1
|
Paul A, Liu P, G Mahmoud A, Rakočević L, C B A Alegria E, Khan RA, C Guedes da Silva MF, Wang Z, J L Pombeiro A. Highly efficient Cu(II) coordination polymer catalyst for the conversion of hazardous volatile organic compounds. CHEMOSPHERE 2024; 364:143001. [PMID: 39121961 DOI: 10.1016/j.chemosphere.2024.143001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Three novel coordination polymers (CPs), namely [Cu(μ-1κO,2κN-L)2]n (1), [Zn (μ-1κO,2κN-L)2(H2O)2]n (2) and [Cd (μ-1κOO',2κN-L)2]n (3) [where HL = 4-(pyrimidin-5-ylcarbamoyl)benzoic acid], were synthesized and characterized by elemental analysis, ATR-IR, TGA, XPS and single-crystal X-ray diffraction. Despite having the same organic ligand, the various metal cations had an impact in the subsequent frameworks. Hirshfeld surface analysis was performed to investigate the intermolecular interactions and to examine the stability of the crystal structures of the three polymers. Their catalytic performances were screened for the peroxidative oxidation of Volatile Organic Compounds (VOCs), with toluene and p-xylene selected as model substrates. Tert-butyl hydroperoxide (t-BuOOH or TBHP) (aq. 70 %) was employed as the oxidant. The catalytic oxidation of toluene yielded benzyl alcohol, benzaldehyde and benzoic acid. The copper CP 1 exhibited the highest total yield for toluene oxidation, reaching approximately 36% in an aqueous medium. For p-xylene oxidation, tolualdehyde, methylbenzyl alcohol, and toluic acid were produced as the primary products, accompanied by minor ones. The experiments were conducted under diverse conditions, manipulating key parameters such as the choice of solvent (water or acetonitrile), type of oxidant (t-BuOOH or H2O2), the concentration of the oxidant and reaction temperature. In the presence of catalyst 1, a maximum total yield of ca. 80% was achieved for p-xylene oxidation.
Collapse
Affiliation(s)
- Anup Paul
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal.
| | - Peixi Liu
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal; State Key Laboratory of Clean Energy Utilization, Zhejiang University, 310027, Hangzhou, PR China
| | - Abdallah G Mahmoud
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal; Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Lazar Rakočević
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11000, Belgrade, Serbia
| | - Elisabete C B A Alegria
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal; Departamento de Engenharia Química, ISEL, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Portugal.
| | - Rais Ahmad Khan
- Department of Chemistry, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal; Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Zhihua Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 310027, Hangzhou, PR China
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
| |
Collapse
|
2
|
Guo J, Li J, Xing X, Xiong W, Li H. Development of MOF-derived Co 3O 4 microspheres composed of fiber stacks for simultaneous electrochemical detection of Pb 2+ and Cu 2. Mikrochim Acta 2024; 191:542. [PMID: 39153097 PMCID: PMC11330412 DOI: 10.1007/s00604-024-06623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
As an ideal transition metal oxide, Co3O4 is a P-type semiconductor with excellent electrical conductivity, non-toxicity and low cost. This work reports the successful construction of Co3O4 materials derived from metal-organic frameworks (MOFs) using a surfactant micelle template-solvothermal method. The modified electrodes are investigated for their ability to electrochemically detect Pb2+ and Cu2+ in aqueous environments. By adjusting the mass ratios of alkaline modifiers, the morphological microstructures of Co3O4-X exhibit a transition from distinctive microspheres composed of fiber stacks to rods. The results indicate that Co3O4-1(NH4F/CO(NH2)2 = 1:0) has a distinctive microsphere structure composed of stacked fibers, unlike the other two materials. Co3O4-1/GCE is used as the active material of the modified electrode, it shows the largest peak response currents to Pb2+ and Cu2+, and efficiently detects Pb2+ and Cu2+ in the aqueous environment individually and simultaneously. The linear response range of Co3O4-1/GCE for the simultaneous detection of Pb2+ and Cu2+ is 0.5-1.5 μM, with the limits of detection (LOD, S/N = 3) are 9.77 nM and 14.97 nM, respectively. The material exhibits a favorable electrochemical response, via a distinctive Co3O4-1 microsphere structure composed of stacked fibers. This structure enhances the number of active adsorption sites on the material, thereby facilitating the adsorption of heavy metal ions (HMIs). The presence of oxygen vacancies (OV) can also facilitate the adsorption of ions. The Co3O4-1/GCE electrode also exhibits excellent anti-interference ability, stability, and repeatability. This is of great practical significance for detecting Pb2+ and Cu2+ in real water samples and provides a new approach for developing high-performance metal oxide electrochemical sensors derived from MOFs.
