1
|
Zhong Y, Tubbs JD, Leung PBM, Zhan N, Hui TCK, Ho KKY, Hung KSY, Cheung EFC, So HC, Lui SSY, Sham PC. Early-onset schizophrenia is associated with immune-related rare variants in a Chinese sample. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.21.23298115. [PMID: 38045317 PMCID: PMC10690336 DOI: 10.1101/2023.11.21.23298115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background Rare variants are likely to contribute to schizophrenia (SCZ), given the large discrepancy between the heritability estimated from twin and GWAS studies. Furthermore, the nature of the rare-variant contribution to SCZ may vary with the "age-at-onset" (AAO), since early-onset has been suggested as being indicative of neurodevelopment deviance. Objective To examine the association of rare deleterious coding variants in early- and adult-onset SCZ in a Chinese sample. Method Exome sequencing was performed on DNA from 197 patients with SCZ spectrum disorder and 82 healthy controls (HC) of Chinese ancestry recruited in Hong Kong. We also gathered AAO information in the majority of SCZ samples. Patients were classified into early-onset (EOS, AAO<18) and adult-onset (AOS, AAO>18). We collapsed the rare variants to improve statistical power and examined the overall association of rare variants in SCZ versus HC, EOS versus HC, and AOS versus HC at the gene and gene-set levels by Sequence Kernel Association Test. The quantitative rare-variant association test of AAO was also conducted. We focused on variants which were predicted to have a medium or high impact on the protein-encoding process as defined by Ensembl. We applied a 100000-time permutation test to obtain empirical p-values, with significance threshold set at p < 1e -3 to control family-wise error rates. Moreover, we compared the burden of targeted rare variants in significant risk genes and gene sets in cases and controls. Results Based on several binary-trait association tests (i.e., SCZ vs HC, EOS vs HC and AOS vs HC), we identified 7 candidate risk genes and 20 gene ontology biological processes (GOBP) terms, which exhibited higher burdens in SCZ than in controls. Based on quantitative rare-variant association tests, we found that alterations in 5 candidate risk genes and 7 GOBP pathways were significantly correlated with AAO. Based on biological and functional profiles of the candidate risk genes and gene sets, our findings suggested that, in addition to the involvement of perturbations in neural systems in SCZ in general, altered immune responses may be specifically implicated in EOS. Conclusion Disrupted immune responses may exacerbate abnormal perturbations during neurodevelopment and trigger the early onset of SCZ. We provided evidence of rare variants increasing SCZ risk in the Chinese population.
Collapse
|
2
|
Seitz-Holland J, Nägele FL, Kubicki M, Pasternak O, Cho KIK, Hough M, Mulert C, Shenton ME, Crow TJ, James ACD, Lyall AE. Shared and distinct white matter abnormalities in adolescent-onset schizophrenia and adolescent-onset psychotic bipolar disorder. Psychol Med 2023; 53:4707-4719. [PMID: 35796024 PMCID: PMC11119277 DOI: 10.1017/s003329172200160x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND While adolescent-onset schizophrenia (ADO-SCZ) and adolescent-onset bipolar disorder with psychosis (psychotic ADO-BPD) present a more severe clinical course than their adult forms, their pathophysiology is poorly understood. Here, we study potentially state- and trait-related white matter diffusion-weighted magnetic resonance imaging (dMRI) abnormalities along the adolescent-onset psychosis continuum to address this need. METHODS Forty-eight individuals with ADO-SCZ (20 female/28 male), 15 individuals with psychotic ADO-BPD (7 female/8 male), and 35 healthy controls (HCs, 18 female/17 male) underwent dMRI and clinical assessments. Maps of extracellular free-water (FW) and fractional anisotropy of cellular tissue (FAT) were compared between individuals with psychosis and HCs using tract-based spatial statistics and FSL's Randomise. FAT and FW values were extracted, averaged across all voxels that demonstrated group differences, and then utilized to test for the influence of age, medication, age of onset, duration of illness, symptom severity, and intelligence. RESULTS Individuals with adolescent-onset psychosis exhibited pronounced FW and FAT abnormalities compared to HCs. FAT reductions were spatially more widespread in ADO-SCZ. FW increases, however, were only present in psychotic ADO-BPD. In HCs, but not in individuals with adolescent-onset psychosis, FAT was positively related to age. CONCLUSIONS We observe evidence for cellular (FAT) and extracellular (FW) white matter abnormalities in adolescent-onset psychosis. Although cellular white matter abnormalities were more prominent in ADO-SCZ, such alterations may reflect a shared trait, i.e. neurodevelopmental pathology, present across the psychosis spectrum. Extracellular abnormalities were evident in psychotic ADO-BPD, potentially indicating a more dynamic, state-dependent brain reaction to psychosis.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Felix L. Nägele
