1
|
Zhou X, Chen R, Cai Y, Chen Q. Fecal Microbiota Transplantation: A Prospective Treatment for Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:647-659. [PMID: 38347911 PMCID: PMC10860394 DOI: 10.2147/dmso.s447784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose of Review The aim of this review is to summarize the role of gastrointestinal microbiome (GM) in the development of type 2 diabetes mellitus (T2DM). Besides, we discuss the feasibility of applying FMT in the treatment of T2DM and propose a series of processes to refine the use of FMT in the treatment of T2DM. Recent Findings T2DM is a metabolic disease which is connected with the GM. According to many researches, GM can produce a variety of metabolites such as bile acid, short chain fatty acids, lipopolysaccharides and trimethylamine oxide which play an important role in metabolism. FMT is a method to regulate GM and has been observed to be effective in the treatment of metabolic diseases such as T2DM in some mouse models and people. However, there is still a lack of direct evidence for the use of FMT in the treatment of T2DM, and the process of FMT is not standardized. Summary Dysregulation of GM is closely related to the development of T2DM. Promoting the conversion of GM in T2DM patients to normal population through FMT can reduce insulin resistance and lower their blood glucose level, which is an optional treatment for T2DM patients in the future. At present, the feasibility and limitations of applying FMT to the treatment of T2DM need to be further studied.
Collapse
Affiliation(s)
- Xiaolan Zhou
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yichen Cai
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
2
|
Rajack F, Medford S, Naab T. Clostridioides difficile infection leading to fulminant colitis with toxic megacolon. Autops Case Rep 2023; 13:e2023457. [PMID: 38034515 PMCID: PMC10687841 DOI: 10.4322/acr.2023.457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/14/2023] [Indexed: 12/02/2023]
Abstract
Clostridioidesdifficile infection (CDI) is the culprit of millions of nosocomial infections in the United States. Programs that successfully decrease its incidence, therefore, render cost savings for the healthcare system. Toxic megacolon and perforation are two of the most significant complications with increased mortality rates. We report a 23-year-old nursing home resident hospitalized for fever, cough, and green sputum. After 3 days of antibiotic therapy, he developed abdominal distension, diarrhea, and vomiting and underwent a total colectomy. The colon was dilated to a maximum of 11 cm with markedly edematous mucosa and yellow pseudomembranes. Qualitative PCR of the stool detected Clostridioides difficile toxin B gene. While there is no consensus for the required interval between antibiotic treatment and CDI, this presentation 3 days after starting the antibiotic therapy is earlier than most proposed ranges.
Collapse
Affiliation(s)
- Fareed Rajack
- Howard University Hospital, Department of Pathology and Laboratory Medicine, Washington, D.C., United States of America
| | - Shawn Medford
- Howard University College of Medicine, Washington, D.C., United States of America
| | - Tammey Naab
- Howard University Hospital, Department of Pathology and Laboratory Medicine, Washington, D.C., United States of America
| |
Collapse
|
3
|
Gu X, Chen ZH, Zhang SC. Fecal microbiota transplantation in childhood: past, present, and future. World J Pediatr 2023; 19:813-822. [PMID: 36484871 PMCID: PMC9734408 DOI: 10.1007/s12519-022-00655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/13/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) has been well described in the treatment of pediatric diseases; however, the latest updates regarding its use in children are unclear and the concepts involved need to be revisited. DATA SOURCES We performed advanced searches in the MEDLINE, EMBASE, and Cochrane databases using the keywords "Fecal microbiota transplantation OR Fecal microbiota transfer" in the [Title/Abstract] to identify relevant articles published in English within the last five years. To identify additional studies, reference lists of review articles and included studies were manually searched. Retrieved manuscripts (case reports, reviews, and abstracts) were assessed by the authors. RESULTS Among the articles, studies were based on the mechanism (n = 28), sample preparation (n = 9), delivery approaches (n = 23), safety (n = 26), and indications (n = 67), including Clostridium difficile infection (CDI) and recurrent C. difficile infection (rCDI; n = 21), non-alcoholic fatty liver disease (NAFLD; n = 10), irritable bowel syndrome (IBS; n = 5), inflammatory bowel disease (IBD; n = 15), diabetes (n = 5), functional constipation (FC; n = 4), and autism spectrum disorder (ASD; n = 7). CONCLUSIONS Concepts of FMT in pediatric diseases have been updated with respect to underlying mechanisms, methodology, indications, and safety. Evidence-based clinical trials for the use of FMT in pediatric diseases should be introduced to resolve the challenges of dosage, duration, initiation, and the end point of treatment.
Collapse
Affiliation(s)
- Xu Gu
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street Heping District, Shenyang, 110004, China
| | - Zhao-Hong Chen
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shu-Cheng Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street Heping District, Shenyang, 110004, China.
| |
Collapse
|
4
|
Wang X, Niu L, Wang Y, Zhan S, Wang L, Dai D, Cao J, Guo J, Li L, Zhang H, Zhong T. Combining 16S rRNA Sequencing and Metabolomics Data to Decipher the Interactions between Gut Microbiota, Host Immunity, and Metabolites in Diarrheic Young Small Ruminants. Int J Mol Sci 2023; 24:11423. [PMID: 37511183 PMCID: PMC10380214 DOI: 10.3390/ijms241411423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Diarrhea is associated with gut microbiota, immunity, and metabolic alterations in goat kids and lambs. This study used 28 lambs (11 healthy and 17 diarrheic) and 20 goat kids (10 healthy and 10 diarrheic) to investigate the association between diarrhea occurrence and changes in gut microbiota, metabolism, and immunity in goat kids and lambs. The results revealed that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla in goat kids and lambs. In addition, Enterobacteriaceae and Lachnospiraceae families were identified in both diarrheic goat kids and lambs. Furthermore, functional prediction of microbiota showed that it was involved in cell motility and cancer pathways. The identified differential metabolites were implicated in the bile secretion pathway. Lambs had significant differences in immunoglobulin G (IgG), immunoglobulin M (IgM), interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α) compared to goat kids. IgG and IL-1β were positively correlated to Patescibacteria, Clostridiaceae, and unclassified_Muribaculaceae in both diarrheic goat kids and lambs. In addition, weighted gene co-expression network analysis (WGCNA) revealed that the MEgreen module was positively associated with IgG, IgM, IL-1β, TNF-α, and triglyceride (TG). In conclusion, our results characterized the gut microbiota, metabolism, and immune status of lambs and goat kids suffering from diarrhea.
Collapse
Affiliation(s)
- Xinlu Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaxuan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
5
|
Ohkusa T, Nishikawa Y, Sato N. Gastrointestinal disorders and intestinal bacteria: Advances in research and applications in therapy. Front Med (Lausanne) 2023; 9:935676. [PMID: 36825261 PMCID: PMC9941163 DOI: 10.3389/fmed.2022.935676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/27/2022] [Indexed: 02/09/2023] Open
Abstract
Intestinal bacteria coexist with humans and play a role in suppressing the invasion of pathogens, producing short-chain fatty acids, producing vitamins, and controlling the immune system. Studies have been carried out on culturable bacterial species using bacterial culture methods for many years. However, as metagenomic analysis of bacterial genes has been developed since the 1990s, it has recently revealed that many bacteria in the intestine cannot be cultured and that approximately 1,000 species and 40 trillion bacteria are present in the gut microbiota. Furthermore, the composition of the microbiota is different in each disease state compared with the healthy state, and dysbiosis has received much attention as a cause of various diseases. Regarding gastrointestinal diseases, dysbiosis has been reported to be involved in inflammatory bowel disease, irritable bowel syndrome, and non-alcoholic steatohepatitis. Recent findings have also suggested that dysbiosis is involved in colon cancer, liver cancer, pancreatic cancer, esophageal cancer, and so on. This review focuses on the relationship between the gut microbiota and gastrointestinal/hepatobiliary diseases and also discusses new therapies targeting the gut microbiota.
Collapse
Affiliation(s)
| | - Yuriko Nishikawa
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuhiro Sato
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Qu Z, Tian P, Yang B, Zhao J, Wang G, Chen W. Fecal microbiota transplantation for diseases: Therapeutic potential, methodology, risk management in clinical practice. Life Sci 2022; 304:120719. [PMID: 35716734 DOI: 10.1016/j.lfs.2022.120719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/12/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND More than 95 % of human diseases may be related to the disturbance of gut microbes. As a treatment method that extensively regulates the gut microbes, fecal microbiota transplantation (FMT) has proven to be an effective therapy for some diseases, becoming a topic of interest among clinicians, patients and scientists. AIM To review the latest clinical research results of FMT in the treatment of various diseases and the methodology and risk management in clinical application. METHODS Search PubMed and Web of Science for reliable research results of clinical treatment of FMT within 5-10 years, as well as application guidelines and risk management policies in different regions. RESULTS As a measure of allogeneic/autologous microbiota transplantation, FMT has been used to treat a variety of diseases. By reviewing the clinical studies of FMT in gastrointestinal diseases, metabolic diseases, neurological diseases and malignant tumors, the various mechanisms in the treatment of diseases are summarized. Such as regulation of receptor microbiota composition, specific metabolites, phage function and immune response. In addition, potential risk factors, donor stool screening indicators, recipient self-specificity and possible prognostic marker molecules in the course of FMT treatment were generalized. CONCLUSIONS The potential regulatory mechanisms, risk factors and targets of FMT in gastrointestinal diseases, metabolic diseases, malignancies and neurological diseases were reviewed and proposed. It provides a theoretical basis for the establishment of a standardized treatment system for FMT and a breakthrough in treatment technology.
Collapse
Affiliation(s)
- Zhihao Qu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Podlesny D, Arze C, Dörner E, Verma S, Dutta S, Walter J, Fricke WF. Metagenomic strain detection with SameStr: identification of a persisting core gut microbiota transferable by fecal transplantation. MICROBIOME 2022; 10:53. [PMID: 35337386 PMCID: PMC8951724 DOI: 10.1186/s40168-022-01251-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/24/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND The understanding of how microbiomes assemble, function, and evolve requires metagenomic tools that can resolve microbiota compositions at the strain level. However, the identification and tracking of microbial strains in fecal metagenomes is challenging and available tools variably classify subspecies lineages, which affects their applicability to infer microbial persistence and transfer. RESULTS We introduce SameStr, a bioinformatic tool that identifies shared strains in metagenomes by determining single-nucleotide variants (SNV) in species-specific marker genes, which are compared based on a maximum variant profile similarity. We validated SameStr on mock strain populations, available human fecal metagenomes from healthy individuals and newly generated data from recurrent Clostridioides difficile infection (rCDI) patients treated with fecal microbiota transplantation (FMT). SameStr demonstrated enhanced sensitivity to detect shared dominant and subdominant strains in related samples (where strain persistence or transfer would be expected) when compared to other tools, while being robust against false-positive shared strain calls between unrelated samples (where neither strain persistence nor transfer would be expected). We applied SameStr to identify strains that are stably maintained in fecal microbiomes of healthy adults over time (strain persistence) and that successfully engraft in rCDI patients after FMT (strain engraftment). Taxonomy-dependent strain persistence and engraftment frequencies were positively correlated, indicating that a specific core microbiota of intestinal species is adapted to be competitive both in healthy microbiomes and during post-FMT microbiome assembly. We explored other use cases for strain-level microbiota profiling, as a metagenomics quality control measure and to identify individuals based on the persisting core gut microbiota. CONCLUSION SameStr provides for a robust identification of shared strains in metagenomic sequence data with sufficient specificity and sensitivity to examine strain persistence, transfer, and engraftment in human fecal microbiomes. Our findings identify a persisting healthy adult core gut microbiota, which should be further studied to shed light on microbiota contributions to chronic diseases. Video abstract.