Collapse
Affiliation(s)
- Jieli Guo
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Jin Li
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiujing Xing
- Chemistry Department, University of California, Davis, 95616, USA
| | - Wei Xiong
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
3
|
Chai Q, Li C, Song L, Liu C, Peng T, Lin C, Zhang Y, Li S, Guo Q, Sun S, Dai H, Zheng X. The influence of crystal facet on the catalytic performance of MOFs-derived NiO with different morphologies for the total oxidation of propane: The defect engineering dominated by solvent regulation effect. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134917. [PMID: 38889472 DOI: 10.1016/j.jhazmat.2024.134917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Crystal facet and defect engineering are crucial for designing heterogeneous catalysts. In this study, different solvents were utilized to generate NiO with distinct shapes (hexagonal layers, rods, and spheres) using nickel-based metal-organic frameworks (MOFs) as precursors. It was shown that the exposed crystal facets of NiO with different morphologies differed from each other. Various characterization techniques and density functional theory (DFT) calculations revealed that hexagonal-layered NiO (NiO-L) possessed excellent low-temperature reducibility and oxygen migration ability. The (111) crystal plane of NiO-L contained more lattice defects and oxygen vacancies, resulting in enhanced propane oxidation due to its highest O2 adsorption energy. Furthermore, the higher the surface active oxygen species and surface oxygen vacancy concentrations, the lower the C-H activation energy of the NiO catalyst and hence the better the catalytic activity for the oxidation of propane. Consequently, NiO-L exhibited remarkable catalytic activity and good stability for propane oxidation. This study provided a simple strategy for controlling NiO crystal facets, and demonstrated that the oxygen defects could be more easily formed on NiO(111) facets, thus would be beneficial for the activation of C-H bonds in propane. In addition, the results of this work can be extended to the other fields, such as propane oxidation to propene, fuel cells, and photocatalysis.
Collapse
Affiliation(s)
- Qianqian Chai
- School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Chuanqiang Li
- School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Liyun Song
- Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Cui Liu
- Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Tao Peng
- School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Chuanchuan Lin
- Department of Blood Transfusion, Laboratory of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yangyang Zhang
- Department of Blood Transfusion, Laboratory of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Shimin Li
- School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Qiang Guo
- School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Shaorui Sun
- Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Xuxu Zheng
- School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| |
Collapse
|
4
|
Liu J, Xu J, Jian P. Manipulation of Electronic Effect and Assembly Architecture to Invoke Oxidation of Ethylbenzene by Hierarchical Co 3O 4 Wreaths. Inorg Chem 2024; 63:8938-8947. [PMID: 38682566 DOI: 10.1021/acs.inorgchem.4c01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
A high-performance transition-metal oxide catalyst can be designed by appropriately integrating the concepts of morphology regulation and electronic structure modulation. In this work, hierarchical Co3O4 wreaths (CCW) enriched with oxygen vacancies (Ov) were facilely constructed for the selective oxidation of ethylbenzene (EB) to acetophenone (AP). Under the screened optimal reaction conditions, the CCW catalyst can offer a 79.1% conversion of EB (ri = 0.244 mol gcat-1 h-1) accompanied by a selectivity of 92.3% to AP. The good reaction performance can be attributed to the cooperation of defect engineering and architecture design, which can synergistically facilitate the EB oxidation performance by augmenting the intrinsic reactivity and accessibility of active sites. This work presents a reliable route to construct a high-performance transitional metal oxide catalyst via manipulation of electronic effect and assembly architecture for the selective oxidation of EB and beyond.