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kang Ik K. Cho
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Morgan Hough
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Highfield Unit, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
- Centre for Psychiatry and Psychotherapy, Justus-Liebig-University, Giessen, Germany
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy J. Crow
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Anthony C. D. James
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Highfield Unit, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Amanda E. Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Trifu SC, Vlăduţi A, Trifu AI. Genetic aspects in schizophrenia. Receptoral theories. Metabolic theories. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:25-32. [PMID: 32747892 PMCID: PMC7728101 DOI: 10.47162/rjme.61.1.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ties between schizophrenia (SCZ) and genetics are undeniably significant issue prone to be discussed in the nowadays psychology. Recent research on this domain focuses more on specific genes and heredity (specifically monozygotic pairs of twins) for diagnosing SCZ, than on environmental influences. SCZ is considered a multifactorial disease, thought to convert from a merger of risk and biological genes and environmental factors that could alter and reshape the trajectory of brain development. On this regard, this review sums up recent and innovative methods of distinguishing schizophrenic features from other mental illnesses in patients, based on chromosomal and genes changes. The term “reverse genetics” is no longer up to date, being replaced with “genome scanning” and “positional cloning”. For many researchers, genome scanning is continuing the reverse of the sensible strategy for detecting various important biological disorders, which may start from the discovery of a protein or any other molecule involved in a biological process, being followed by its gene cloning. Genes being discovered in this manner could become candidate genes for the disease. However, genome scanning occurs through testing each chromosomal segment (or mitochondrial genome) for the counter transmission of the disease.
Collapse
Affiliation(s)
- Simona Corina Trifu
- Department of Neurosciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania;
| | | | | |
Collapse
|
4
|
Tromp A, Mowry B, Giacomotto J. Neurexins in autism and schizophrenia-a review of patient mutations, mouse models and potential future directions. Mol Psychiatry 2021; 26:747-760. [PMID: 33191396 DOI: 10.1038/s41380-020-00944-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 01/29/2023]
Abstract
Mutations in the family of neurexins (NRXN1, NRXN2 and NRXN3) have been repeatedly identified in patients with autism spectrum disorder (ASD) and schizophrenia (SCZ). However, it remains unclear how these DNA variants affect neurexin functions and thereby predispose to these neurodevelopmental disorders. Understanding both the wild-type and pathologic roles of these genes in the brain could help unveil biological mechanisms underlying mental disorders. In this regard, numerous studies have focused on generating relevant loss-of-function (LOF) mammalian models. Although this has increased our knowledge about their normal functions, the potential pathologic role(s) of these human variants remains elusive. Indeed, after reviewing the literature, it seems apparent that a traditional LOF-genetic approach based on complete LOF might not be sufficient to unveil the role of these human mutations. First, these genes present a very complex transcriptome and total-LOF of all isoforms may not be the cause of toxicity in patients, particularly given evidence that causative variants act through haploinsufficiency. Moreover, human DNA variants may not all lead to LOF but potentially to intricate transcriptome changes that could also include the generation of aberrant isoforms acting as a gain-of-function (GOF). Furthermore, their transcriptomic complexity most likely renders them prone to genetic compensation when one tries to manipulate them using traditional site-directed mutagenesis approaches, and this could act differently from model to model leading to heterogeneous and conflicting phenotypes. This review compiles the relevant literature on variants identified in human studies and on the mouse models currently deployed, and offers suggestions for future research.
