1
|
Ji W, Zhang M, Fan X, Zou H, Meng Y, Cai Y, Meng F, Wang H, Lou Y. Surface Structure Analysis and Formaldehyde Removal Mechanism of Lotus Shell Biochar: An Experimental and Theoretical Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37499073 DOI: 10.1021/acs.langmuir.3c01292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The adsorption of gaseous HCHO by raw lotus shell biochar carbonized at 500, 700, and 900 °C from the perspective of its internal crystal structure and surface functional groups was investigated by an integrated approach of experiments and density functional theory calculations. The results showed that lotus shell biochar carbonized at 700 °C had the best adsorption effect at a HCHO concentration of 10.50 ± 0.30 mg/m3, with an adsorption removal rate of 87.64%. The HCHO removal efficiency by lotus shell biochar carbonized at 500 and 900 °C was determined to be 80.96 and 83.07%, respectively. The HCHO adsorption on lotus shell biochar carbonized at 700 °C conformed to pseudo-second-order kinetics and was predominantly controlled by chemical adsorption. The Langmuir isotherm was the underlying mechanism for the monomolecular layer adsorption with a maximum adsorption capacity of 0.329 mg/g. The density functional theory calculations revealed that the adsorption of HCHO on the surface of CaCO3 and KCl in lotus shell biochar carbonized at 700 °C was a chemical adsorption process, with adsorption energies ranging from -64.375 to -87.554 kJ/mol. The strong interaction between HCHO and the surface was attributed to the electron transfer from HCHO to the surface, facilitated by metal atoms (Ca or K) and the oxygen atoms of HCHO. The carboxyl group on the surface of lotus shell biochar carbonized at 700 °C was identified as the key functional group responsible for HCHO adsorption. This study advanced our understanding of the environmental functions of inorganic crystals and surface functional groups in raw biochar and will enable the further development of biochar materials in environmental applications.
Collapse
Affiliation(s)
- Wenchao Ji
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| | - Manping Zhang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| | - Xingjun Fan
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| | - Haiming Zou
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| | - Yuanyuan Meng
- College of Chemistry & Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yongbing Cai
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| | - Fande Meng
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| | - Hongying Wang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| | - Yu Lou
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| |
Collapse
|
2
|
Fang Z, Xu H, Xu Q, Meng L, Lu N, Li R, Müller-Buschbaum P, Zhong Q. High Efficiency of Formaldehyde Removal and Anti-bacterial Capability Realized by a Multi-Scale Micro-Nano Channel Structure in Hybrid Hydrogel Coating Cross-Linked on Microfiber-Based Polyurethane. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37429826 DOI: 10.1021/acsami.3c07210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Inspired by the transpiration in the tree stem having a vertical and porous channel structure, high efficiency of formaldehyde removal is realized by the multi-scale micro-nano channel structure in a hybrid P(AAm/DA)-Ag/MgO hydrogel coating cross-linked on microfiber-based polyurethane. The present multi-scale channel structure is formed by a joint effect of directional freezing and redox polymerization as well as nanoparticles-induced porosity. Due to the large number of vertically aligned channels of micrometer size and an embedded porous structure of nanometer size, the specific surface area is significantly increased. Therefore, formaldehyde from solution can be rapidly adsorbed by the amine group in the hydrogels and efficiently degraded by the Ag/MgO nanoparticles. By only immersing in formaldehyde solution (0.2 mg mL-1) for 12 h, 83.8% formaldehyde is removed by the hybrid hydrogels with a multi-scale channel structure, which is 60.8% faster than that observed in hydrogels without any channel structure. After cross-linking the hybrid hydrogels with a multi-scale channel structure to microfiber-based polyurethane and exposing to the formaldehyde vapor atmosphere, 79.2% formaldehyde is removed in 12 h, which is again 11.2% higher than that observed in hydrogels without any channel structure. Unlike the traditional approaches to remove formaldehyde by the light catalyst, no external conditions are required in our present hybrid hydrogel coating, which is very suitable for indoor use. In addition, due to the formation of free radicals by the Ag/MgO nanoparticles, the cross-linked hybrid hydrogel coating on polyurethane synthetic leather also shows good anti-bacterial capability. 99.99% of Staphylococcus aureus can be killed on the surface. Based on the good ability to remove formaldehyde and to kill bacteria, the obtained microfiber-based polyurethane cross-linked with a hybrid hydrogel coating containing a multi-scale channel structure can be used in a broad field of applications, such as furniture and car interior parts, to simultaneously solve the indoor air pollution and hygiene problems.