Collapse
Affiliation(s)
- Daniel Podlesny
- Department of Microbiome Research and Applied Bioinformatics, University of Hohenheim, Stuttgart, Germany.
| | - Cesar Arze
- Department of Microbiome Research and Applied Bioinformatics, University of Hohenheim, Stuttgart, Germany
- Current address: Ring Therapeutics, Cambridge, MA, USA
| | - Elisabeth Dörner
- Department of Microbiome Research and Applied Bioinformatics, University of Hohenheim, Stuttgart, Germany
| | - Sandeep Verma
- Division of Gastroenterology, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Sudhir Dutta
- Division of Gastroenterology, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Jens Walter
- APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork, Cork, Ireland
| | - W Florian Fricke
- Department of Microbiome Research and Applied Bioinformatics, University of Hohenheim, Stuttgart, Germany.
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Boutte HJ, Chen J, Wylie TN, Wylie KM, Xie Y, Geisman M, Prabu A, Gazit V, Tarr PI, Levin MS, Warner BW, Davidson NO, Rubin DC. Fecal microbiome and bile acid metabolome in adult short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2022; 322:G154-G168. [PMID: 34816756 PMCID: PMC8793869 DOI: 10.1152/ajpgi.00091.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Loss of functional small bowel surface area causes short bowel syndrome (SBS), intestinal failure, and parenteral nutrition (PN) dependence. The gut adaptive response following resection may be difficult to predict, and it may take up to 2 yr to determine which patients will wean from PN. Here, we examined features of gut microbiota and bile acid (BA) metabolism in determining adaptation and ability to wean from PN. Stool and sera were collected from healthy controls and from patients with SBS (n = 52) with ileostomy, jejunostomy, ileocolonic, and jejunocolonic anastomoses fed with PN plus enteral nutrition or who were exclusively enterally fed. We undertook 16S rRNA gene sequencing, BA profiling, and 7α-hydroxy-4-cholesten-3-one (C4) quantitation with LC-MS/MS and serum amino acid analyses. Patients with SBS exhibited altered gut microbiota with reduced gut microbial diversity compared with healthy controls. We observed differences in the microbiomes of patients with SBS with ileostomy versus jejunostomy, jejunocolonic versus ileocolonic anastomoses, and PN dependence compared with those who weaned from PN. Stool and serum BA composition and C4 concentrations were also altered in patients with SBS, reflecting adaptive changes in enterohepatic BA cycling. Stools from patients who were weaned from PN were enriched in secondary BAs including deoxycholic acid and lithocholic aicd. Shifts in gut microbiota and BA metabolites may generate a favorable luminal environment in select patients with SBS, promoting the ability to wean from PN. Proadaptive microbial species and select BA may provide novel targets for patient-specific therapies for SBS.NEW & NOTEWORTHY Loss of intestinal surface area causes short bowel syndrome, intestinal failure, and parenteral nutrition dependence. We analyzed the gut microbiota and bile acid metabolome of a large cohort of short bowel syndrome adult patients with different postsurgical anatomies. We report a novel analysis of the microbiome of patients with ileostomy and jejunostomy. Enrichment of specific microbial and bile acid species may be associated with the ability to wean from parenteral nutrition.
Collapse
Affiliation(s)
- Harold J. Boutte
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jacqueline Chen
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Todd N. Wylie
- 2Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri,3McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Kristine M. Wylie
- 2Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri,3McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Yan Xie
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mackenzie Geisman
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Anirudh Prabu
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Vered Gazit
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Phillip I. Tarr
- 2Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri,4Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri
| | - Marc S. Levin
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri,7Veterans Administration Saint Louis Health Care System, St. Louis, Missouri
| | - Brad W. Warner
- 5Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Nicholas O. Davidson
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri,6Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Deborah C. Rubin
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri,6Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
9
|
Verma S, Dutta SK, Firnberg E, Phillips L, Vinayek R, Nair PP. Identification and engraftment of new bacterial strains by shotgun metagenomic sequence analysis in patients with recurrent Clostridioides difficile infection before and after fecal microbiota transplantation and in healthy human subjects. PLoS One 2021; 16:e0251590. [PMID: 34252073 PMCID: PMC8274925 DOI: 10.1371/journal.pone.0251590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recurrent Clostridioides diffícile infection (RCDI) is associated with major bacterial dysbiosis and colitis. Fecal microbiota transplantation (FMT) is a highly effective therapeutic modality for RCDI. While several studies have identified bacterial species associated with resolution of symptoms in patients, characterization of the fecal microbiome at the bacterial strain level in RCDI patients before and after FMT and healthy donors, has been lacking. The aim of this study was to examine the ability of bacterial strains from healthy donors to engraft in the gastrointestinal tract of patients with RCDI following FMT. METHODS Fecal samples were collected from 22 patients with RCDI before and after FMT and their corresponding healthy donors. Total DNA was extracted from each sample and analyzed by shotgun metagenomic sequencing. The Cosmos-ID analysis platform was used for taxonomic assignment of sequences and calculation of the relative abundance (RA) of bacterial species and strains. From these data, the total number of bacterial strains (BSI), Shannon diversity index, dysbiosis index (DI), and bacterial engraftment factor, were calculated for each strain. FINDINGS A marked reduction (p<0·0001) in the RA of total and specific bacterial strains, especially from phylum Firmicutes, was observed in RCDI patients prior to FMT. This change was associated with an increase in the DI (p<0·0001) and in pathobiont bacterial strains from phylum Proteobacteria, such as Escherichia coli O157:H7 and Klebsiella pneumoniae UCI 34. BSI was significantly lower in this group of patients as compared to healthy donors and correlated with the Shannon Index. (p<0·0001). Identification and engraftment of bacterial strains from healthy donors revealed a greater diversity and higher relative abundance of short-chain fatty acid (SCFA)-producing bacterial strains, including Lachnospiraceae bacterium 5_1_63FAA_u_t, Dorea formicigenerans ATCC 27755, Anaerostipes hadrusand others, in RCDI patients after FMT. INTERPRETATION These observations identify a group of SCFA-producing bacterial strains from healthy donors that engraft well in patients with RCDI following FMT and are associated with complete resolution of clinical symptoms and bacterial dysbiosis.
Collapse
Affiliation(s)
- Sandeep Verma
- Division of Gastroenterology, Sinai Hospital, Baltimore MD, United States of America
| | - Sudhir K. Dutta
- Division of Gastroenterology, Sinai Hospital, Baltimore MD, United States of America
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Elad Firnberg
- Division of Gastroenterology, Sinai Hospital, Baltimore MD, United States of America
| | - Laila Phillips
- Division of Gastroenterology, Sinai Hospital, Baltimore MD, United States of America
| | - Rakesh Vinayek
- Division of Gastroenterology, Sinai Hospital, Baltimore MD, United States of America
| | - Padmanabhan P. Nair
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
- Noninvasive Technologies, Elkridge, MD, United States of America
| |
Collapse
|
10
|
Agarwal A, Maheshwari A, Verma S, Arrup D, Phillips L, Vinayek R, Nair P, Hagan M, Dutta S. Superiority of Higher-Volume Fresh Feces Compared to Lower-Volume Frozen Feces in Fecal Microbiota Transplantation for Recurrent Clostridioides Difficile Colitis. Dig Dis Sci 2021; 66:2000-2004. [PMID: 32656604 DOI: 10.1007/s10620-020-06459-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/28/2020] [Indexed: 01/26/2023]
Abstract
GOALS To compare the clinical outcomes of different protocols for fecal microbiota transplantation (FMT) in two community hospitals with similar patient demographics. BACKGROUND FMT is commonly performed for recurrent or refractory Clostridioides difficile infection (rCDI). The clinical efficacy of FMT for this indication has been well established. However, there has been no standardization or optimization of the amount of fecal material, method of feces preparation, or route of delivery for FMT. STUDY In this retrospective study, patients with rCDI received FMT using commercially available frozen fecal preparation (22.7 g) at Center A and locally prepared fresh fecal filtrate (30-50 g) at Center B. The primary outcome was defined as complete resolution of clinical symptoms related to rCDI after at least 8 weeks of follow-up. RESULTS Fifty patients from each center were included in the study. Clinical success after initial FMT with lower-volume frozen fecal preparation at Center A was 32/50 (64.0%) compared to 49/50 (98.0%) with higher-volume fresh fecal filtrate at Center B (p < 0.0001). Seventeen patients in Center A and 1 patient in Center B underwent at least one repeat FMT. Overall clinical success was achieved in 43/50 (86%) of patients in Center A and 50/50 (100%) in Center B (p = 0.012). CONCLUSIONS Our results suggest superior clinical efficacy of a larger amount of fresh fecal filtrate over a smaller amount of commercially available frozen fecal preparation. Further studies are needed to examine the effect of varying amounts of feces and the optimal protocol for FMT in patients with rCDI.
Collapse
Affiliation(s)
- Amol Agarwal
- Mercy Medical Center, 301 St Paul Pl, Physician's Office Building, 7th Floor, Baltimore, MD, 21202, USA
| | - Anurag Maheshwari
- Mercy Medical Center, 301 St Paul Pl, Physician's Office Building, 7th Floor, Baltimore, MD, 21202, USA.
| | | | | | | | | | | | - Matilda Hagan
- Mercy Medical Center, 301 St Paul Pl, Physician's Office Building, 7th Floor, Baltimore, MD, 21202, USA
| | | |
Collapse
|
11
|
Clinical effectiveness of bidirectional fecal microbiota transfer in the treatment of recurrent Clostridioides difficile infections. Dig Liver Dis 2021; 53:706-711. [PMID: 33744169 DOI: 10.1016/j.dld.2021.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Fecal microbiota transfer (FMT) has become a standard of care in the prevention of multiple recurrent Clostridioides difficile (rCDI) infection. AIM While primary cure rates range from 70-80% following a single treatment using monodirectional approaches, cure rates of combination treatment remain largely unknown. METHODS In a retrospective case-control study, outcomes following simultaneous bidirectional FMT (bFMT) with combined endoscopic application into the upper and lower gastrointestinal tract, compared to standard routes of application (endoscopy via upper or lower gastrointestinal tract and oral capsules; abbreviated UGIT, LGIT and CAP) on day 30 and 90 after FMT were assessed. Statistical matching partners were identified using number of recurrences (<3; ≥3), age and gender. RESULTS Primary cure rates at D30 and D90 for bFMT were 100% (p=.001). The matched control groups showed cure rates of 81.3% for LGIT (p=.010), 62.5% for UGIT (p=.000) and 78.1% for CAP (p=.005) on D30 and 81.3% for LGIT (p=.010), 59.4% for UGIT (p=.000) and 71.9% for CAP (p=.001) on D90. CONCLUSION In our analysis, bFMT on the same day significantly increased primary cure rate at D30 and D90. These data require prospective confirmation but suggest that route of application may play a significant role in optimizing patient outcomes. ClinicalTrials.gov no: NCT02681068.