Collapse
Affiliation(s)
- Alisha Tromp
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Bryan Mowry
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia.
| | - Jean Giacomotto
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Markovic A, Buckley A, Driver DI, Dillard-Broadnax D, Gochman PA, Hoedlmoser K, Rapoport JL, Tarokh L. Sleep spindle activity in childhood onset schizophrenia: Diminished and associated with clinical symptoms. Schizophr Res 2020; 223:327-336. [PMID: 32980206 PMCID: PMC7704640 DOI: 10.1016/j.schres.2020.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/24/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022]
Abstract
Neuroimaging studies of childhood onset schizophrenia (COS), a rare yet severe form of schizophrenia with an onset before the age of 13 years, have shown continuity with adult onset schizophrenia. Previous research in adult patients has shown reduced sleep spindle activity, transient oscillations in the sleep electroencephalogram (EEG) generated through thalamocortical loops. The current study examines sleep spindle activity in patients with COS. Seventeen children and adolescents with COS (16 years ±6.6) underwent overnight sleep EEG recordings. Sleep spindle activity was compared between patients with COS and age and gender matched controls and correlated with clinical symptom severity. We found pronounced deficits in sleep spindle amplitude, duration, density and frequency in patients with COS (effect size = 0.61 to 1.96; dependent on metric and EEG derivation). Non-rapid eye movement (NREM) sleep EEG power and coherence in the sigma band (11-16 Hz) corresponding to spindle activity were also markedly diminished in patients with COS as compared to controls. Furthermore, the degree of deficit in power and coherence of spindles was strongly associated with clinician rated hallucinations and positive symptoms over widespread cortical regions. Our finding of diminished spindle activity and its association with hallucinations likely reflect dysfunction of the thalamocortical circuits in children and adolescents with COS. Given the relative ease of sleep EEG recordings in vulnerable populations, this study highlights the potential of such recordings to characterize brain function in schizophrenia.
Collapse
Affiliation(s)
- Andjela Markovic
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Switzerland
| | - Ashura Buckley
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States of America
| | - David I Driver
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States of America
| | - Diane Dillard-Broadnax
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States of America
| | - Peter A Gochman
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States of America
| | - Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Austria
| | - Judith L Rapoport
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States of America
| | - Leila Tarokh
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland.
| |
Collapse
|
6
|
Fernandez A, Drozd MM, Thümmler S, Dor E, Capovilla M, Askenazy F, Bardoni B. Childhood-Onset Schizophrenia: A Systematic Overview of Its Genetic Heterogeneity From Classical Studies to the Genomic Era. Front Genet 2019; 10:1137. [PMID: 31921276 PMCID: PMC6930680 DOI: 10.3389/fgene.2019.01137] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Childhood-onset schizophrenia (COS), a very rare and severe chronic psychiatric condition, is defined by an onset of positive symptoms (delusions, hallucinations and disorganized speech or behavior) before the age of 13. COS is associated with other neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit and hyperactivity disorder. Copy number variations (CNVs) represent well documented neurodevelopmental disorder risk factors and, recently, de novo single nucleotide variations (SNVs) in genes involved in brain development have also been implicated in the complex genetic architecture of COS. Here, we aim to review the genetic changes (CNVs and SNVs) reported for COS, going from previous studies to the whole genome sequencing era. We carried out a systematic review search in PubMed using the keywords “childhood(early)-onset schizophrenia(psychosis)” and “genetic(s) or gene(s) or genomic(s)” without language and date limitations. The main inclusion criteria are COS (onset before 13 years old) and all changes/variations at the DNA level (CNVs or SNVs). Thirty-six studies out of 205 met the inclusion criteria. Cytogenetic abnormalities (n = 72, including 66 CNVs) were identified in 16 autosomes and 2 sex chromosomes (X, Y), some with a higher frequency and clinical significance than others (e.g., 2p16.3, 3q29, 15q13.3, 22q11.21 deletions; 2p25.3, 3p25.3 and 16p11.2 duplications). Thirty-one single nucleotide mutations in genes principally involved in brain development and/or function have been found in 12 autosomes and one sex chromosome (X). We also describe five SNVs in X-linked genes inherited from a healthy mother, arguing for the X-linked recessive inheritance hypothesis. Moreover, ATP1A3 (19q13.2) is the only gene carrying more than one SNV in more than one patient, making it a strong candidate for COS. Mutations were distributed in various chromosomes illustrating the genetic heterogeneity of COS. More than 90% of CNVs involved in COS are also involved in ASD, supporting the idea that there may be genetic overlap between these disorders. Different mutations associated with COS are probably still unknown, and pathogenesis might also be explained by the association of different genetic variations (two or more CNVs or CNVs and SNVs) as well as association with early acquired brain lesions such as infection, hypoxia, or early childhood trauma.