Collapse
Affiliation(s)
- Zheng Fang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 928 Second Avenue, 310018 Hangzhou, China
| | - Huawei Xu
- Hexin Kuraray Micro Fiber Leather (Jiaxing) Co. Ltd., 777 Pingnan Road, 314003 Jiaxing, China
| | - Qiang Xu
- Hexin Kuraray Micro Fiber Leather (Jiaxing) Co. Ltd., 777 Pingnan Road, 314003 Jiaxing, China
| | - LiuBang Meng
- Hexin Kuraray Micro Fiber Leather (Jiaxing) Co. Ltd., 777 Pingnan Road, 314003 Jiaxing, China
| | - Nan Lu
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science & Engineering, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Renhong Li
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science & Engineering, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Peter Müller-Buschbaum
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Qi Zhong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 928 Second Avenue, 310018 Hangzhou, China
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
| |
Collapse
|
3
|
Wang R, Luan X, Yaseen M, Bao J, Li J, Zhao Z, Zhao Z. Swellable Array Strategy Based on Designed Flexible Double Hypercross-linked Polymers for Synergistic Adsorption of Toluene and Formaldehyde. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6682-6694. [PMID: 37053562 DOI: 10.1021/acs.est.3c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
High-capacity adsorption and removal of complex volatile organic compounds (VOCs) from real-world environments is a tough challenge for researchers. Herein, a swellable array adsorption strategy was proposed to realize the synergistic adsorption of toluene and formaldehyde on the flexible double hypercross-linked polymers (FD-HCPs). FD-HCPs exhibited multiple adsorption sites awarded by a hydrophobic benzene ring/pyrrole ring and a hydrophilic hydroxyl structural unit. The array benzene ring, hydroxyl, and pyrrole N sites in FD-HCPs effectively captured toluene and formaldehyde molecules through π-π conjugation and electrostatic interaction and weakened their mutual competitive adsorption. Interestingly, the strong binding force of toluene molecules to the skeleton deformed the pore structure of FD-HCPs and generated new adsorption microenvironments for the other adsorbate. This behavior significantly improved the adsorption capacity of FD-HCPs for toluene and formaldehyde by 20% under multiple VOCs. Moreover, the pyrrole group in FD-HCPs greatly hindered H2O molecule diffusion in the pore, thus efficiently weakening the competitive adsorption of H2O toward VOCs. These fascinating properties enabled FD-HCPs to achieve synergistic adsorption for multicomponent VOC vapor under a highly humid environment and overcame single-species VOC adsorption properties on state-of-the-art porous adsorbents. This work provides the practical feasibility of synergistic adsorption to remove complex VOCs in real-world environments.
