrial attention due to their ease of preparation, physicochemical stability, and scalability. These characteristics make SLNs attractive for manufacture on a large scale. Currently, several products with SLNs are in clinical trials, and there is a high possibility that SLN carriers will quickly increase their presence in the market. A large-scale manufacturing unit is required for commercial applications to prepare enough formulations for clinical studies. Furthermore, continuous processing is becoming more popular in the pharmaceutical sector to reduce product batch-to-batch differences. This review paper discusses some conventional methods and the rationale for large-scale production. It further covers recent progress in scale-up methods for the synthesis of SLNs, including high-pressure homogenization (HPH), hot melt extrusion coupled with HPH, microchannels, nanoprecipitation using static mixers, and microemulsion-based methods. These scale-up technologies enable the possibility of commercialization of SLNs. Furthermore, ongoing studies indicate that these technologies will eventually reach the pharmaceutical market.
Collapse
|
5
|
Nasrollahpour M, Vafaee M, Razzaghi S. Structural and Dynamical Properties of Palmitoyl-Oleoyl Phosphatidylserine Lipid Nanotubes Containing Cholesterols and PEGylated Dioleoyl Phosphatidylethanolamine: A Coarse-Grained Molecular Dynamics Simulation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Prakash G, Shokr A, Willemen N, Bashir SM, Shin SR, Hassan S. Microfluidic fabrication of lipid nanoparticles for the delivery of nucleic acids. Adv Drug Deliv Rev 2022; 184:114197. [PMID: 35288219 PMCID: PMC9035142 DOI: 10.1016/j.addr.2022.114197] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with traditional therapies. Viral vectors have been widely explored as a key platform for gene therapy due to their ability to efficiently transport nucleic acid-based therapeutics into the cells. However, the lack of precision in their delivery has led to several off-target toxicities. As such, various strategies in the form of non-viral gene delivery vehicles have been explored and are currenlty employed in several therapies including the SARS-CoV-2 vaccine. In this review, we discuss the opportunities lipid nanoparticles (LNPs) present for efficient gene delivery. We also discuss various synthesis strategies via microfluidics for high throughput fabrication of non-viral gene delivery vehicles. We conclude with the recent applications and clinical trials of these vehicles for the delivery of different genetic materials such as CRISPR editors and RNA for different medical conditions ranging from cancer to rare diseases.
Collapse
Affiliation(s)
- Gyan Prakash
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ahmed Shokr
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA
| | - Niels Willemen
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar 190006, Jammu and Kashmir, India
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA.
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA; Department of Biology, Khalifa University, Abu Dhabi, P.O 127788, United Arab Emirates.
| |
Collapse
|
7
|
Arzi RS, Kay A, Raychman Y, Sosnik A. Excipient-Free Pure Drug Nanoparticles Fabricated by Microfluidic Hydrodynamic Focusing. Pharmaceutics 2021; 13:529. [PMID: 33920184 PMCID: PMC8069523 DOI: 10.3390/pharmaceutics13040529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2023] Open
Abstract
Nanoprecipitation is one of the most versatile methods to produce pure drug nanoparticles (PDNPs) owing to the ability to optimize the properties of the product. Nevertheless, nanoprecipitation may result in broad particle size distribution, low physical stability, and batch-to-batch variability. Microfluidics has emerged as a powerful tool to produce PDNPs in a simple, reproducible, and cost-effective manner with excellent control over the nanoparticle size. In this work, we designed and fabricated T- and Y-shaped Si-made microfluidic devices and used them to produce PDNPs of three kinase inhibitors of different lipophilicity and water-solubility, namely imatinib, dasatinib and tofacitinib, without the use of colloidal stabilizers. PDNPs display hydrodynamic diameter in the 90-350 nm range as measured by dynamic light scattering and a rounded shape as visualized by high-resolution scanning electron microscopy. Powder X-ray diffraction and differential scanning calorimetry confirmed that this method results in highly amorphous nanoparticles. In addition, we show that the flow rate of solvent, the anti-solvent, and the channel geometry of the device play a key role governing the nanoparticle size.
Collapse
Affiliation(s)
- Roni Sverdlov Arzi
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel; (R.S.A.); (Y.R.)
| | - Asaf Kay
- Laboratory of Electrochemical Materials and Devices, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel;
| | - Yulia Raychman
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel; (R.S.A.); (Y.R.)