Collapse
|
12
|
Chiu CW, Tsai PJ, Lee CC, Ko WC, Hung YP. Application of Microbiome Management in Therapy for Clostridioides difficile Infections: From Fecal Microbiota Transplantation to Probiotics to Microbiota-Preserving Antimicrobial Agents. Pathogens 2021; 10:pathogens10060649. [PMID: 34073695 PMCID: PMC8225043 DOI: 10.3390/pathogens10060649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/02/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Oral vancomycin and metronidazole, though they are the therapeutic choice for Clostridioides difficile infections (CDIs), also markedly disturb microbiota, leading to a prolonged loss of colonization resistance to C. difficile after therapy; as a result, their use is associated with a high treatment failure rate and high recurrent rate. An alternative for CDIs therapy contains the delivery of beneficial (probiotic) microorganisms into the intestinal tract to restore the microbial balance. Recently, mixture regimens containing Lactobacillus species, Saccharomyces boulardii, or Clostridium butyricum have been extensively studied for the prophylaxis of CDIs. Fecal microbiota transplantation (FMT), the transfer of (processed) fecal material from healthy donors to patients for treating CDIs, combined with vancomycin was recommended as the primary therapy for multiple recurrent CDIs (rCDIs). Either probiotics or FMT have been utilized extensively in preventing or treating CDIs, aiming at less disturbance in the microbiota to prevent rCDIs after therapy cessation. Otherwise, many newly developed therapeutic agents have been developed and aim to preserve microbiota during CDI treatment to prevent disease recurrence and might be useful in clinical patients with rCDIs in the future.
Collapse
Affiliation(s)
- Chun-Wei Chiu
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan 700, Taiwan;
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Medical College, Tainan 704, Taiwan;
| | - Ching-Chi Lee
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Correspondence: (W.-C.K.); (Y.-P.H.)
| | - Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan 700, Taiwan;
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Correspondence: (W.-C.K.); (Y.-P.H.)
| |
Collapse
|
13
|
Fujimoto K, Kimura Y, Allegretti JR, Yamamoto M, Zhang YZ, Katayama K, Tremmel G, Kawaguchi Y, Shimohigoshi M, Hayashi T, Uematsu M, Yamaguchi K, Furukawa Y, Akiyama Y, Yamaguchi R, Crowe SE, Ernst PB, Miyano S, Kiyono H, Imoto S, Uematsu S. Functional Restoration of Bacteriomes and Viromes by Fecal Microbiota Transplantation. Gastroenterology 2021; 160:2089-2102.e12. [PMID: 33577875 PMCID: PMC8684800 DOI: 10.1053/j.gastro.2021.02.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Fecal microbiota transplantation (FMT) is an effective therapy for recurrent Clostridioides difficile infection (rCDI). However, the overall mechanisms underlying FMT success await comprehensive elucidation, and the safety of FMT has recently become a serious concern because of the occurrence of drug-resistant bacteremia transmitted by FMT. We investigated whether functional restoration of the bacteriomes and viromes by FMT could be an indicator of successful FMT. METHODS The human intestinal bacteriomes and viromes from 9 patients with rCDI who had undergone successful FMT and their donors were analyzed. Prophage-based and CRISPR spacer-based host bacteria-phage associations in samples from recipients before and after FMT and in donor samples were examined. The gene functions of intestinal microorganisms affected by FMT were evaluated. RESULTS Metagenomic sequencing of both the viromes and bacteriomes revealed that FMT does change the characteristics of intestinal bacteriomes and viromes in recipients after FMT compared with those before FMT. In particular, many Proteobacteria, the fecal abundance of which was high before FMT, were eliminated, and the proportion of Microviridae increased in recipients. Most temperate phages also behaved in parallel with the host bacteria that were altered by FMT. Furthermore, the identification of bacterial and viral gene functions before and after FMT revealed that some distinctive pathways, including fluorobenzoate degradation and secondary bile acid biosynthesis, were significantly represented. CONCLUSIONS The coordinated action of phages and their host bacteria restored the recipients' intestinal flora. These findings show that the restoration of intestinal microflora functions reflects the success of FMT.
Collapse
Affiliation(s)
- Kosuke Fujimoto
- Department of Immunology and Genomics, Osaka City University, Graduate School of Medicine, Abeno-ku, Osaka, Japan,Division of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan,Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yasumasa Kimura
- Division of Systems Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Jessica R. Allegretti
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Mako Yamamoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yao-zhong Zhang
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kotoe Katayama
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Georg Tremmel
- Laboratory of DNA Information Analysis, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yunosuke Kawaguchi
- Department of Immunology and Genomics, Osaka City University, Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Masaki Shimohigoshi
- Department of Immunology and Genomics, Osaka City University, Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Tetsuya Hayashi
- Department of Immunology and Genomics, Osaka City University, Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Miho Uematsu
- Department of Immunology and Genomics, Osaka City University, Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yutaka Akiyama
- Department of Computer Science, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Rui Yamaguchi
- Laboratory of DNA Information Analysis, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Sheila E. Crowe
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Peter B. Ernst
- Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines, University of California San Diego, San Diego, La Jolla, California,Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, San Diego, La Jolla, California,Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, La Jolla, California
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines, University of California San Diego, San Diego, La Jolla, California,Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, San Diego, La Jolla, California,Department of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Osaka City University, Graduate School of Medicine, Abeno-ku, Osaka, Japan; Division of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan; Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
14
|
Yadav D, Khanna S. Safety of fecal microbiota transplantation for Clostridioides difficile infection focusing on pathobionts and SARS-CoV-2. Therap Adv Gastroenterol 2021; 14:17562848211009694. [PMID: 33959193 PMCID: PMC8064662 DOI: 10.1177/17562848211009694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a consequence of flagrant use of antibiotics, an aging population with increasing comorbidities, and increased hospitalizations. The treatment of choice for CDI is antibiotics (vancomycin or fidaxomicin), with a possibility of recurrent CDI despite lack of additional risk factors for CDI. For the last 10 years, fecal microbiota transplantation (FMT) has emerged as a promising therapy for recurrent CDI, with success rates of over 85% compared with less than 50% with antibiotics for multiple recurrent CDI. Along with the success of FMT, several adverse and serious adverse events with FMT have been reported. These range from self-limiting abdominal pain to death due to severe sepsis. This review focuses on the safety of FMT, emphasizing the reports of transmission of pathobionts like extended-spectrum beta lactamase Escherichia coli and Shiga toxin-producing E. coli. The severe acute respiratory syndrome coronavirus-2 is a potential pathogen that could be transmitted via FMT during the COVID-19 pandemic. The challenges faced by clinicians for donor screening, clinical trials, and other aspects of FMT during the pandemic are discussed.
Collapse
Affiliation(s)
- Devvrat Yadav
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Zhou H, Sun L, Zhang S, Zhao X, Gang X, Wang G. The crucial role of early-life gut microbiota in the development of type 1 diabetes. Acta Diabetol 2021; 58:249-265. [PMID: 32712802 DOI: 10.1007/s00592-020-01563-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
Early-life healthy gut microbiota has a profound implication on shaping the mucosal immune system as well as maintaining healthy status later in life, especially at the prenatal or neonatal stages, while intestinal dysbiosis in early life is associated with several autoimmune diseases, including type 1 diabetes (T1D). Since the gut microbiome is potentially modifiable, optimizing the intestinal bacterial composition in early life may be a novel option for T1D prevention. In this review, we will review current data depicting the crucial role of early-life intestinal microbiome in the development of T1D and discuss the possible mechanisms whereby early-life intestinal microbiome influences the T1D progression. We also summarize recent findings on environmental factors affecting gut microbiota colonization and interventions that may successfully alter microbial composition to discuss potential means of preventing T1D progression in at-risk children.
Collapse
Affiliation(s)
- He Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Siwen Zhang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
16
|
Karyal C, Hughes J, Kelly ML, Luckett JC, Kaye PV, Cockayne A, Minton NP, Griffin R. Colonisation Factor CD0873, an Attractive Oral Vaccine Candidate against Clostridioides difficile. Microorganisms 2021; 9:microorganisms9020306. [PMID: 33540694 PMCID: PMC7913071 DOI: 10.3390/microorganisms9020306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Clostridioides difficile is the main cause of health-care-associated infectious diarrhoea. Toxins, TcdA and TcdB, secreted by this bacterium damage colonic epithelial cells and in severe cases this culminates in pseudomembranous colitis, toxic megacolon and death. Vaccines in human trials have focused exclusively on the parenteral administration of toxin-based formulations. These vaccines promote toxin-neutralising serum antibodies but fail to confer protection from infection in the gut. An effective route to immunise against gut pathogens and stimulate a protective mucosal antibody response (secretory immunoglobulin A, IgA) at the infection site is the oral route. Additionally, oral immunisation generates systemic antibodies (IgG). Using this route, two different antigens were tested in the hamster model: The colonisation factor CD0873 and a TcdB fragment. Animals immunised with CD0873 generated a significantly higher titre of sIgA in intestinal fluid and IgG in serum compared to naive animals, which significantly inhibited the adherence of C. difficile to Caco-2 cells. Following challenge with a hypervirulent isolate, the CD0873-immunised group showed a mean increase of 80% in time to experimental endpoint compared to naïve animals. Survival and body condition correlated with bacterial clearance and reduced pathology in the cecum. Our findings advocate CD0873 as a promising oral vaccine candidate against C. difficile.
Collapse
Affiliation(s)
- Cansu Karyal
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (C.K.); (J.H.); (M.L.K.); (A.C.); (N.P.M.)
| | - Jaime Hughes
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (C.K.); (J.H.); (M.L.K.); (A.C.); (N.P.M.)
| | - Michelle L. Kelly
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (C.K.); (J.H.); (M.L.K.); (A.C.); (N.P.M.)
| | - Jeni C. Luckett
- The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK;
| | - Philip V. Kaye
- Department of Histopathology, Queen’s Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK;
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre (BRC), Nottingham NG7 2UH, UK
| | - Alan Cockayne
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (C.K.); (J.H.); (M.L.K.); (A.C.); (N.P.M.)
| | - Nigel P. Minton
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (C.K.); (J.H.); (M.L.K.); (A.C.); (N.P.M.)
| | - Ruth Griffin
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (C.K.); (J.H.); (M.L.K.); (A.C.); (N.P.M.)