Collapse
Affiliation(s)
- Jiangyong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Jiajun Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Panming Jian
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| |
Collapse
|
5
|
Zhang H, Wu G, Liu Q, Liu Z, Yang Q, Cui Q, Bao X, Yuan P. Bifunctional Cu-incorporated carbon nanospheres via in-situ complexation strategy as efficient toluene adsorbents and antibacterial agents. CHEMOSPHERE 2024; 349:140876. [PMID: 38081525 DOI: 10.1016/j.chemosphere.2023.140876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/11/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Carbon adsorbents have been widely used to remove indoor volatile organic compounds (VOCs), however, the proliferation of bacteria on the carbon adsorbents may deteriorate the indoor air quality and thus pose a serious threat to human health. Herein, we report the synthesis of antibacterial porous carbon spheres (carbonized aminophenol-formaldehyde resin, CAF) with well-dispersed Cu species via an in situ incorporation of Cu2+ during the polymerization of 3-aminophenol-formaldehyde resin followed by a thermal carbonization and reduction process. Compared with CAF, the Cu/CAF-x nanocomposites with Cu loading show a much higher specific surface area (>700 m2 g-1vs. 569 m2 g-1 for CAF). In addition, the pore size of Cu/CAF-x is ranging from 0.7 to 1.68 nm, which is exactly conducive to adsorb the toluene molecules. As a result, the toluene adsorption capacity is improved from 123.50 mg g-1 for CAF to >170 mg g-1 for Cu/CAF-x. More importantly, such adsorbents possess excellent antibacterial performance, the Cu/CAF-10 (10 wt% of Cu loading) with a concentration of 50 μg mL-1 can completely kill the E. coli within 30 min. Our work paves the way to the development of bifunctional adsorbents with both efficient VOCs adsorption and excellent antibacterial performance.
Collapse
Affiliation(s)
- Hongwei Zhang
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou, 350002, China
| | - Guanghui Wu
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou, 350002, China
| | - Qunhong Liu
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou, 350002, China
| | - Zhichen Liu
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou, 350002, China
| | - Qin Yang
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou, 350002, China
| | - Qingyan Cui
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou, 350002, China
| | - Xiaojun Bao
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou, 350002, China; Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| | - Pei Yuan
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou, 350002, China; Qingyuan Innovation Laboratory, Quanzhou, 362801, China.
| |
Collapse
|
6
|
Bai B, Huang Y, Chen J, Lei J, Wang S, Wang J. Ultrathin MnO 2 with strong lattice disorder for catalytic oxidation of volatile organic compounds. J Colloid Interface Sci 2024; 653:1205-1216. [PMID: 37797496 DOI: 10.1016/j.jcis.2023.09.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/17/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Catalytic oxidation proves the most promising technology for volatile organic compounds (VOCs) abatement. Lattice disorder plays a crucial role in the catalytic activity of catalysts due to the exposure of more active sites. Inspired by this, we successfully prepared a series of ε-MnO2 with different lattice disorder defects via several simple methods and applied them to the catalytic oxidation of two typical VOCs (toluene and acetone). Various characterizations and performance tests confirm that the ultrathin (1.4-1.8 nm) structure and strong lattice disorder can enhance the low temperature reduction and reactive oxygen species, so that MnO2-R exhibits excellent toluene and acetone oxidation activities. In-situ DRIFTS tests were carried out to detect reaction intermediates in the toluene and acetone oxidation process on the catalyst surface. Moreover, we propose a possible synergistic mechanism for toluene and acetone mixtures catalytic oxidation. This work reveals the important role of lattice disorder defects in the catalytic oxidation of VOCs on Mn-based catalysts, and deepens the insights of the reaction path in toluene and acetone catalytic oxidation.