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel; (R.S.A.); (Y.R.)
| |
Collapse
|
8
|
Duong VA, Nguyen TTL, Maeng HJ. Preparation of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Drug Delivery and the Effects of Preparation Parameters of Solvent Injection Method. Molecules 2020; 25:E4781. [PMID: 33081021 PMCID: PMC7587569 DOI: 10.3390/molecules25204781] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 02/01/2023] Open
Abstract
Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have emerged as potential drug delivery systems for various applications that are produced from physiological, biodegradable, and biocompatible lipids. The methods used to produce SLNs and NLCs have been well investigated and reviewed, but solvent injection method provides an alternative means of preparing these drug carriers. The advantages of solvent injection method include a fast production process, easiness of handling, and applicability in many laboratories without requirement of complicated instruments. The effects of formulations and process parameters of this method on the characteristics of the produced SLNs and NLCs have been investigated in several studies. This review describes the methods currently used to prepare SLNs and NLCs with focus on solvent injection method. We summarize recent development in SLNs and NLCs production using this technique. In addition, the effects of solvent injection process parameters on SLNs and NLCs characteristics are discussed.
Collapse
Affiliation(s)
- Van-An Duong
- Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam;
| | - Thi-Thao-Linh Nguyen
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| |
Collapse
|
9
|
Antisolvent precipitation of lipid nanoparticles in microfluidic systems – A comparative study. Int J Pharm 2020; 579:119167. [DOI: 10.1016/j.ijpharm.2020.119167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 11/24/2022]
|
10
|
Tao J, Chow SF, Zheng Y. Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles. Acta Pharm Sin B 2019; 9:4-18. [PMID: 30766774 PMCID: PMC6361851 DOI: 10.1016/j.apsb.2018.11.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 01/08/2023] Open
Abstract
Nanoparticles are considered to be a powerful approach for the delivery of poorly water-soluble drugs. One of the main challenges is developing an appropriate method for preparation of drug nanoparticles. As a simple, rapid and scalable method, the flash nanoprecipitation (FNP) has been widely used to fabricate these drug nanoparticles, including pure drug nanocrystals, polymeric micelles, polymeric nanoparticles, solid lipid nanoparticles, and polyelectrolyte complexes. This review introduces the application of FNP to produce poorly water-soluble drug nanoparticles by controllable mixing devices, such as confined impinging jets mixer (CIJM), multi-inlet vortex mixer (MIVM) and many other microfluidic mixer systems. The formation mechanisms and processes of drug nanoparticles by FNP are described in detail. Then, the controlling of supersaturation level and mixing rate during the FNP process to tailor the ultrafine drug nanoparticles as well as the influence of drugs, solvent, anti-solvent, stabilizers and temperature on the fabrication are discussed. The ultrafine and uniform nanoparticles of poorly water-soluble drug nanoparticles prepared by CIJM, MIVM and microfluidic mixer systems are reviewed briefly. We believe that the application of microfluidic mixing devices in laboratory with continuous process control and good reproducibility will be benefit for industrial formulation scale-up.
Collapse
Key Words
- ACN, acetonitrile
- CA 320S Seb, cellulose acetate 320S sebacate
- CAP Adp 0.33, cellulose acetate propionate 504-0.2 adipate 0.33
- CAP Adp 0.85, cellulose acetate propionate adipate 0.85
- CFA, cefuroxime axetil
- CIJM, confined impinging jets mixer
- CMCAB, carboxymethyl cellulose acetate butyrate
- CTACl, cetyltrimethylammonium chloride
- DMF, dimethyl formamide
- DMSO, dimethyl sulfoxide
- DSPE-PEG, distearyl phosphatidyl ethanolamine-poly(ethylene glycol)
- Dex-PLLA, dextrose-poly(l-lactic acid)
- FNP, flash nanoprecipitation
- Flash nanoprecipitation
- HPC, hydroxypropyl cellulose
- HPMC, hydroxypropyl methyl cellulose
- HPMCAS, hydroxypropyl methylcellulose acetate succinate
- MIVM, multi-inlet vortex mixer
- Microfluidic mixer device
- NaAlg, sodium alginate
- NaCMC, carboxymethyl cellulose sodium
- Nanoparticles
- P(MePEGCA-co-HDCA), poly(methoxy polyethylene glycol cyanoacrylate-co-hexadecyl cyanoacrylate)
- PAA, poly(acrylic acid)
- PAH, polyallylamine hydrochloride
- PCL, poly(ε-caprolactone)
- PEG, polyethylene glycol
- PEG-PCL, poly(ethylene glycol)-poly(ε-caprolactone)
- PEG-PLA, poly(ethylene glycol)-poly(lactic acid)