Collapse
Affiliation(s)
- Ruimeng Wang
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xinqi Luan
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Muhammad Yaseen
- Institute of Chemical Science, University of Peshawar, Peshawar 25120, KP, Pakistan
| | - Jingyu Bao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jing Li
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhongxing Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhenxia Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Khaleghi H, Jaafarzadeh N, Esmaeili H, Ramavandi B. Alginate@Fe 3O 4@Bentonite nanocomposite for formaldehyde removal from synthetic and real effluent: optimization by central composite design. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29566-29580. [PMID: 36417060 DOI: 10.1007/s11356-022-24189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
In this study, Alginate@ Fe3O4/Bentonite nanocomposite was utilized to eliminate formaldehyde from wastewater. Structural features of bentonite, bentonite@Fe3O4, and Alginate@Fe3O4@Bentonite were determined using FT-IR, PXRD, Mapping, EDX, TEM, SEM, VSM, and BET analyses. The central composite design method was employed to find the optimal conditions for formaldehyde removal using Alg@Fe3O4@Bent nanocomposite. The maximum formaldehyde uptake efficiency (94.56%) was obtained at formaldehyde concentration of 10.69 ppm, the nanocomposite dose of 1.28 g/L, and pH of 9.96 after 16.53 min. Also, Alginate@Fe3O4@Bentonite composite was used to eliminate formaldehyde from Razi petrochemical wastewater and was able to eliminate 91.24% of formaldehyde, 70% of COD, and 68.9% of BOD5. The isotherm and kinetic investigations demonstrated that the formaldehyde uptake process by the foresaid adsorbent follows the Langmuir isotherm and quasi-first-order kinetic models, respectively. Also, the maximum uptake capacity was obtained at 50.25 mg/g. Moreover, the formaldehyde uptake process by the aforementioned nanocomposite was exothermic and spontaneous. Furthermore, the formaldehyde adsorption efficiency decreased slightly after six reuse cycles (less than 10%), indicating that Alginate@Fe3O4@Bentonite nanocomposite has remarkable recyclability. Besides, the influence of interfering ions like nitrate, carbonate, chloride, phosphate, and sulfate was studied on the formaldehyde removal efficiency and the results displayed that all ions except nitrate ion have low interaction with formaldehyde (less than 3% reduction in removal efficiency).
Collapse
Affiliation(s)
- Hossein Khaleghi
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Neamatollah Jaafarzadeh
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Esmaeili
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| | - Bahman Ramavandi
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
5
|
Contribution Evaluation of Physical Hole Structure, Hydrogen Bond, and Electrostatic Attraction on Dye Adsorption through Individual Experiments. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/4596086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Disagreements over various unanswered questions about contribution of the adsorption process and functional groups on dye adsorption still exist. The main aim of this research was to evaluate the contributions of physical hole structure, hydrogen bond, and electrostatic attraction on dye adsorption. Three ideal representatives, namely, a sponge with porous structure, P(AM) containing -CONH2 groups, and P(AANa/AM) containing -COONa groups, were chosen to evaluate the above contributions. The methylene blue (MB) removal rates of these three products were compared through individual experiments. The results revealed that physical hole structure did not play a role in decreasing dye concentration. Hydrogen bond existed in dye adsorption but did not remarkably reduce dye concentration. The excellent removal results of P(AANa/AM) demonstrated that electrostatic attraction was critical in enriching dye contaminants from the solution into solid adsorbent. The results could provide insights into the dye adsorption mechanisms for further research.
Collapse
|
6
|
Tang D, Xiong Z, Lu P, Wang S, Chen X, Lou X, Zheng M, Chen S, Ye C, Chen J, Qiu T. Lacunary polyoxometalate @ ZIF for ultradeep Pb(II) adsorption. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Lou X, Chen X, Tang D, Wang Q, Tian Y, Tu M, Wang Y, Ye C, Chen J, Qiu T. Conjugated Microporous Poly(aniline) Enabled Hierarchical Porous Carbons for Hg(II) Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13238-13247. [PMID: 36260748 DOI: 10.1021/acs.langmuir.2c02240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hierarchical porous carbons equipped with heteroatoms and diffusion pores have a wide application prospect in adsorption. Herein, we report N-autodoped porous carbons (PTPACs), which were derived from rigid N-rich conjugated microporous poly(aniline)s (CMPAs) and show their all-around applicability in heavy metal adsorption. Their molecular structure could be delicately tuned from 3D organic networks to graphitic carbons through simply adjusting the pyrolysis temperature, affording unique hybrid features of hierarchical micro-meso-macroporosity and amount-tunable nitrogen defects, as validated by the enhanced CO2 adsorption capacities reaching 5.0 mmol g-1, a 230% increase compared to the precursor (2.15 mmol g-1). They therefore show promising a Langmuir adsorption capacity of 434.8 mg g-1 toward mercury ions, which could be rapidly achieved within a short 20 min. Based on the comprehensive experimental, characterization, and DFT calculation studies, we rationally reveal these impressive adsorptions arise from the hybrid function of chemisorption contributed by populated nitrogen defects and physical adsorption achieved by synergistic functions in the diffusion and storage pores. Outcomes mark the high merits of PTPACs in addressing recent global challenges in environmental engineering.
