1
|
Delikonstantis E, Vettas P, Cameli F, Scapinello M, Nikiforov A, Marin GB, Van Geem KM, Stefanidis GD. Valorizing the Steel Industry Off-Gases: Proof of Concept and Plantwide Design of an Electrified and Catalyst-Free Reverse Water-Gas-Shift-Based Route to Methanol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14961-14972. [PMID: 37755875 DOI: 10.1021/acs.est.3c05246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Conversion of steel industry off-gases to value-added chemicals enabled by renewable electricity can significantly reduce the environmental burden of the steelmaking process. Herein, we demonstrate that CO2 reduction by H2, both contained in steel mill off-gases, to form syngas via the reverse water-gas-shift reaction is effectively performed by nanosecond pulsed discharges at atmospheric pressure. The experimental results suggest the following: (i) An optimum interelectrode distance exists, maximizing CO2 conversion. (ii) CO2 conversion at constant SEI follows a nonmonotonic trend with H2 excess. CO2 conversion increases with H2 excess up to H2:CO2 = 3:1 upon shifting the chemical equilibrium. At larger H2:CO2, both gas cooling, promoted by the high H2 content, and hindered CO2 collisions in a highly diluted stream hamper CO2 conversion. (iii) SEI enhances CO2 conversion, but the effect decreases with increasing SEI due to equilibrium limitations. A stoichiometric H2:CO2 feed ratio in the plasma reactor is recommended for higher energy efficiency. Intensifying MeOH productivity via SEI elevation is not advised as a 2-fold SEI increase results only in 17% higher MeOH throughput.
Collapse
Affiliation(s)
| | - Panagiotis Vettas
- School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens, Greece
| | - Fabio Cameli
- Laboratory for Chemical Technology, Ghent University, Tech Lane Ghent Science Park 125, B-9052 Gent, Belgium
| | - Marco Scapinello
- Laboratory for Chemical Technology, Ghent University, Tech Lane Ghent Science Park 125, B-9052 Gent, Belgium
| | - Anton Nikiforov
- Department of Applied Physics, Ghent University, Jozef Plateaustraat 41, B-9000 Ghent, Belgium
| | - Guy B Marin
- Laboratory for Chemical Technology, Ghent University, Tech Lane Ghent Science Park 125, B-9052 Gent, Belgium
| | - Kevin M Van Geem
- Laboratory for Chemical Technology, Ghent University, Tech Lane Ghent Science Park 125, B-9052 Gent, Belgium
| | - Georgios D Stefanidis
- School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens, Greece
- Laboratory for Chemical Technology, Ghent University, Tech Lane Ghent Science Park 125, B-9052 Gent, Belgium
| |
Collapse
|
2
|
Sun Y, Wu J, Wang Y, Li J, Wang N, Harding J, Mo S, Chen L, Chen P, Fu M, Ye D, Huang J, Tu X. Plasma-Catalytic CO 2 Hydrogenation over a Pd/ZnO Catalyst: In Situ Probing of Gas-Phase and Surface Reactions. JACS AU 2022; 2:1800-1810. [PMID: 36032530 PMCID: PMC9400056 DOI: 10.1021/jacsau.2c00028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plasma-catalytic CO2 hydrogenation is a complex chemical process combining plasma-assisted gas-phase and surface reactions. Herein, we investigated CO2 hydrogenation over Pd/ZnO and ZnO in a tubular dielectric barrier discharge (DBD) reactor at ambient pressure. Compared to the CO2 hydrogenation using Plasma Only or Plasma + ZnO, placing Pd/ZnO in the DBD almost doubled the conversion of CO2 (36.7%) and CO yield (35.5%). The reaction pathways in the plasma-enhanced catalytic hydrogenation of CO2 were investigated by in situ Fourier transform infrared (FTIR) spectroscopy using a novel integrated in situ DBD/FTIR gas cell reactor, combined with online mass spectrometry (MS) analysis, kinetic analysis, and emission spectroscopic measurements. In plasma CO2 hydrogenation over Pd/ZnO, the hydrogenation of adsorbed surface CO2 on Pd/ZnO is the dominant reaction route for the enhanced CO2 conversion, which can be ascribed to the generation of a ZnO x overlay as a result of the strong metal-support interactions (SMSI) at the Pd-ZnO interface and the presence of abundant H species at the surface of Pd/ZnO; however, this important surface reaction can be limited in the Plasma + ZnO system due to a lack of active H species present on the ZnO surface and the absence of the SMSI. Instead, CO2 splitting to CO, both in the plasma gas phase and on the surface of ZnO, is believed to make an important contribution to the conversion of CO2 in the Plasma + ZnO system.
Collapse
Affiliation(s)
- Yuhai Sun
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- School
of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
- International
Science and Technology Cooperation Platform for Low-Carbon Recycling
of Waste and Green Development, Zhejiang
Gongshang University, Hangzhou 310012, China
| | - Junliang Wu
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China
| | - Yaolin Wang
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Jingjing Li
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ni Wang
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Jonathan Harding
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Shengpeng Mo
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Limin Chen
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China
| | - Peirong Chen
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China
| | - Mingli Fu
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China
| | - Daiqi Ye
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China
| | - Jun Huang
- Laboratory
for Catalysis Engineering, School of Chemical and Biomolecular Engineering,
Sydney Nano Institute, The University of
Sydney, Sydney, NSW 2006, Australia
| | - Xin Tu
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| |
Collapse
|
3
|
Ding X, Liu X, Cheng J, Kong L, Guo Y. Advanced catalytic CO 2 hydrogenation on Ni/ZrO 2 with light induced oxygen vacancy formation in photothermal conditions at medium-low temperatures. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00439a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective CH4 formation from CO2 hydrogenation is an appealing yet challenging sunlight-driven or thermal-driven process due to low solar energy utilization efficiency or high energy input.
Collapse
Affiliation(s)
- Xin Ding
- Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Xu Liu
- Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Jiahui Cheng
- Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Lingzhao Kong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
| | - Yang Guo
- Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| |
Collapse
|