- PEG-PLGA, poly(ethylene glycol)-poly(lactic-co-glycolic acid)
- PEG-PS, poly(ethylene glycol)-polystyrene
- PEI, polyethyleneimine
- PEO-PDLLA, poly(ethylene oxide)-poly(d,l-lactic acid)
- PLA, poly(lactic acid)
- PLGA, poly(lactic-co-glycolic acid)
- PMMA, polymethyl methacrylate
- PSS, polyprotomine sulfate
- PVA, polyvinyl alcohol
- PVP, polyvinyl pyrrolidone
- Poorly water-soluble drug
- SDS, sodium dodecyl sulfonate
- SLS, sodium lauryl sulfate
- THF, tetrahydrofuran
- TPGS, tocopheryl polyethylene glycol 1000 succinate
- ε-PL, ε-polylysine
Collapse
Affiliation(s)
- Jinsong Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau, China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau, China
| |
Collapse
|
11
|
Othman R, Vladisavljević GT, Nagy ZK. Preparation of biodegradable polymeric nanoparticles for pharmaceutical applications using glass capillary microfluidics. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.06.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Lin XY, Wang K, Zhang JS, Luo GS. Process Intensification of the Synthesis of Poly(vinyl butyral) Using a Microstructured Chemical System. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b00911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xi Yan Lin
- The State
Key Laboratory
of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Kai Wang
- The State
Key Laboratory
of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ji Song Zhang
- The State
Key Laboratory
of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guang Sheng Luo
- The State
Key Laboratory
of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Liu XH, Liang XZ, Fang X, Zhang WP. Preparation and evaluation of novel octylmethoxycinnamate-loaded solid lipid nanoparticles. Int J Cosmet Sci 2015; 37:446-53. [DOI: 10.1111/ics.12216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/13/2015] [Indexed: 11/28/2022]
Affiliation(s)
- X.-h. Liu
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; No. 100 Haiquan Road Fengxian District Shanghai 201418 China
| | - X.-z. Liang
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; No. 100 Haiquan Road Fengxian District Shanghai 201418 China
| | - X. Fang
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; No. 100 Haiquan Road Fengxian District Shanghai 201418 China
| | - W.-P. Zhang
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; No. 100 Haiquan Road Fengxian District Shanghai 201418 China
| |
Collapse
|
14
|
de Jesus MB, Zuhorn IS. Solid lipid nanoparticles as nucleic acid delivery system: Properties and molecular mechanisms. J Control Release 2015; 201:1-13. [DOI: 10.1016/j.jconrel.2015.01.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 01/19/2023]
|
15
|
Zhao W, Zhang S, Lu M, Shen S, Yun J, Yao K, Xu L, Lin DQ, Guan YX, Yao SJ. Immiscible liquid–liquid slug flow characteristics in the generation of aqueous drops within a rectangular microchannel for preparation of poly(2-hydroxyethylmethacrylate) cryogel beads. Chem Eng Res Des 2014. [DOI: 10.1016/j.cherd.2014.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Capretto L, Carugo D, Mazzitelli S, Nastruzzi C, Zhang X. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Adv Drug Deliv Rev 2013; 65:1496-532. [PMID: 23933616 DOI: 10.1016/j.addr.2013.08.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/10/2013] [Accepted: 08/01/2013] [Indexed: 01/02/2023]
Abstract
In recent years, advancements in the fields of microfluidic and lab-on-a-chip technologies have provided unique opportunities for the implementation of nanomaterial production processes owing to the miniaturisation of the fluidic environment. It has been demonstrated that microfluidic reactors offer a range of advantages compared to conventional batch reactors, including improved controllability and uniformity of nanomaterial characteristics. In addition, the fast mixing achieved within microchannels, and the predictability of the laminar flow conditions, can be leveraged to investigate the nanomaterial formation dynamics. In this article recent developments in the field of microfluidic production of nanomaterials for drug delivery applications are reviewed. The features that make microfluidic reactors a suitable technological platform are discussed in terms of controllability of nanomaterials production. An overview of the various strategies developed for the production of organic nanoparticles and colloidal assemblies is presented, focusing on those nanomaterials that could have an impact on nanomedicine field such as drug nanoparticles, polymeric micelles, liposomes, polymersomes, polyplexes and hybrid nanoparticles. The effect of microfluidic environment on nanomaterials formation dynamics, as well as the use of microdevices as tools for nanomaterial investigation is also discussed.