Collapse
Affiliation(s)
- Xiaoyu Lou
- Engineering Research Centre of Reactive Distillation, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Xiaoyan Chen
- Engineering Research Centre of Reactive Distillation, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Duanlian Tang
- Engineering Research Centre of Reactive Distillation, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Qiong Wang
- College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yukun Tian
- College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Menghan Tu
- College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yupeng Wang
- College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Changshen Ye
- Engineering Research Centre of Reactive Distillation, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Jie Chen
- Engineering Research Centre of Reactive Distillation, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Ting Qiu
- Engineering Research Centre of Reactive Distillation, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| |
Collapse
|
8
|
Yuan C, Pu J, Fu D, Min Y, Wang L, Liu J. UV-vis spectroscopic detection of formaldehyde and its analogs: A convenient and sensitive methodology. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129457. [PMID: 35779400 DOI: 10.1016/j.jhazmat.2022.129457] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Formaldehyde is deemed to be an indispensable industrial product that has been widely applied in manufacture of resins, drugs, building materials, etc. It has been widely accepted that, nevertheless, residual formaldehyde will cause pathogen reactions, even leading to cancers like leukemia. Thus, a facile and efficient approach has been designed to achieve the determination of formaldehyde by ultraviolet and visible (UV-vis) spectrophotometry in liquid media. In detail, O-(carboxymethyl) hydroxylamine (C2H5NO3·0.5HCl) is chosen as the detection reagent for the specific recognition of formaldehyde on account of its unique aminooxy (-O-NH2) which can react with formaldehyde to form oxime bonds (O-NCH2), accompanied with the only by-product of H2O. Likewise, this simple and sensitive detection approach based on the chemical detection reagent C2H5NO3·0.5HCl can also be applied to the determination of other aldehyde homologs with carbonyl groups including acetaldehyde, acetone, benzaldehyde, 1, 4-phthalaldehyde. As a result, all the UV absorbances of analytes display remarkable linear detection relationships. The limits of detection (LOD) and limits of quantitation (LOQ) values are in the range of 0.03-1.16 ppm and 0.03-5.81 ppm respectively, with RSDs of 3.27-3.75 %, evidencing the feasibility of our method to determine formaldehyde and its homologs by UV-vis spectrophotometry and auspicious prospects of practical applications.