- Correspondence: ; Tel.: +44-0115-7486120
| |
Collapse
|
17
|
Hmar EBL, Paul S, Boruah N, Sarkar P, Borah S, Sharma HK. Apprehending Ulcerative Colitis Management With Springing Up Therapeutic Approaches: Can Nanotechnology Play a Nascent Role? CURRENT PATHOBIOLOGY REPORTS 2021. [DOI: 10.1007/s40139-020-00218-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Baunwall SMD, Lee MM, Eriksen MK, Mullish BH, Marchesi JR, Dahlerup JF, Hvas CL. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: An updated systematic review and meta-analysis. EClinicalMedicine 2020; 29-30:100642. [PMID: 33437951 PMCID: PMC7788438 DOI: 10.1016/j.eclinm.2020.100642] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Faecal microbiota transplantation (FMT) is effective for recurrent Clostridioides difficile infection (CDI), but inconsistent effect rates and uncertain evidence levels have warranted caution. To clarify, we aimed to establish the evidence of FMT for recurrent CDI, updated across different delivery methods, treatment regimens, and in comparison with standard antibiotics. METHODS In this updated systematic review and meta-analysis, we searched PubMed, Scopus, Embase, Web of Science, Clinical Key, and Svemed+ for FMT literature published in English until November 11, 2019. We included observational and clinical trials with or without antibiotic comparators and excluded studies with below 8 weeks follow-up and fewer than 15 patients. The primary outcome was clinical outcome by week 8. We comprehensively extracted patient and procedural data. In a random-effects meta-analysis, we estimated the clinical effect for repeat or single FMT, different delivery methods, and versus antibiotics. We rated the evidence according to the Cochrane and GRADE methods. The PROSPERO preregistration number is CRD42020158112. FINDINGS Of 1816 studies assessed, 45 studies were included. The overall clinical effect week 8 following repeat FMT (24 studies, 1855 patients) was 91% (95% CI: 89-94%, I 2=53%) and 84% (80-88%, I 2=86%) following single FMT (43 studies, 2937 patients). Delivery by lower gastrointestinal endoscopy was superior to all other delivery methods, and repeat FMT significantly increased the treatment effect week 8 (P<0·001). Compared with vancomycin, the number needed to treat (NNT) for repeat FMT was 1·5 (1·3-1·9, P<0·001) and 2.9 (1·5-37·1, P=0·03) for single FMT. Repeat FMT had high quality of evidence. INTERPRETATION High-quality evidence supports FMT is effective for recurrent CDI, but its effect varies with the delivery method and the number of administrations. The superior NNT for FMT compared with antibiotics suggests that patients may benefit from advancing FMT to all instances of recurrent CDI. FUNDING Innovation Fund Denmark (j.no. 8056-00006B).
Collapse
Key Words
- CDAD, CD associated diarrhoea
- CDI
- CDI, Clostridioides difficile infection
- CI, Confidence interval
- Clostridioides difficile
- Clostridioides difficile infection
- FMT
- FMT, Faecal microbiota transplantation
- Fecal microbiota transplantation
- GI, Gastrointestinal
- Meta-analysis
- NA, Not available
- NOS, Newcastle-Ottawa quality assessment Scale
- Number needed to treat
- Number needed to treat, NNT
- PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analysis
- RR, Relative risk
- Randomised clinical trial, RCT
- RoB2, Cochrane Risk of Bias 2
- Systematic review
Collapse
Affiliation(s)
- Simon Mark Dahl Baunwall
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, DK-8200 Aarhus N, Denmark
| | - Mads Ming Lee
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, DK-8200 Aarhus N, Denmark
| | - Marcel Kjærsgaard Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, DK-8200 Aarhus N, Denmark
| | - Benjamin H. Mullish
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Julian R. Marchesi
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jens Frederik Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, DK-8200 Aarhus N, Denmark
| | - Christian Lodberg Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, DK-8200 Aarhus N, Denmark
| |
Collapse
|
19
|
The Effectiveness of Multi-Session FMT Treatment in Active Ulcerative Colitis Patients: A Pilot Study. Biomedicines 2020; 8:biomedicines8080268. [PMID: 32756350 PMCID: PMC7459721 DOI: 10.3390/biomedicines8080268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The modification of the microbiome through fecal microbiota transplantation (FMT) is becoming a very promising therapeutic option for inflammatory bowel disease (IBD) patients. Our pilot study aimed to assess the effectiveness of multi-session FMT treatment in active ulcerative colitis (UC) patients. Ten patients with UC were treated with multi-session FMT (200 mL) from healthy donors, via colonoscopy/gastroscopy. Patients were evaluated as follows: at baseline, at week 7, and after 6 months, routine blood tests (including C reactive protein (CRP) and calprotectin) were performed. 16S rRNA gene (V3V4) sequencing was used for metagenomic analysis. The severity of UC was classified based on the Truelove–Witts index. The assessment of microbial diversity showed significant differences between recipients and healthy donors. FMT contributed to long-term, significant clinical and biochemical improvement. Metagenomic analysis revealed an increase in the amount of Lactobacillaceaea, Micrococcaceae, Prevotellaceae, and TM7 phylumsp.oral clone EW055 during FMT, whereas Staphylococcaceae and Bacillaceae declined significantly. A positive increase in the proportion of the genera Bifidobacterium, Lactobacillus, Rothia, Streptococcus, and Veillonella and a decrease in Bacillus, Bacteroides, and Staphylococcus were observed based on the correlation between calprotectin and Bacillus and Staphylococcus; ferritin and Lactobacillus, Veillonella, and Bifidobacterium abundance was indicated. A positive change in the abundance of Firmicutes was observed during FMT and after 6 months. The application of multi-session FMT led to the restoration of recipients’ microbiota and resulted in the remission of patients with active UC.
Collapse
|
20
|
Alukal J, Dutta SK, Surapaneni BK, Le M, Tabbaa O, Phillips L, Mattar MC. Safety and efficacy of fecal microbiota transplant in 9 critically ill patients with severe and complicated Clostridium difficile infection with impending colectomy. J Dig Dis 2019; 20:301-307. [PMID: 30969003 DOI: 10.1111/1751-2980.12750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/21/2019] [Accepted: 04/08/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Significant data support the efficacy and safety of fecal microbiota transplant (FMT) in recurrent Clostridium difficile infection (CDI). The objective of our study was to determine the success rate of FMT in patients diagnosed with severe and complicated CDI with impending colectomy in the intensive care setting. METHODS This was a 2-center study of 9 patients who met the criteria for severe and complicated CDI and had an impending colectomy. All 9 patients had failed conventional antibiotic therapy and were deemed too unstable to undergo a colectomy. Hence, FMT was considered to be the next step in managing their condition. RESULTS Following FMT there was marked improvement in the patients' clinical status, with the resolution of diarrhea, reduced requirement for vasopressor, and the reduction in abdominal distention and pain. The primary cure rate of our study after a single round of FMT was 78% (7/9). Of the 9 patients 8 (88.88%) avoided a colectomy during the same hospital admission. the CDI-related death rate was 12.5% (1/9) and that of non-CDI was 12.5% (1/9). CONCLUSION Our success with FMT in fulminant CDI shows that this therapeutic modality is a promising alternative to a colectomy and could be a potential bowel-saving intervention.
Collapse
Affiliation(s)
- Joseph Alukal
- Division of Medicine, NYU Langone Health, NYU Winthrop Hospital, Mineola, New York, USA
| | - Sudhir K Dutta
- Department of Gastroenterology, Sinai Hospital of Baltimore, Baltimore, Maryland, USA
- Division of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Michelle Le
- Division of Medicine, Sinai Hospital of Baltimore, Baltimore, Maryland, USA
| | - Obada Tabbaa
- Division of Medicine, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Laila Phillips
- Division of Medicine, Sinai Hospital of Baltimore, Baltimore, Maryland, USA
| | - Mark C Mattar
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| |
Collapse
|
21
|
Probiotic potential of Weissella strains isolated from horse feces. Microb Pathog 2019; 132:117-123. [PMID: 31009656 DOI: 10.1016/j.micpath.2019.04.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 01/02/2023]
Abstract
In this study, we isolated four Weissella confusa strains from the healthy horse feces to test their potential as equine probiotics. The identification and characteristics of these isolates were determined as per standard methods. Resistance and susceptibility of the isolated strains were tested to low pHs, different heat treatments, commonly used antibiotics and against the pathogenic strains of Salmonella, Pasteurella, Staphylococcus aureus, and Escherichia coli. After 3 h cultural in different pH medium, the 4 strains still had a certain amount of survival above pH 3.0. WH2 and WH4 were still viable at pH2.5. All the isolated strains showed proper growth at 60 °C while no strain survived at 80 °C. The inhibition of α-amylase, the scavenging ability of free radical DPPH· and hydroxyl free radical HO·were also investigated. The results showed that WH4 had highest inhibition rate of α-amylase activity and DPPH· free radical scavenging rate, and the inhibition rate of α-amylase activity was 24.09% and the DPPH· free radical scavenging rate was 35.78%. The inhibition rate ofα-amylase activity and DPPH· scavenging rate of free radicals in the other three strains were about 10%. The clearance rate of hydroxyl radical (HO·) in 4 strains was between 12% and 15%. The antibiotic susceptibilities varied for these four Weisella strains but all of them showed resistance against the frequently used equine antibiotics. All the four strains successfully suppressed the growth of standard strains in in vitro bacteriostasis experiment, which included Salmonella enteritidis (NTNC13349), Escherichia coli (C83902) and Staphylococcus aureus (BNCC186335). they also successfully suppressed the growth of state key laboratory isolating pathogens, which are Pasterurella multocida and Salmonella. Our findings suggest that the isolated strains of Weissella confusa can act as potential equine probiotics and should be explored further.
Collapse
|
22
|
Abstract
Clostridium difficile (C. difficile) is a Gram-positive, spore-forming, anaerobic bacillus, which is widely distributed in the intestinal tract of humans and animals and in the environment. In the last decade, the frequency and severity of C. difficile infection has been increasing worldwide to become one of the most common hospital-acquired infections. Transmission of this pathogen occurs by the fecal-oral route and the most important risk factors include antibiotic therapy, old age, and hospital or nursing home stay. The clinical picture is diverse and ranges from asymptomatic carrier status, through various degrees of diarrhea, to the most severe, life threatening colitis resulting with death. Diagnosis is based on direct detection of C. difficile toxins in feces, most commonly with the use of EIA assay, but no single test is suitable as a stand-alone test confirming CDI. Antibiotics of choice are vancomycin, fidaxomicin, and metronidazole, though metronidazole is considered as inferior. The goal of this review is to update physicians on current scientific knowledge of C. difficile infection, focusing also on fecal microbiota transplantation which is a promising therapy.
Collapse
|
23
|
Status of vaccine research and development for Clostridium difficile. Vaccine 2019; 37:7300-7306. [PMID: 30902484 DOI: 10.1016/j.vaccine.2019.02.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/21/2019] [Indexed: 12/15/2022]
Abstract
Clostridium difficile associated disease is fundamentally associated with dysbiosis of the gut microbiome as a consequence of antibiotic use. This is because this sporulating, obligate anaerobe germinates and proliferates rapidly in the dysbiotic gut, which is an indirect consequence of their use. During its growth, C. difficile produces two toxins, toxin A (TcdA) and toxin B (TcdB), which are responsible for the majority of clinical symptoms associated with the disease. Three parenterally delivered vaccines, based on detoxified or recombinant forms of these toxins, have undergone or are undergoing clinical trials. Each offers the opportunity to generate high titres of toxin neutralising antibodies. Whilst these data suggest these vaccines may reduce primary symptomatic disease, they do not in their current form reduce the capacity of the organism to persist and shed from the vaccinated host. The current progress of vaccine development is considered with advantages and limitations of each highlighted. In addition, several alternative approaches are described that seek to limit C. difficile germination, colonisation and persistence. It may yet prove that the most effective treatments to limit infection, disease and spread of the organism will require a combination of therapeutic approaches. The potential use and efficacy of these vaccines in low and middle income countries will be depend on the development of a cost effective vaccine and greater understanding of the distribution and extent of disease in these countries.