Collapse
Affiliation(s)
- Baobao Bai
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China
| | - Ying Huang
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China
| | - Jiajia Chen
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China
| | - Juan Lei
- Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030018, Shanxi, PR China.
| | - Shuang Wang
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China.
| | - Jiancheng Wang
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China
| |
Collapse
|
7
|
Fan WK, Tahir M, Alias H. Synergistic Effect of Nickel Nanoparticles Dispersed on MOF-Derived Defective Co 3O 4 In Situ Grown over TiO 2 Nanowires toward UV and Visible Light Driven Photothermal CO 2 Methanation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54353-54372. [PMID: 37963084 DOI: 10.1021/acsami.3c10022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Catalytic CO2 hydrogenation is an effective approach to producing clean fuels, but this process is expensive, in addition to the low efficiency of catalysts. Thus, photothermal CO2 hydrogenation can effectively utilize solar energy for CH4 production. Metal-organic framework (MOF) derived materials with a controlled structure and morphology are promising to give a high number of active sites and photostability in thermal catalytic reactions. For the first time, a novel heterostructure catalyst was synthesized using a facile approach to in situ grow MOF-derived 0D Co3O4 over 1D TiO2 nanowires (NWs). The original 3D dodecahedral structure of the MOF is engineered into novel 0D Co3O4 nanospheres, which were uniformly embedded over Ni-dispersed 1D TiO2 NWs. In situ prepared 10Ni-7Co3O4@TiO2 NWs-I achieved an excellent photothermal CH4 evolution rate of 8.28 mmol/h at 250 °C under low-intensity visible light, whereas UV light treatment further increased activity by 1.2-fold. UV irradiations promoted high CH4 production while improving the susceptibility of the catalyst to visible light irradiation. The photothermal effect is prominent at lower temperatures, due to the harmonization of both solar and thermal energy. By paralleling with mechanically assembled 10Ni-7Co3O4/TiO2 NWs-M, the catalytic performance of the in situ approach is far superior, attributing to the morphological transformation of 0D Co3O4, which induced intimate interfacial interactions, formation of oxygen vacancies and boosted photo-to-thermal effects. The co-existence of metallic/metal oxide Ni-Co provided beneficial synergies, enhanced photo-to-thermal effects, and improved charge transfer kinetics of the composite. This work uncovers a facile approach to engineering the morphology of MOF derivatives for efficient photothermal CO2 methanation.
Collapse
Affiliation(s)
- Wei Keen Fan
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 Johor, Malaysia
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, United Arab Emirates (UAE) University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Hajar Alias
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 Johor, Malaysia
| |
Collapse
|
8
|
Rao R, Ma S, Gao B, Bi F, Chen Y, Yang Y, Liu N, Wu M, Zhang X. Recent advances of metal-organic framework-based and derivative materials in the heterogeneous catalytic removal of volatile organic compounds. J Colloid Interface Sci 2023; 636:55-72. [PMID: 36621129 DOI: 10.1016/j.jcis.2022.12.167] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/06/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Since the environmental hazards of volatile organic compounds (VOCs) are well known, heterogeneous catalysis has become one of the most popular methods to treat VOCs due to its environmental friendliness and simplicity of operation. Although a large number of reports have reviewed the application of catalytic oxidation for the degradation of VOCs, relatively few reports are based on this direction of metal organic frameworks (MOFs) and MOF derivatives. Herein, this paper reviews the recent applications of heterogeneous catalytic technologies in the degradation of VOCs, including photocatalysis, thermal catalysis and other catalytic approaches. The applications of MOFs and their derivatives in VOCs degradation, such as the progress of MOF-derived metal oxides in the treatment of toluene, were highlighted. The mechanisms of VOCs degradation by different catalytic approaches were systematically presented. Finally, we presented the views and directions of VOCs treatment technology development. We hope that this reaction type-oriented review will provide important insights into MOFs and MOF-derived materials for VOCs pollution control.