Collapse
Affiliation(s)
- Chenyao Yuan
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Jiayan Pu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Donglei Fu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Yuru Min
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Lei Wang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
9
|
Rong Y, Yan W, Wang Z, Hao X, Guan G. An electroactive montmorillonite/polypyrrole ion exchange film: Ultrahigh uptake capacity and ion selectivity for rapid removal of lead ions. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129366. [PMID: 35728313 DOI: 10.1016/j.jhazmat.2022.129366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Contact with trace heavy metal contaminants will also lead to extremely bad health influence on human body and aquatic life. Although various adsorbents have been synthesized for the recovery of heavy metal ions, most of them shows deficient adsorption capacity, sluggish uptake rate and low selectivity. In this study, a montmorillonite/polypyrrole (MMT/PPy) film was successfully synthesized by intercalating polymers PPy into the interlayer of MMT nanosheets for selective and rapid capture of Pb2+. The electroactive film has ultrahigh uptake capacity (1373.29 mg⋅g-1), which is much higher than most conventional Pb2+ adsorbents. Meanwhile, it had an extreme selectivity towards Pb2+ due to the MMT/PPy film can accurately identified Pb2+. Through characterization testing and data analysis, the selective and rapid uptake/release of Pb2+ should be realized through three ways: (1) negatively-charged laminates of MMT can generate electrostatic attraction to Pb2+; (2) -OH on the surface of MMT laminates can accurately identified and bonded with Pb2+ (M-O-H↔ M-O-Pb); (3) PPy doped by PSSn- and protic acid can rapidly catch Pb2+ (PPy+·PSSn-+Pb2++e-→ PPy·PSSn-·Pb2+). Therefore, such a novel MMT/PPy nanocomposite film could has evident application prospect to remove Pb2+ from various water bodies.
Collapse
Affiliation(s)
- Yaqin Rong
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wenjun Yan
- Analytical Instrumentation Center, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Zhongde Wang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xiaogang Hao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Guoqing Guan
- Department of Renewable Energy Institute of Regional Innovation, Hirosaki University, 2-1-3, Matsubara, Aomori 030-0813, Japan
| |
Collapse
|
10
|
Lin C, Chen J, Wu Z, Chi R, Lin H, Liu Y, Lv Y, Ye X, Luo W. Phosphate-Functionalized Fibrous Adsorbent for Effectively Extracting Uranium from Seawater. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chunxiang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jinteng Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhihao Wu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ruiyang Chi
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Huiting Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xiaoxia Ye
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Wei Luo
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
11
|
Lou X, Chen J, Xiong Z, Tang D, Chen X, Chen S, Dong R, Ye C, Qiu T. Porosity Design on Conjugated Microporous Poly(Aniline)S for Exceptional Mercury(II) Removal. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61653-61660. [PMID: 34905343 DOI: 10.1021/acsami.1c19011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of conjugated microporous polymers (CMPs) in practical wastewater treatment demands further design on the pore structure, otherwise their adsorption capacities toward heavy-metal ions were moderate. Here, we report a rational design approach, which produces hybrid molecular pores in conjugated microporous poly(aniline)s (CMPAs) for mercury removal. It is achieved through a delicate interval introduction of linkers with differential molecular lengths during polymerization, acquiring both diffusion channels and storage pores for radical enhancement of mass transfer and adsorption storage. The resulting CMPA-M featured a large adsorption capacity of 975 mg g-1 and rapid kinetics that could remove 94.8% of 50 mg g-1 of mercury(II) within a very short contact time of 48 s, with a promising initial adsorption rate h as high as 113 mg g-1 min-1, which was 2.54-fold larger in the adsorption capacity and 45.2-fold faster in the adsorption efficiency compared with the undeveloped CMPAs. More importantly, our CMPA-M-2, with robust stability and easy reusability, was able to scavenge over 99.9% of mercury(II) from the actual wastewater in a harsh condition with a very low pH of 0.77, extremely high salinity of 53,157 mg L-1, and complex impurities, featuring exceptional selectivity that allows us to extract and recycle a high purity of 99.1% of mercury from the wastewater. These outcomes demonstrate the unprecedented potential of CMPs for environmental remediation and real-world mercury extraction and present benchmarks for CMP-based mercury adsorbents.
Collapse
Affiliation(s)
- Xiaoyu Lou
- Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, China
| | - Jie Chen
- Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, China
- College of Environmental and Safety Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhuo Xiong
- Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, China
| | - Duanlian Tang
- Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, China
| | - Xiaoyan Chen
- Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, China
| | - Song Chen
- College of Environmental and Safety Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Rong Dong
- College of Environmental and Safety Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Changshen Ye
- Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, China
| | - Ting Qiu
- Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, China
| |
Collapse
|