Collapse
|
17
|
|
18
|
Mijajlovic M, Wright D, Zivkovic V, Bi J, Biggs M. Microfluidic hydrodynamic focusing based synthesis of POPC liposomes for model biological systems. Colloids Surf B Biointerfaces 2013; 104:276-81. [DOI: 10.1016/j.colsurfb.2012.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/09/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
|
19
|
Petschacher C, Eitzlmayr A, Besenhard M, Wagner J, Barthelmes J, Bernkop-Schnürch A, Khinast JG, Zimmer A. Thinking continuously: a microreactor for the production and scale-up of biodegradable, self-assembled nanoparticles. Polym Chem 2013. [DOI: 10.1039/c3py20939c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Bicudo RCS, Santana MHA. Production of hyaluronic acid (HA) nanoparticles by a continuous process inside microchannels: Effects of non-solvents, organic phase flow rate, and HA concentration. Chem Eng Sci 2012. [DOI: 10.1016/j.ces.2012.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Xu L, Tan X, Yun J, Shen S, Zhang S, Tu C, Zhao W, Tian B, Yang G, Yao K. Formulation of Poorly Water-Soluble Compound Loaded Solid Lipid Nanoparticles in a Microchannel System Fabricated by Mechanical Microcutting Method: Puerarin as a Model Drug. Ind Eng Chem Res 2012. [DOI: 10.1021/ie300592u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Linhong Xu
- Faculty of Mechanical &
Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China
- State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
| | - Xu Tan
- Faculty of Mechanical &
Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China
| | | | | | | | | | | | - Bing Tian
- Key Laboratory for Nuclear-Agricultural
Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | |
Collapse
|
22
|
Yun J, Tu C, Lin DQ, Xu L, Guo Y, Shen S, Zhang S, Yao K, Guan YX, Yao SJ. Microchannel liquid-flow focusing and cryo-polymerization preparation of supermacroporous cryogel beads for bioseparation. J Chromatogr A 2012; 1247:81-8. [DOI: 10.1016/j.chroma.2012.05.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/15/2012] [Accepted: 05/22/2012] [Indexed: 01/30/2023]
|
23
|
Lobovkina T, Jacobson GB, Gonzalez EG, Hickerson RP, Leake D, Kaspar RL, Contag CH, Zare RN. In vivo sustained release of siRNA from solid lipid nanoparticles. ACS NANO 2011; 5:9977-83. [PMID: 22077198 PMCID: PMC3246574 DOI: 10.1021/nn203745n] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Small interfering RNA (siRNA) is a highly potent drug in gene-based therapy with a challenge of being delivered in a sustained manner. Nanoparticle drug delivery systems allow for incorporating and controlled release of therapeutic payloads. We demonstrate that solid lipid nanoparticles can incorporate and provide sustained release of siRNA. Tristearin solid lipid nanoparticles, made by nanoprecipitation, were loaded with siRNA (4.4-5.5 wt % loading ratio) using a hydrophobic ion pairing approach that employs the cationic lipid DOTAP. Intradermal injection of these nanocarriers in mouse footpads resulted in prolonged siRNA release over a period of 10-13 days. In vitro cell studies showed that the released siRNA retained its activity. Nanoparticles developed in this study offer an alternative approach to polymeric nanoparticles for encapsulation and sustained delivery of siRNA with the advantage of being prepared from physiologically well-tolerated materials.