Collapse
|
24
|
Ramai D, Zakhia K, Ofosu A, Ofori E, Reddy M. Fecal microbiota transplantation: donor relation, fresh or frozen, delivery methods, cost-effectiveness. Ann Gastroenterol 2019; 32:30-38. [PMID: 30598589 PMCID: PMC6302197 DOI: 10.20524/aog.2018.0328] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022] Open
Abstract
Fecal microbiota transplantation (FMT) has evolved into a robust and efficient means for treating recurrent Clostridium difficile infection (CDI). Our narrative review looks at the donor selection, preparation, delivery techniques and cost-effectiveness of FMT. We searched electronic databases, including PubMed, MEDLINE, Google Scholar, and Cochrane Databases, for studies that compared the biological effects of donor selection, fresh or frozen fecal preparation, and various delivery techniques. We also evaluated the cost-effectiveness and manually searched references to identify additional relevant studies. Overall, there is a paucity of studies that directly compare outcomes associated with related and non-related stool donors. However, inferences from prior studies indicate that the success of FMT does not depend on the donor-patient relationship. Over time, the use of unrelated donors has increased because of the formation of stool banks and the need to save processing time and capital. However, longitudinal studies are needed to clarify the optimal freezing time before microbial function declines. Several FMT techniques have been developed, such as colonoscopy, enema, nasogastric or nasojejunal tubes, and capsules. The comparable and high efficacy of FMT capsules, combined with their convenience, safety and aesthetically tolerable mode of delivery, makes it an attractive option for many patients. Cost-effective models comparing these various approaches support the use of FMT via colonoscopy as being the best strategy for the treatment of recurrent CDI.
Collapse
Affiliation(s)
- Daryl Ramai
- Department of Medicine, The Brooklyn Hospital Center, Academic Affiliate of The Icahn School of Medicine at Mount Sinai, Clinical Affiliate of The Mount Sinai Hospital, Brooklyn (Daryl Ramai)
| | - Karl Zakhia
- Department of Medicine, Elmhurst Medical Center, Queens (Karl Zakhia)
| | - Andrew Ofosu
- Division of Gastroenterology and Hepatology, The Brooklyn Hospital Center, Academic Affiliate of The Icahn School of Medicine at Mount Sinai, Clinical Affiliate of The Mount Sinai Hospital, Brooklyn (Andrew Ofosu, Emmanuel Ofori, Madhavi Reddy), New York, USA
| | - Emmanuel Ofori
- Division of Gastroenterology and Hepatology, The Brooklyn Hospital Center, Academic Affiliate of The Icahn School of Medicine at Mount Sinai, Clinical Affiliate of The Mount Sinai Hospital, Brooklyn (Andrew Ofosu, Emmanuel Ofori, Madhavi Reddy), New York, USA
| | - Madhavi Reddy
- Division of Gastroenterology and Hepatology, The Brooklyn Hospital Center, Academic Affiliate of The Icahn School of Medicine at Mount Sinai, Clinical Affiliate of The Mount Sinai Hospital, Brooklyn (Andrew Ofosu, Emmanuel Ofori, Madhavi Reddy), New York, USA
| |
Collapse
|
25
|
Microbiota and Phage Therapy: Future Challenges in Medicine. Med Sci (Basel) 2018; 6:medsci6040086. [PMID: 30301167 PMCID: PMC6313512 DOI: 10.3390/medsci6040086] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/26/2022] Open
Abstract
An imbalance of bacterial quantity and quality of gut microbiota has been linked to several pathologies. New strategies of microbiota manipulation have been developed such as fecal microbiota transplantation (FMT); the use of pre/probiotics; an appropriate diet; and phage therapy. The presence of bacteriophages has been largely underestimated and their presence is a relevant component for the microbiome equilibrium. As a promising treatment, phage therapy has been extensively used in Eastern Europe to reduce pathogenic bacteria and has arisen as a new method to modulate microbiota diversity. Phages have been selected and “trained” to infect a wide spectrum of bacteria or tailored to infect specific antibiotic resistant bacteria present in patients. The new development of genetically modified phages may be an efficient tool to treat the gut microbiota dysbiosis associated with different pathologies and increased production of bacterial metabolites and subsequently decrease systemic low-grade chronic inflammation associated with chronic diseases. Microbiota quality and mitochondria dynamics can be remodulated and manipulated by phages to restore the equilibrium and homeostasis of the system. Our aim is to highlight the great interest for phages not only to eliminate and control pathogenic bacterial infection but also in the near future to modulate the microbiota by adding new functions to selected bacteria species and rebalance the dynamic among phages and bacteria. The challenge for the medicine of tomorrow is to re-think and redesign strategies differently and far from our traditional thinking.
Collapse
|
26
|
Drapkina OM, Korneeva ON. [Gut microbiota and obesity: Pathogenetic relationships and ways to normalize the intestinal microflora]. TERAPEVT ARKH 2018. [PMID: 28635818 DOI: 10.17116/terarkh2016889135-142] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The review demonstrates mechanisms in the relationship of obesity to gut microbiota, as well as possible therapeutic measures to normalize the intestinal microflora. There is evidence that the latter makes a great contribution to the pathogenesis of obesity and related diseases. Investigations have shown the role of the nature of consumed foods (fatty foods) in reducing the amount of bifidobacteria and lactobacilli, as well as the effects of bacterial lipopolysaccharides and metabolites from the intestinal microflora (trimethylamine-N-oxide, bile acids, etc.). The use of prebiotics, probiotics and ursodeoxycholic acid preparations and fecal transplantation are promising in correcting the microflora and in providing their positive effect on metabolic disturbances. Certain probiotic strains are effective in treating dyslipidemia, diabetes mellitus, obesity, and metabolic syndrome. Gut microbiota is impaired in obesity and contributes to the development of cardiovascular diseases. The control of the gut microbiota and the use of drugs altering the composition of the microflora may become a novel approach to reducing the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- O M Drapkina
- National Research Center for Preventive Medicine, Ministry of Health of Russia, Moscow, Russia
| | - O N Korneeva
- Art-Med Therapeutic and Diagnostic Center, Moscow, Russia
| |
Collapse
|
27
|
Kellingray L, Gall GL, Defernez M, Beales ILP, Franslem-Elumogo N, Narbad A. Microbial taxonomic and metabolic alterations during faecal microbiota transplantation to treat Clostridium difficile infection. J Infect 2018; 77:107-118. [PMID: 29746938 DOI: 10.1016/j.jinf.2018.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVES This study aimed to examine changes to the microbiota composition and metabolic profiles of seven patients with recurrent Clostridium difficile infection (rCDI), following treatment with faecal microbiota transplant (FMT). METHODS 16S rDNA sequencing and 1H NMR were performed on faecal samples from the patients (pre-, post-FMT, and follow-up) and the associated donor samples. Sparse partial-least-square analysis was used to identify correlations between the two datasets. RESULTS The patients' microbiota post-FMT tended to shift towards the donor microbiota, specifically through proportional increases of Bacteroides, Blautia, and Ruminococcus, and proportional decreases of Enterococcus, Escherichia, and Klebsiella. However, although cured of infection, one patient, who suffers from chronic alcohol abuse, retained the compositional characteristics of the pre-FMT microbiota. Following FMT, increased levels of short-chain fatty acids, particularly butyrate and acetate, were observed in all patients. Sparse partial-least-square analysis confirmed a positive correlation between butyrate and Bacteroides, Blautia, and Ruminococcus, with a negative correlation between butyrate and Klebsiella and Enterococcus. CONCLUSIONS Clear differences were observed in the microbiota composition and metabolic profiles between donors and rCDI patients, which were largely resolved in patients following FMT. Increased levels of butyrate appear to be a factor associated with resolution of rCDI.
Collapse
Affiliation(s)
- Lee Kellingray
- Gut Health and Microbiome Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK; NIHR Health Protection Research Unit in Gastrointestinal Infections, UK.
| | - Gwénaëlle Le Gall
- Analytical Sciences Unit, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, UK.
| | - Marianne Defernez
- Analytical Sciences Unit, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, UK.
| | - Ian L P Beales
- Gastroenterology, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK.
| | | | - Arjan Narbad
- Gut Health and Microbiome Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK; NIHR Health Protection Research Unit in Gastrointestinal Infections, UK.
| |
Collapse
|
28
|
MESSIAS BRUNOAMANTINI, FRANCHI BÁRBARAFREITAS, PONTES PEDROHENRIQUE, BARBOSA DANIELÁTILADEANDRADEMEDEIROS, VIANA CÉSARAUGUSTOSANITA. Fecal microbiota transplantation in the treatment of Clostridium difficile infection: state of the art and literature review. Rev Col Bras Cir 2018; 45:e1609. [PMID: 29846464 DOI: 10.1590/0100-6991e-20181609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/25/2018] [Indexed: 12/31/2022] Open
Abstract
ABSTRACT Clostridium difficile infection is a common complication following intestinal dysbiosis caused by abusive antibiotic use. It presents medical importance due to the high rates of recurrence and morbidity. Fecal microbiota transplantation is an effective alternative for the treatment of recurrent and refractory C. difficile infection and consists of introducing the intestinal microbiota from a healthy donor into a patient with this infection. The exact physiological mechanism by which fecal microbiota transplantation alters the intestinal microbiota is not well established, but it is clear that it restores the diversity and structure of the microbiota by promoting increased resistance to colonization by C. difficile. Several routes of transplant administration are being studied and used according to the advantages presented. All forms of application had a high cure rate, and the colonoscopic route was the most used. No relevant complications and adverse events have been documented, and the cost-effectiveness over conventional treatment has proven advantageous. Despite its efficacy, it is not commonly used as initial therapy, and more studies are needed to establish this therapy as the first option in case of refractory and recurrent Clostridium difficileinfection.
Collapse
|
29
|
Shen ZH, Zhu CX, Quan YS, Yang ZY, Wu S, Luo WW, Tan B, Wang XY. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J Gastroenterol 2018; 24:5-14. [PMID: 29358877 PMCID: PMC5757125 DOI: 10.3748/wjg.v24.i1.5] [Citation(s) in RCA: 450] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/07/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory disease that mainly affects the colon and rectum. It is believed that genetic factors, host immune system disorders, intestinal microbiota dysbiosis, and environmental factors contribute to the pathogenesis of UC. However, studies on the role of intestinal microbiota in the pathogenesis of UC have been inconclusive. Studies have shown that probiotics improve intestinal mucosa barrier function and immune system function and promote secretion of anti-inflammatory factors, thereby inhibiting the growth of harmful bacteria in the intestine. Fecal microbiota transplantation (FMT) can reduce bowel permeability and thus the severity of disease by increasing the production of short-chain fatty acids, especially butyrate, which help maintain the integrity of the epithelial barrier. FMT can also restore immune dysbiosis by inhibiting Th1 differentiation, activity of T cells, leukocyte adhesion, and production of inflammatory factors. Probiotics and FMT are being increasingly used to treat UC, but their use is controversial because of uncertain efficacy. Here, we briefly review the role of intestinal microbiota in the pathogenesis and treatment of UC.