Collapse
Affiliation(s)
- Arnaud Fernandez
- University Department of Child and Adolescent Psychiatry, Children's, Hospitals of NICE CHU-Lenval, Nice, France.,CoBTek, Université Côte d'Azur, Nice, France.,Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Malgorzata Marta Drozd
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Susanne Thümmler
- University Department of Child and Adolescent Psychiatry, Children's, Hospitals of NICE CHU-Lenval, Nice, France.,CoBTek, Université Côte d'Azur, Nice, France
| | - Emmanuelle Dor
- University Department of Child and Adolescent Psychiatry, Children's, Hospitals of NICE CHU-Lenval, Nice, France.,CoBTek, Université Côte d'Azur, Nice, France
| | - Maria Capovilla
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Florence Askenazy
- University Department of Child and Adolescent Psychiatry, Children's, Hospitals of NICE CHU-Lenval, Nice, France.,CoBTek, Université Côte d'Azur, Nice, France
| | - Barbara Bardoni
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,Université Côte d'Azur, INSERM, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|
7
|
Age Matters: an Atypical Association Between Polymorphism of MTHFR and Clinical Phenotypes in Children with Schizophrenia. J Mol Neurosci 2019; 69:485-493. [DOI: 10.1007/s12031-019-01382-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022]
|
8
|
Hoffmann A, Ziller M, Spengler D. Childhood-Onset Schizophrenia: Insights from Induced Pluripotent Stem Cells. Int J Mol Sci 2018; 19:E3829. [PMID: 30513688 PMCID: PMC6321410 DOI: 10.3390/ijms19123829] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 01/25/2023] Open
Abstract
Childhood-onset schizophrenia (COS) is a rare psychiatric disorder characterized by earlier onset, more severe course, and poorer outcome relative to adult-onset schizophrenia (AOS). Even though, clinical, neuroimaging, and genetic studies support that COS is continuous to AOS. Early neurodevelopmental deviations in COS are thought to be significantly mediated through poorly understood genetic risk factors that may also predispose to long-term outcome. In this review, we discuss findings from induced pluripotent stem cells (iPSCs) that allow the generation of disease-relevant cell types from early brain development. Because iPSCs capture each donor's genotype, case/control studies can uncover molecular and cellular underpinnings of COS. Indeed, recent studies identified alterations in neural progenitor and neuronal cell function, comprising dendrites, synapses, electrical activity, glutamate signaling, and miRNA expression. Interestingly, transcriptional signatures of iPSC-derived cells from patients with COS showed concordance with postmortem brain samples from SCZ, indicating that changes in vitro may recapitulate changes from the diseased brain. Considering this progress, we discuss also current caveats from the field of iPSC-based disease modeling and how to proceed from basic studies to improved diagnosis and treatment of COS.