Collapse
Affiliation(s)
- Renzhi Rao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuting Ma
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bin Gao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fukun Bi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yifan Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yang Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ning Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
9
|
Chen J, Bai B, Lei J, Wang P, Wang S, Li J. Mn3O4 derived from Mn-MOFs with hydroxyl group ligands for efficient toluene catalytic oxidation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Liu Y, Fu J, He J, Wang B, He Y, Luo L, Wang L, Chen C, Shen F, Zhang Y. Synthesis of a superhydrophilic coral-like reduced graphene oxide aerogel and its application to pollutant capture in wastewater treatment. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Insights into the Redox and Structural Properties of CoOx and MnOx: Fundamental Factors Affecting the Catalytic Performance in the Oxidation Process of VOCs. Catalysts 2022. [DOI: 10.3390/catal12101134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Volatile organic compound (VOC) abatement has become imperative nowadays due to their harmful effect on human health and on the environment. Catalytic oxidation has appeared as an innovative and promising approach, as the pollutants can be totally oxidized at moderate operating temperatures under 500 °C. The most active single oxides in the total oxidation of hydrocarbons have been shown to be manganese and cobalt oxides. The main factors affecting the catalytic performances of several metal-oxide catalysts, including CoOx and MnOx, in relation to the total oxidation of hydrocarbons have been reviewed. The influence of these factors is directly related to the Mars–van Krevelen mechanism, which is known to be applied in the case of the oxidation of VOCs in general and hydrocarbons in particular, using transitional metal oxides as catalysts. The catalytic behaviors of the studied oxides could be closely related to their redox properties, their nonstoichiometric, defective structure, and their lattice oxygen mobility. The control of the structural and textural properties of the studied metal oxides, such as specific surface area and specific morphology, plays an important role in catalytic applications. A fundamental challenge in the development of efficient and low-cost catalysts is to choose the criteria for selecting them. Therefore, this research could be useful for tailoring advanced and high-performance catalysts for the total oxidation of VOCs.
Collapse
|
12
|
Guo J, Wang G, Cui S, Xia B, Liu Z, Zang SQ. Vacancy and Strain Engineering of Co3O4 for Efficient Water Oxidation. J Colloid Interface Sci 2022; 629:346-354. [DOI: 10.1016/j.jcis.2022.08.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/03/2022] [Accepted: 08/25/2022] [Indexed: 10/15/2022]
|
13
|
Effect of one-dimensional ceria morphology on CuO/CeO2 catalysts for CO preferential oxidation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Lei J, Wang S, Li J, Xu Y, Li S. Different effect of Y (Y = Cu, Mn, Fe, Ni) doping on Co3O4 derived from Co-MOF for toluene catalytic destruction. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Liu Q, Zhao Q, Luo M, Yang Z, Wang F, Li H. Dendritic mesoporous silica nanosphere supported highly dispersed Pd-CoOx catalysts for catalytic oxidation of toluene. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Lei J, Wang P, Wang S, Li J, Xu Y, Li S. Enhancement effect of Mn doping on Co3O4 derived from Co-MOF for toluene catalytic oxidation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Construction of OH sites within MIL-101(Cr)-NH2 framework for enhanced CO2 adsorption and CO2/N2 selectivity. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0799-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Ma Y, Wang L, Ma J, Wang H, Zhang C, Deng H, He H. Investigation into the Enhanced Catalytic Oxidation of o-Xylene over MOF-Derived Co 3O 4 with Different Shapes: The Role of Surface Twofold-Coordinate Lattice Oxygen (O 2f). ACS Catal 2021. [DOI: 10.1021/acscatal.1c01116] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ying Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lian Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Deng
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Yao Y, Yu M, Yin H, Zhang Y, Zheng H, Zhang Y, Wang S. Nano-Fe0 embedded in N-doped carbon architectures for enhanced oxidation of aqueous contaminants. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Liu Z, Cheng L, Zeng J, Hu X, Zhangxue S, Yuan S, Bo Q, Zhang B, Jiang Y. Synthesis, characterization and catalytic performance of nanocrystalline Co3O4 towards propane combustion: Effects of small molecular carboxylic acids. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|