Collapse
Affiliation(s)
- Zhao-Hua Shen
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Chang-Xin Zhu
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Yong-Sheng Quan
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Zhen-Yu Yang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Shuai Wu
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Wei-Wei Luo
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Bei Tan
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Xiao-Yan Wang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| |
Collapse
|
30
|
Maida M, Mcilroy J, Ianiro G, Cammarota G. Faecal Microbiota Transplantation as Emerging Treatment in European Countries. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:177-195. [PMID: 29383670 DOI: 10.1007/978-3-319-72799-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clostridium difficile infection (CDI) is one of the most common healthcare-associated infections in the world and is a leading cause of morbidity and mortality in hospitalized patients.Although several antibiotics effectively treat CDI, some individuals do not respond to these drugs and may be cured by transplanting stool from healthy donors. This procedure, termed Faecal Microbiota Transplantation (FMT), has demonstrated remarkable efficacy as a treatment for recurrent CDI.FMT has also been investigated in other diseases and disorders where perturbations to the gut microbiota have been theorized to play a causative role in pathogenesis and severity, such as inflammatory bowel disease (IBD). Although FMT is currently not recommended to cure IBD patients in clinical practice, several studies have recently been carried out with promising results. The aim of future research is therefore to standardize protocols and develop FMT as a therapeutic option for these patients.This review summarizes data on the use of FMT as a treatment for CDI and IBD, with special attention given to studies conducted in European countries.
Collapse
Affiliation(s)
- Marcello Maida
- Section of Gastroenterology, S.Elia - Raimondi Hospital, Caltanissetta, Italy
| | - James Mcilroy
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Gianluca Ianiro
- Gastroenterological Area, Fondazione Policlinico Universitario Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Cammarota
- Gastroenterological Area, Fondazione Policlinico Universitario Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
31
|
Gleaning Insights from Fecal Microbiota Transplantation and Probiotic Studies for the Rational Design of Combination Microbial Therapies. Clin Microbiol Rev 2017; 30:191-231. [PMID: 27856521 DOI: 10.1128/cmr.00049-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Beneficial microorganisms hold promise for the treatment of numerous gastrointestinal diseases. The transfer of whole microbiota via fecal transplantation has already been shown to ameliorate the severity of diseases such as Clostridium difficile infection, inflammatory bowel disease, and others. However, the exact mechanisms of fecal microbiota transplant efficacy and the particular strains conferring this benefit are still unclear. Rationally designed combinations of microbial preparations may enable more efficient and effective treatment approaches tailored to particular diseases. Here we use an infectious disease, C. difficile infection, and an inflammatory disorder, the inflammatory bowel disease ulcerative colitis, as examples to facilitate the discussion of how microbial therapy might be rationally designed for specific gastrointestinal diseases. Fecal microbiota transplantation has already shown some efficacy in the treatment of both these disorders; detailed comparisons of studies evaluating commensal and probiotic organisms in the context of these disparate gastrointestinal diseases may shed light on potential protective mechanisms and elucidate how future microbial therapies can be tailored to particular diseases.
Collapse
|
32
|
Kelly BJ, Tebas P. Clinical Practice and Infrastructure Review of Fecal Microbiota Transplantation for Clostridium difficile Infection. Chest 2017; 153:266-277. [PMID: 28923757 DOI: 10.1016/j.chest.2017.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022] Open
Abstract
A substantial proportion of Clostridium difficile infection (CDI) cases recur after completion of antibiotic therapy, and antibiotic cure rates diminish with each recurrence of CDI. Fecal microbiota transplantation (FMT) is an effective therapy for recurrent FMT, which otherwise requires prolonged or indefinite antibiotic treatment. FMT is performed by introducing the fecal microbial community obtained from a healthy donor or pool of donors into the stomach, small intestine, or colon of a patient with CDI. Multiple clinical trials support the usefulness of FMT in treating recurrent CDI, and CDI treatment guidelines now include consideration of FMT at the third CDI recurrence. However, there remain challenges to incorporating FMT into clinical practice. First, methods of fecal bacterial community processing vary, as do methods of FMT administration. Second, the optimal dosing strategy and expected benefit of FMT for refractory CDI, particularly for severe and severe complicated cases, are uncertain. Third, the US Food and Drug Administration (FDA) considers FMT an investigational treatment. Fourth, insurance reimbursement for FMT usually falls short of FMT administration costs. In the setting of rising C difficile incidence and growing evidence for FMT efficacy, the demand for FMT has increased. However, uncertainty surrounding optimal FMT preparation and administration methods, FDA oversight, and insurance reimbursement presently limits the clinical practice of FMT.
Collapse
Affiliation(s)
- Brendan J Kelly
- Division of Infectious Diseases and Fecal Microbiota Transplantation Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
| | - Pablo Tebas
- Division of Infectious Diseases and Fecal Microbiota Transplantation Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
33
|
The importance of appropriate initial bacterial colonization of the intestine in newborn, child, and adult health. Pediatr Res 2017; 82:387-395. [PMID: 28426649 PMCID: PMC5570628 DOI: 10.1038/pr.2017.111] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/29/2017] [Indexed: 12/11/2022]
Abstract
The fetus does not reside in a sterile intrauterine environment and is exposed to commensal bacteria from the maternal gut/blood stream that cross the placenta and enter the amniotic fluid. This intestinal exposure to colonizing bacteria continues at birth and during the first year of life and has a profound influence on lifelong health. Why is this important? Intestinal crosstalk with colonizing bacteria in the developing intestine affects the infant's adaptation to extrauterine life (immune homeostasis) and provides protection against disease expression (allergy, autoimmune disease, obesity, etc.) later in life. Colonizing intestinal bacteria are critical to the normal development of host defense. Disrupted colonization (dysbiosis) due to maternal dysbiosis, cesarean section delivery, use of perinatal antibiotics, or premature delivery may adversely affect the gut development of host defense and predispose to inflammation rather than to homeostasis, leading to increased susceptibility to disease later in life. Babies born by cesarean section have a higher incidence of allergy, type 1 diabetes, and obesity. Infants given repeated antibiotic regimens during the first year of life are more likely to have asthma as adolescents. This research breakthrough helps to explain the shift in disease paradigms from infections to immune-mediated in children from developed countries. This review will develop this research breakthrough.
Collapse
|
34
|
Quraishi MN, Widlak M, Bhala N, Moore D, Price M, Sharma N, Iqbal TH. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment Pharmacol Ther 2017; 46:479-493. [PMID: 28707337 DOI: 10.1111/apt.14201] [Citation(s) in RCA: 429] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/16/2016] [Accepted: 06/01/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Clostridium difficile infection (CDI) is the commonest nosocomial cause of diarrhoea. Faecal microbiota transplantation (FMT) is an approved treatment for recurrent or refractory CDI but there is uncertainty about its use. AIM To evaluate the efficacy of FMT in treating recurrent and refractory CDI and investigate outcomes from modes of delivery and preparation. METHODS A systematic review and meta-analysis was performed. MEDLINE, EMBASE, CINAHL, Cochrane Library, trial registers and conference proceedings were searched. Studies on FMT in recurrent and refractory CDI were included. The primary outcome was clinical resolution with subgroup analyses of modes of delivery and preparation. Random effects meta-analyses were used to combine data. RESULTS Thirty seven studies were included; seven randomised controlled trials and 30 case series. FMT was more effective than vancomycin (RR: 0.23 95%CI 0.07-0.80) in resolving recurrent and refractory CDI. Clinical resolution across all studies was 92% (95%CI 89%-94%). A significant difference was observed between lower GI and upper GI delivery of FMT 95% (95%CI 92%-97%) vs 88% (95%CI 82%-94%) respectively (P=.02). There was no difference between fresh and frozen FMT 92% (95%CI 89%-95%) vs 93% (95%CI 87%-97%) respectively (P=.84). Administering consecutive courses of FMT following failure of first FMT resulted in an incremental effect. Donor screening was consistent but variability existed in recipient preparation and volume of FMT. Serious adverse events were uncommon. CONCLUSION Faecal microbiota transplantation is an effective treatment for recurrent and refractory Clostridium difficile infection, independent of preparation and route of delivery.
Collapse
Affiliation(s)
- M N Quraishi
- Department of Gastroenterology, University Hospital Birmingham, Birmingham, UK
| | - M Widlak
- Department of Gastroenterology, University Hospital Coventry and Warwickshire, Conventry, UK
| | - N Bhala
- Department of Gastroenterology, University Hospital Birmingham, Birmingham, UK.,Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, UK.,Institute of Translational Medicine, University of Birmingham, Edgbaston, Birmingham, UK
| | - D Moore
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - M Price
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - N Sharma
- Department of Gastroenterology, University Hospital Birmingham, Birmingham, UK.,Institute of Translational Medicine, University of Birmingham, Edgbaston, Birmingham, UK
| | - T H Iqbal
- Department of Gastroenterology, University Hospital Birmingham, Birmingham, UK.,Institute of Translational Medicine, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
35
|
Greenhalgh K, Meyer KM, Aagaard KM, Wilmes P. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environ Microbiol 2017; 18:2103-16. [PMID: 27059297 PMCID: PMC7387106 DOI: 10.1111/1462-2920.13318] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With technological advances in culture-independent molecular methods, we are uncovering a new facet of our natural history by accounting for the vast diversity of microbial life which colonizes the human body. The human microbiome contributes functional genes and metabolites which affect human physiology and are, therefore, considered an important factor for maintaining health. Much has been described in the past decade based primarily on 16S rRNA gene amplicon sequencing regarding the diversity, structure, stability and dynamics of human microbiota in their various body habitats, most notably within the gastrointestinal tract (GIT). Relatively high levels of variation have been described across different stages of life and geographical locations for the GIT microbiome. These observations may prove helpful for the future contextualization of patterns in other body habitats especially in relation to identifying generalizable trends over human lifetime. Given the large degree of complexity and variability, a key challenge will be how to define baseline healthy microbiomes and how to identify features which reflect deviations therefrom in the future. In this context, metagenomics and functional omics will likely play a central role as they will allow resolution of microbiome-conferred functionalities associated with health. Such information will be vital for formulating therapeutic interventions aimed at managing microbiota-mediated health particularly in the GIT over the course of a human lifetime.