Collapse
Affiliation(s)
- Anke Hoffmann
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Michael Ziller
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Dietmar Spengler
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
9
|
Fernandez A, Dor E, Maurin T, Laure G, Menard ML, Drozd M, Poinso F, Bardoni B, Askenazy F, Thümmler S. Exploration and characterisation of the phenotypic and genetic profiles of patients with early onset schizophrenia associated with autism spectrum disorder and their first-degree relatives: a French multicentre case series study protocol (GenAuDiss). BMJ Open 2018; 8:e023330. [PMID: 29980548 PMCID: PMC6042534 DOI: 10.1136/bmjopen-2018-023330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Early-onset schizophrenia (EOS) is a rare and severe condition. A higher rate of neurodevelopmental abnormalities, such as intellectual or communication impairments as well as attention deficit hyperactivity disorder, is observed in EOS compared with adult-onset schizophrenia. Early signs of autism spectrum disorders (ASD) are present in about 30% of patients. Genetic abnormalities, including copy number variations, are frequent in neurodevelopmental disorders and have been associated to ASD physiopathology. Implicated genes encode proteins involved in brain development, synapses morphology and plasticity and neurogenesis. In addition, an increasing number of genetic abnormalities are shared by EOS and ASD, underlying the neurodevelopmental hypothesis of EOS.The main objective of our study is to identify disease-causing genetic mutations in a cohort of patients affected by both EOS and ASD. Special attention will be paid to genes involved in neurodevelopmental pathways. METHODS AND ANALYSIS We describe a multicentric study in a paediatric population. The study started in April 2014. Inclusion criteria are: age 7-22 years, diagnosis of EOS with comorbid ASD and IQ >50; Parents and siblings are also enrolled. We perform psychiatric assessments (Mini International Neuropsychiatric Interview, Kiddie Schedule for Affective Disorders and Schizophrenia -Present and Lifetime Version, Positive and Negative Syndrome Scale and Scale for the Assessment of Negative Symptoms) together with neurocognitive evaluations (IQ, Trail Making Test A/B and verbal fluency). Then, we study variants of the coding part of DNA (exome), using next-generation sequencing process on trio (mother, father and child). Bioinformatics tools (RVIS and PolyPhen-2) are used to prioritise disease-causing mutations in candidate genes. The inclusion period will end in November 2019. ETHICS AND DISSEMINATION The study protocol was approved by the Local Ethic Committee and by the French National Agency for Medicines and Health Products Safety. All patients signed informed consent on enrolment in the study. Results of the present study should help to unravel the molecular pathology of EOS, paving the way for an early therapeutic intervention. TRIAL REGISTRATION NUMBER NCT0256552; Pre-results.
Collapse
Affiliation(s)
- Arnaud Fernandez
- Child and Adolescent Psychiatry, Children’s Hospitals of Nice CHU-Lenval, Nice, France
- CoBTek, Université Côte d’Azur, Nice, France
- CNRS UMR7275, Université Côte d’Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Emmanuelle Dor
- Child and Adolescent Psychiatry, Children’s Hospitals of Nice CHU-Lenval, Nice, France
- CoBTek, Université Côte d’Azur, Nice, France
| | - Thomas Maurin
- CNRS UMR7275, Université Côte d’Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- CNRS LIA « Neogenex », Université Côte d’Azur, Valbonne, France
| | - Gaelle Laure
- Child and Adolescent Psychiatry, Children’s Hospitals of Nice CHU-Lenval, Nice, France
| | - Marie-Line Menard
- Child and Adolescent Psychiatry, Children’s Hospitals of Nice CHU-Lenval, Nice, France
- CoBTek, Université Côte d’Azur, Nice, France
| | - Małgorzata Drozd
- CNRS UMR7275, Université Côte d’Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- CNRS LIA « Neogenex », Université Côte d’Azur, Valbonne, France
| | - Francois Poinso
- Child and Adolescent Psychiatry, AP-HM, Hospital Sainte-Marguerite, Marseille, France
| | - Barbara Bardoni
- CNRS UMR7275, Université Côte d’Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- CNRS LIA « Neogenex », Université Côte d’Azur, Valbonne, France