Collapse
Affiliation(s)
- Tatsiana Lobovkina
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305-5080 USA
| | - Gunilla B. Jacobson
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305-5080 USA
| | - Emilio Gonzalez Gonzalez
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305-5427 USA
- Molecular Imaging Program, Stanford University, Stanford, CA 94305-5427 USA
| | | | - Devin Leake
- Thermo Fisher Scientific, Dharmacon Products, 2650 Crescent Drive, Lafayette, CO 80026, USA
| | - Roger L. Kaspar
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305-5427 USA
- TransDerm Inc., 2161 Delaware Ave., Suite D, Santa Cruz, CA 95060 USA
| | - Christopher H. Contag
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305-5427 USA
- Molecular Imaging Program, Stanford University, Stanford, CA 94305-5427 USA
- Departments of Radiology, Microbiology, and Immunology, Stanford School of Medicine, Stanford, CA 94305-5427 USA
| | - Richard N. Zare
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305-5080 USA
- Address correspondence to
| |
Collapse
|
24
|
Capretto L, Carugo D, Cheng W, Hill M, Zhang X. Continuous-flow production of polymeric micelles in microreactors: experimental and computational analysis. J Colloid Interface Sci 2011; 357:243-51. [PMID: 21353232 DOI: 10.1016/j.jcis.2011.01.085] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/22/2011] [Accepted: 01/25/2011] [Indexed: 11/24/2022]
Abstract
We report the development of a microfluidic-based process for the production of polymeric micelles (PMs) in continuous-flow microreactors where Pluronic® tri-block copolymer is used as model polymeric biomaterial relating to drug delivery applications. A flow focusing configuration is used enabling a controllable, and fast mixing process to assist the formation of polymeric micelles through nanoprecipitation which is triggered by a solvent exchange process when organic solutions of the polymer mixed with a non-solvent. We experientially investigate the effect of polymer concentration, flow rate ratio and microreactor dimension on the PMs size characteristics. The mixing process within the microfluidic reactors is further analyzed by computational modeling in order to understand the hydrodynamic process and its implication for the polymeric micelles formation process. The results obtained show that besides the effect of the flow rate ratio, the chemical environment in which the aggregation takes place plays an important role in determining the dimensional characteristics of the produced polymeric micelles. It is demonstrated that microfluidic reactors provide a useful platform for the continuous-flow production of polymeric micelles with improved controllability, reproducibility, and homogeneity of the size characteristics.
Collapse
Affiliation(s)
- Lorenzo Capretto
- Bioengineering Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | | | | | | | | |
Collapse
|
25
|
Yun J, Lei Q, Zhang S, Shen S, Yao K. Slug flow characteristics of gas–miscible liquids in a rectangular microchannel with cross and T-shaped junctions. Chem Eng Sci 2010. [DOI: 10.1016/j.ces.2010.06.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Liu W, Yang XL, Ho WSW. Preparation of uniform-sized multiple emulsions and micro/nano particulates for drug delivery by membrane emulsification. J Pharm Sci 2010; 100:75-93. [PMID: 20589949 DOI: 10.1002/jps.22272] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 12/17/2022]
Abstract
Much attention has in recent years been paid to fine applications of drug delivery systems, such as multiple emulsions, micro/nano solid lipid and polymer particles (spheres or capsules). Precise control of particle size and size distribution is especially important in such fine applications. Membrane emulsification can be used to prepare uniform-sized multiple emulsions and micro/nano particulates for drug delivery. It is a promising technique because of the better control of size and size distribution, the mildness of the process, the low energy consumption, easy operation and simple equipment, and amendable for large scale production. This review describes the state of the art of membrane emulsification in the preparation of monodisperse multiple emulsions and micro/nano particulates for drug delivery in recent years. The principles, influence of process parameters, advantages and disadvantages, and applications in preparing different types of drug delivery systems are reviewed. It can be concluded that the membrane emulsification technique in preparing emulsion/particulate products for drug delivery will further expand in the near future in conjunction with more basic investigations on this technique.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | |
Collapse
|
27
|
Zhang HX, Wang JX, Shao L, Chen JF. Microfluidic Fabrication of Monodispersed Pharmaceutical Colloidal Spheres of Atorvastatin Calcium with Tunable Sizes. Ind Eng Chem Res 2010. [DOI: 10.1021/ie901365w] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hai-Xia Zhang
- Key Lab for Nanomaterials, Ministry of Education, and Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Jie-Xin Wang
- Key Lab for Nanomaterials, Ministry of Education, and Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Lei Shao
- Key Lab for Nanomaterials, Ministry of Education, and Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Jian-Feng Chen
- Key Lab for Nanomaterials, Ministry of Education, and Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| |
Collapse
|
28
|
Continuous production of solid lipid nanoparticles by liquid flow-focusing and gas displacing method in microchannels. Chem Eng Sci 2009. [DOI: 10.1016/j.ces.2009.06.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|