Collapse
Affiliation(s)
- Kacy Greenhalgh
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Kristen M Meyer
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
36
|
Manthey C, Eckmann L, Fuhrmann V. Therapy for Clostridium difficile infection – any news beyond Metronidazole and Vancomycin? Expert Rev Clin Pharmacol 2017; 10:1239-1250. [DOI: 10.1080/17512433.2017.1362978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- C.F. Manthey
- I. Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L. Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - V. Fuhrmann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
37
|
Editorial: Making Fecal Microbiota Transplantation Easier to Swallow: Freeze-Dried Preparation for Recurrent Clostridium difficile Infections. Am J Gastroenterol 2017; 112:948-950. [PMID: 28572645 DOI: 10.1038/ajg.2017.91] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/11/2022]
Abstract
Fecal microbiota transplant (FMT) has emerged as an effective and increasingly popular therapy for recurrent Clostridium difficile infections in patients that have failed standard antimicrobial treatment. Patient access to FMT is hampered by the logistics of manufacturing, storing, and delivering the inocula. An observational study describes the development and clinical efficacy of freeze-dried FMT capsules for oral administration. While awaiting the emergence of defined bacterial therapeutics for Clostridium difficile infections, this refinement of FMT is an encouraging step toward simplifying FMT treatment. Randomized controlled trials are required to further establish the efficacy and safety of lyophilized FMT.
Collapse
|
38
|
Anand R, Song Y, Garg S, Girotra M, Sinha A, Sivaraman A, Phillips L, Dutta SK. Effect of Aging on the Composition of Fecal Microbiota in Donors for FMT and Its Impact on Clinical Outcomes. Dig Dis Sci 2017; 62:1002-1008. [PMID: 28181098 DOI: 10.1007/s10620-017-4449-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 09/25/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) is emerging as an effective therapy for the treatment of recurrent Clostridium difficile infection (RCDI). Selecting an appropriate donor is vital to the success of FMT. However, the relationship between age of donors and the efficacy of FMT has not been examined to date. The aim of this study was to examine the effect of age of healthy donors on their fecal microbiota and assess the impact of these changes on the clinical efficacy of FMT. MATERIALS AND METHODS This IRB-approved prospective study enrolled donors who were deemed healthy for FMT after careful detailed screening for infectious diseases per institutional protocol. The study was conducted between January 2011 and October 2014. Fecal samples were processed and analyzed using 16S rRNA gene amplicon sequencing. Differences in relative abundance and diversity of the donor fecal microbiota were analyzed in donors above and below 60 years of age. Effect of fecal microbiota from donors of different age groups on the efficacy of FMT was also evaluated. RESULTS Twenty-eight healthy human subjects from ages 20-82 years were enrolled as donors for FMT. All patients receiving FMT from their respective donors had resolution of RCDI symptoms and had a negative C. difficile toxin test 4-12 weeks after FMT. Genomic analysis showed that the relative abundance of phylum Actinobacteria and family Bifidobacteriaceae was reduced in the donors ≥60 years of age (p < 0.05). However, Bacteroidetes-to-Fermicutes ratio did not demonstrate a significant change between the two groups. Furthermore, microbial diversity did not change significantly with advancing age. CONCLUSION These observations suggest that aging in healthy donors is associated with compositional alterations in the fecal microbiome without change in the overall microbial diversity. These changes do not seem to affect the clinical efficacy of FMT in RCDI patients over 12 months.
Collapse
Affiliation(s)
- Rohit Anand
- The Johns Hopkins University/Sinai Hospital Program in Internal Medicine, Baltimore, MD, USA
| | - Yang Song
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shashank Garg
- Division of Gastroenterology, Sinai Hospital of Baltimore, Baltimore, MD, USA
- Division of Digestive Diseases and Nutrition, University of Kentucky, Lexington, KY, USA
| | - Mohit Girotra
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 300 Pasteur Drive, MC: 5244, Stanford, CA, 94305, USA.
| | - Amitasha Sinha
- The Johns Hopkins University/Sinai Hospital Program in Internal Medicine, Baltimore, MD, USA
| | - Anita Sivaraman
- The Johns Hopkins University/Sinai Hospital Program in Internal Medicine, Baltimore, MD, USA
| | - Laila Phillips
- Division of Gastroenterology, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Sudhir K Dutta
- Division of Gastroenterology, Sinai Hospital of Baltimore, Baltimore, MD, USA
- University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Upper Versus Lower Gastrointestinal Delivery for Transplantation of Fecal Microbiota in Recurrent or Refractory Clostridium difficile Infection: A Collaborative Analysis of Individual Patient Data From 14 Studies. J Clin Gastroenterol 2017; 51:145-150. [PMID: 26974758 DOI: 10.1097/mcg.0000000000000511] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GOALS The aim of this study was to compare upper gastrointestinal (UGI) versus lower gastrointestinal (LGI) delivery routes of fecal microbiota transplantation (FMT) for refractory or recurrent/relapsing Clostridium difficile infection (CDI). BACKGROUND FMT has been proven to be a safe and highly effective therapeutic option for CDI. Delivery, however, could be via the UGI or LGI routes, and it is unclear as to which route provides better clinical outcome. STUDY A systematic search for studies that reported the use of FMT for CDI treatment was conducted. Individual patient data that included demographic (age and sex) and clinical (route of FMT delivery, CDI outcome after FMT, and follow-up time) information were obtained. Kaplan-Meier cumulative hazard curves and Cox proportional hazard models were used to assess clinical failure after FMT by the route of delivery. RESULTS Data from 305 patients treated with FMT (208 via LGI route and 97 via UGI route) for CDI were analyzed. At 30 and 90 days, the risk of clinical failure was 5.6% and 17.9% in the UGI group compared with 4.9% and 8.5% in the LGI delivery route group, respectively. A time-varying analysis suggested a 3-fold increase in hazard of clinical failure for UGI delivery (hazard ratio, 3.43; 95% confidence interval, 1.32-8.93) in the period after 30 days. CONCLUSIONS FMT delivered via the LGI seems to be the most effective route for the prevention of recurrence/relapse of CDI. A randomized controlled trial is necessary to confirm whether FMT delivered via the LGI is indeed superior to that delivered via the UGI route.
Collapse
|
40
|
Kim S, Lee Y, Kim SH. Safety and effectiveness of fecal microbiota transplantation: a systematic review. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2017. [DOI: 10.5124/jkma.2017.60.9.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Soyoung Kim
- Division for New Health Technology Assessment, National Evidence-based Healthcare Collaborating Agency, Seoul, Korea
| | - Yeowool Lee
- Division for New Health Technology Assessment, National Evidence-based Healthcare Collaborating Agency, Seoul, Korea
| | - Seok-Hyun Kim
- Division for New Health Technology Assessment, National Evidence-based Healthcare Collaborating Agency, Seoul, Korea
| |
Collapse
|
41
|
Link A, Lachmund T, Schulz C, Weigt J, Malfertheiner P. Endoscopic peroral jejunal fecal microbiota transplantation. Dig Liver Dis 2016; 48:1336-1339. [PMID: 27575658 DOI: 10.1016/j.dld.2016.08.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/17/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) is a valuable treatment modality for recurrent Clostridium difficile (C. difficile) colitis. Multiple questions including the best delivery route and volume remain unanswered. Here, we report a case series of high-volume FMT using endoscopic jejunal application route. METHODS In prospective observational study, FMT was performed using fresh specimen from healthy unrelated donors to the patients with recurrent or refractory C. difficile colitis. Selection of the route was based on the patient's preferences. Specimens of at least 50g were dissolved in 500ml of electrolyte solution and administered using endoscope directly in jejunum. RESULTS All procedures led to cure of C. difficile colitis. With exception of one case the procedure was well tolerated. In two cases, we observed FMT-reflux into the stomach despite deep jejunal application and in single case the FMT-reflux led to tracheal aspiration and severe pneumonia. CONCLUSIONS High-volume FMT via endoscopic jejunal route is an effective treatment option that is well tolerated and easy to perform. Nevertheless, aspiration is potential life-threatening event that needs to be kept in mind during the FMT-procedure.
Collapse
Affiliation(s)
- Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany.
| | - Tim Lachmund
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Christian Schulz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Jochen Weigt
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
42
|
Girotra M, Garg S, Anand R, Song Y, Dutta SK. Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection in the Elderly: Long-Term Outcomes and Microbiota Changes. Dig Dis Sci 2016; 61:3007-3015. [PMID: 27447476 DOI: 10.1007/s10620-016-4229-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Fecal microbiota transplantation (FMT) has become the cornerstone in management of recurrent Clostridium difficile infection (RCDI) in adults. However, data on efficacy, safety, long-term outcomes, and microbiota alterations are limited in elderly patients (>65 years). METHODS Twenty-nine consecutive elderly patients with RCDI underwent FMT with combined jejunal and colonic method and monitored for long-term outcomes. Fecal samples from five elderly RCDI patients (G65) were subjected to genomic analysis before and after FMT, and microbiota changes were compared with matched RCDI patients below 65 years (L65). RESULTS FMT resulted in marked improvement in all clinical parameters, including abdominal pain, bloating, and diarrhea in all elderly RCDI patients. Fecal C. difficile toxin was positive in all 29 patients and turned negative in all 27 patients, who agreed to undergo this test after FMT. Statistically significant improvement in leukocytosis was noted (p < 0.05). Only adverse events reported were transient mild fever (2/29) and bloating (3/29). Long-term follow-up over 25.4 ± 12.8 months did not reveal any additional adverse events or RCDI recurrence. Genomic analysis suggested that overall microbiota diversity increased post-FMT in elderly RCDI patients. However, this response was less robust than the younger group. While Firmicutes did not change markedly, Proteobacteria decreased significantly in post-FMT samples in elderly RCDI patients. CONCLUSIONS These observations suggest that FMT in elderly patients with RCDI appears to be highly efficacious with no recurrence of infection over long-term follow-up. Alterations in microbiota in this group of patients are characterized by less robust increase in microbial diversity and marked reduction in phylum Proteobacteria.
Collapse
Affiliation(s)
- Mohit Girotra
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University/Sinai Hospital Program in Internal Medicine, Baltimore, MD, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Shashank Garg
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University/Sinai Hospital Program in Internal Medicine, Baltimore, MD, USA
- Division of Digestive Diseases and Nutrition, University of Kentucky, Lexington, KY, USA
| | - Rohit Anand
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University/Sinai Hospital Program in Internal Medicine, Baltimore, MD, USA
| | - Yang Song
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University/Sinai Hospital Program in Internal Medicine, Baltimore, MD, USA
- Institute of Genome Sciences, Baltimore, MD, USA
| | - Sudhir K Dutta
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University/Sinai Hospital Program in Internal Medicine, Baltimore, MD, USA.
- University of Maryland School of Medicine, 2411 W. Belvedere Ave, Suite 305, Baltimore, MD, 21215, USA.
| |
Collapse
|
43
|
Fecal microbiota transplant in patients with Clostridium difficile infection. J Trauma Acute Care Surg 2016; 81:756-64. [DOI: 10.1097/ta.0000000000001195] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
Wang S, Xu M, Wang W, Cao X, Piao M, Khan S, Yan F, Cao H, Wang B. Systematic Review: Adverse Events of Fecal Microbiota Transplantation. PLoS One 2016; 11:e0161174. [PMID: 27529553 PMCID: PMC4986962 DOI: 10.1371/journal.pone.0161174] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) is a microbiota-based therapy that shows therapeutic potential in recurrent or refractory Clostridium difficile infections and other intestinal or extra-intestinal disorders. Nonetheless, adverse events (AEs) remain a major challenge in the application of FMT. AIM To review the AEs of FMT and to address the concerns of safety during the procedure. METHODS Publications were retrieved in the databases of Medline, Embase and Cochrane Library. AEs were classified according to their causality with FMT or their severity. RESULTS A total of 7562 original articles about FMT were identified in this study, 50 of them fulfilled the inclusion criteria. Totally 78 kinds of AEs were revealed enrolled in these 50 selected publications. The total incidence rate of AEs was 28.5%. Among the 42 publications, 5 kinds were definitely and 38 kinds were probably related to FMT. The commonest FMT-attributable AE was abdominal discomfort, which was reported in 19 publications. For upper gastrointestinal routes of FMT, 43.6% (89/204) patients were compromised by FMT-attributable AE, while the incidence dropped to 17.7% (76/430) for lower gastrointestinal routes. In contrast, the incidences of serious adverse events (SAEs) were 2.0% (4/196) and 6.1% (40/659) for upper and lower gastrointestinal routes, respectively. A total of 44 kinds of SAEs occurred in 9.2% patients, including death (3.5%, 38/1089), infection (2.5%, 27/1089), relapse of inflammatory bowel diseases (0.6%, 7/1089) and Clostridium difficile infection (0.9%, 10/1089). CONCLUSION Consequently, both AEs and SAEs are not rare and should be carefully monitored throughout FMT. However, high quality randomized controlled trials are still needed for the more definite incidence of AEs of FMT.
Collapse
Affiliation(s)
- Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Mengque Xu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Weiqiang Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Meiyu Piao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Samiullah Khan
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Fang Yan
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
45
|
Han S, Shannahan S, Pellish R. Fecal Microbiota Transplant. J Intensive Care Med 2016; 31:577-86. [DOI: 10.1177/0885066615594344] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 05/14/2015] [Indexed: 12/16/2022]
Abstract
Clostridium difficile infection (CDI) has steadily increased in incidence since the 1990s, with an associated increase in recurrence and severity, which has in turn lead to more intensive care unit (ICU) admissions. The development of recurrent CDI, in particular, has been associated with increasing patient morbidity and mortality as well as an immense financial burden on the health care system. Recently, fecal microbiota transplantation (FMT) has received much publicity as an effective means of treatment for recurrent CDI. The goal of this review is to provide evidence-based recommendations for the diagnosis and management of CDI, with a particular focus on FMT and its utilization in the ICU.
Collapse
Affiliation(s)
- Samuel Han
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Sarah Shannahan
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Randall Pellish
- University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
46
|
Broecker F, Klumpp J, Moelling K. Long-term microbiota and virome in a Zürich patient after fecal transplantation against Clostridium difficile infection. Ann N Y Acad Sci 2016; 1372:29-41. [PMID: 27286042 DOI: 10.1111/nyas.13100] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
Abstract
Fecal microbiota transplantation (FMT) is an emerging therapeutic option for Clostridium difficile infections that are refractory to conventional treatment. FMT introduces fecal microbes into the patient's intestine that prevent the recurrence of C. difficile, leading to rapid expansion of bacteria characteristic of healthy microbiota. However, the long-term effects of FMT remain largely unknown. The C. difficile patient described in this paper revealed protracted microbiota adaptation processes from 6 to 42 months post-FMT. Ultimately, bacterial communities were donor similar, suggesting sustainable stool engraftment. Since little is known about the consequences of transmitted viruses during C. difficile infection, we also interrogated virome changes. Our approach allowed identification of about 10 phage types per sample that represented larger viral communities, and phages were found to be equally abundant in the cured patient and donor. The healthy microbiota appears to be characterized by low phage abundance. Although viruses were likely transferred, the patient established a virome distinct from the donor. Surprisingly, the patient had sequences of algal giant viruses (chloroviruses) that have not previously been reported for the human gut. Chloroviruses have not been associated with intestinal disease, but their presence in the oropharynx may influence cognitive abilities. The findings suggest that the virome is an important indicator of health or disease. A better understanding of the role of viruses in the gut ecosystem may uncover novel microbiota-modulating therapeutic strategies.
Collapse
Affiliation(s)
- Felix Broecker
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute for Medical Microbiology, University of Zürich, Zürich, Switzerland.,Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jochen Klumpp
- Institute of Food, Nutrition, and Health, ETH Zürich, Zürich, Switzerland
| | - Karin Moelling
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute for Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
47
|
Ross CL, Spinler JK, Savidge TC. Structural and functional changes within the gut microbiota and susceptibility to Clostridium difficile infection. Anaerobe 2016; 41:37-43. [PMID: 27180006 DOI: 10.1016/j.anaerobe.2016.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023]
Abstract
Alteration of the gut microbial community structure and function through antibiotic use increases susceptibility to colonization by Clostridium difficile and other enteric pathogens. However, the mechanisms that mediate colonization resistance remain elusive. As the leading definable cause of infectious diarrhea, toxigenic C. difficile represents a burden for patients and health care systems, underscoring the need for better diagnostics and treatment strategies. Next-generation sequence data has increased our understanding of how the gut microbiota is influenced by many factors including diet, disease, aging and drugs. However, a microbial-based biomarker differentiating C. difficile infection from antibiotic-associated diarrhea has not been identified. Metabolomics profiling, which is highly responsive to changes in physiological conditions, have shown promise in differentiating subtle disease phenotypes that exhibit a nearly identical microbiome community structure, suggesting metabolite-based biomarkers may be an ideal diagnostic for identifying patients with CDI. This review focuses on the current understanding of structural and functional changes to the gut microbiota during C. difficile infection obtained from studies assessing the microbiome and metabolome of samples from patients and murine models.
Collapse
Affiliation(s)
- Caná L Ross
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, 1102 Bates Ave., Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Jennifer K Spinler
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, 1102 Bates Ave., Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Tor C Savidge
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, 1102 Bates Ave., Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
| |
Collapse
|
48
|
Marra F, Ng K. Controversies Around Epidemiology, Diagnosis and Treatment of Clostridium difficile Infection. Drugs 2016; 75:1095-118. [PMID: 26113167 DOI: 10.1007/s40265-015-0422-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clostridium difficile infection is a major public health problem. However, in recent years the epidemiology, risk factors, diagnosis, and treatment of C. difficile infection have undergone a significant change. The incidence of C. difficile has increased, not only in the healthcare sector but also in the community. Hospital-acquired infection and community-acquired disease have different risk factors, with the latter occurring in children and younger individuals without a history of antibiotic use or previous infections. From a clinician's perspective, a quick efficient diagnosis is required for patient treatment; however, the old method of using enzyme immunoassays is insensitive and not very specific. Recent literature around diagnostic testing for C. difficile infection suggests using PCR or a two-step algorithm to improve sensitivity and specificity. More failures and recurrence with metronidazole have led to treatment algorithms suggesting its use for mild infections and switching to vancomycin if there is no clinical improvement. Alternatively, if signs and symptoms suggest severe infection, then oral vancomycin is recommended as a first-line agent. The addition of a new but costly agent, fidaxomicin, has seen some disparity between the European and North American guidelines with regard to when it should be used. Lastly, rapid developments and good results with fecal microbial transplantation have also left clinicians wondering about its place in therapy. This article reviews the literature around some of the recent controversies in the field of C. difficile infection.
Collapse
Affiliation(s)
- Fawziah Marra
- University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada,
| | | |
Collapse
|
49
|
Li YT, Cai HF, Wang ZH, Xu J, Fang JY. Systematic review with meta-analysis: long-term outcomes of faecal microbiota transplantation for Clostridium difficile infection. Aliment Pharmacol Ther 2016; 43:445-57. [PMID: 26662643 DOI: 10.1111/apt.13492] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 08/30/2015] [Accepted: 11/12/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clostridium difficile infection is a major cause of nosocomial diarrhoea. AIM To evaluate long-term (≥90 days) efficacy and safety of faecal microbiota transplantation for C. difficile infection and explore the factors affecting the faecal microbiota transplantation outcomes. METHODS MEDLINE, the Cochrane Library and EMBASE were searched and only observational studies that utilised faecal microbiota transplantation for C. difficile infection with long-term follow-up duration (≥90 days) were included. Primary cure rate, overall recurrence rate and early (<90 days) and late (≥90 days) recurrence rate were calculated. RESULTS Eighteen observational studies with 611 patients were included. The primary cure rate was 91.2% (95% confidence interval, CI 86.7-94.8%). The overall recurrence rate was 5.5% (95% CI 2.2-10.3%). The early recurrence rate and late recurrence rate were 2.7% (95% CI 0.7-6.0%) and 1.7% (95% CI 0.4-4.2%) respectively. Most adverse events were expected, short-lived, self-limited and manageable. The association between faecal microbiota transplantation therapy and adverse events such as inflammatory bowel disease flare, infectious disease and autoimmune disease was a concern but remained insignificant. Old age (≥65 years) was identified as a risk factor for after faecal microbiota transplantation therapy. Upper gastrointestinal administration also results in less frequent primary cure. CONCLUSIONS Faecal microbiota transplantation seems to be a highly effective and robust therapy for recurrent C. difficile infection. However, more quality studies, such as randomised controlled trials and cohort studies with control groups, are needed to confirm its long-term efficacy and safety.
Collapse
Affiliation(s)
- Y-T Li
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, China
| | - H-F Cai
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, China
| | - Z-H Wang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, China
| | - J Xu
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, China
| | - J-Y Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, China
| |
Collapse
|
50
|
Rao K, Safdar N. Fecal microbiota transplantation for the treatment of Clostridium difficile infection. J Hosp Med 2016; 11:56-61. [PMID: 26344412 PMCID: PMC4908581 DOI: 10.1002/jhm.2449] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 07/15/2015] [Accepted: 08/02/2015] [Indexed: 12/26/2022]
Abstract
Clostridium difficile, a major cause of healthcare-associated diarrhea due to perturbation of the normal gastrointestinal microbiome, is responsible for significant morbidity, mortality, and healthcare expenditures. The incidence and severity of C difficile infection (CDI) is increasing, and recurrent disease is common. Recurrent infection can be difficult to manage with conventional antibiotic therapy. Fecal microbiota transplantation (FMT), which involves instillation of stool from a healthy donor into the gastrointestinal tract of the patient, restores the gut microbiome to a healthy state. FMT has emerged as a promising new treatment for CDI. There are limited data on FMT for treatment of primary CDI, but FMT appears safe and effective for recurrent CDI. The safety and efficacy of FMT in patients with severe primary or severe recurrent CDI has not been established. Patients with inflammatory bowel disease (IBD) who undergo FMT for CDI may be at increased risk of IBD flare, and caution should be exercised with use of FMT in that population. The long-term safety of FMT is unknown; thus, rigorously conducted prospective studies are needed.
Collapse
Affiliation(s)
- Krishna Rao
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Division of Infectious Diseases, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Nasia Safdar
- William S. Middleton Memorial Veterans Hospital and the Section of Infectious Diseases, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Corresponding author: Section of Infectious Diseases, Department of Medicine, University of Wisconsin School of Medicine and Public Health, MFCB, 1685 Highland Avenue, Madison, Wisconsin 53705, USA. . Phone: (608) 213-4075. Fax: (608) 263-4464
| |
Collapse
|