| | - Florence Askenazy
- Child and Adolescent Psychiatry, Children’s Hospitals of Nice CHU-Lenval, Nice, France
- CoBTek, Université Côte d’Azur, Nice, France
| | - Susanne Thümmler
- Child and Adolescent Psychiatry, Children’s Hospitals of Nice CHU-Lenval, Nice, France
- CoBTek, Université Côte d’Azur, Nice, France
| |
Collapse
|
10
|
Missense variants in ATP1A3 and FXYD gene family are associated with childhood-onset schizophrenia. Mol Psychiatry 2018; 25:821-830. [PMID: 29895895 PMCID: PMC6291354 DOI: 10.1038/s41380-018-0103-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 11/09/2022]
Abstract
Childhood-onset schizophrenia (COS) is a rare and severe form of schizophrenia defined as onset before age of 13. Here we report on two unrelated cases diagnosed with both COS and alternating hemiplegia of childhood (AHC), and for whom two distinct pathogenic de novo variants were identified in the ATP1A3 gene. ATP1A3 encodes the α-subunit of a neuron-specific ATP-dependent transmembrane sodium-potassium pump. Using whole exome sequencing data derived from a cohort of 17 unrelated COS cases, we also examined ATP1A3 and all of its interactors known to be expressed in the brain to establish if variants could be identified. This led to the identification of a third case with a possibly damaging missense mutation in ATP1A3 and three others cases with predicted pathogenic missense variants in the FXYD gene family (FXYD1, FXYD6, and FXYD6-FXYD2 readthrough). FXYD genes encode proteins that modulate the ATP-dependant pump function. This report is the first to identify variants in the same pathway for COS. Our COS study illustrates the interest of stratifying a complex condition according to the age of onset for the identification of deleterious variants. Whereas ATP1A3 is a replicated gene in rare neuropediatric diseases, this gene has previously been linked with COS in only one case report. The association with rare variants in FXYD gene family is novel and highlights the interest of exploring these genes in COS as well as in pediatric neurodevelopmental disorders.
Collapse
|
11
|
Chan V. Schizophrenia and Psychosis: Diagnosis, Current Research Trends, and Model Treatment Approaches with Implications for Transitional Age Youth. Child Adolesc Psychiatr Clin N Am 2017; 26:341-366. [PMID: 28314460 DOI: 10.1016/j.chc.2016.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article reviews the current state of diagnosis and treatment of schizophrenia, describing the recent proliferation of research in high-risk psychosis spectrum conditions, which are different from childhood-onset and early onset schizophrenia, and findings of psychotic-like experiences in the normal population. Taken from adult and childhood literature, clinical quandaries in accurate diagnosis, and treatment gaps in co-occurring, or sometimes confounding, conditions are discussed. Thoughts on the impact of schizophrenia on an emerging adulthood trajectory are offered. Recent best practices in the treatment of schizophrenia are consistent with a recovery-oriented model of mental health services for transitional age youth.
Collapse
Affiliation(s)
- Vivien Chan
- 501 Student Health, Student Health Center, University of California Irvine, Irvine, CA 92697-5200, USA; Behavioral Health Services, Children, Youth & Prevention Division, Center for Resiliency Wellness & Education (First Episode Psychosis), Orange County Health Care Agency, 729 W Town & Country Road, Building E, Orange, CA 92868, USA; Department of Psychiatry & Human Behavior, UCI Health, Orange, CA 92868, USA.
| |
Collapse
|
12
|
Waltzman D, Knowlton BJ, Cohen JR, Bookheimer SY, Bilder RM, Asarnow RF. DTI microstructural abnormalities in adolescent siblings of patients with childhood-onset schizophrenia. Psychiatry Res Neuroimaging 2016; 258:23-29. [PMID: 27829189 DOI: 10.1016/j.pscychresns.2016.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Dana Waltzman
- War Related Illness and Injury Study Center, Veterans Affairs Palo Alto Health Care System (VAPAHCS), United States; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, United States.
| | | | - Jessica Rachel Cohen
- Department of Psychology and Neurosciences, University of North Carolina at Chapel Hill, United States
| | - Susan Yost Bookheimer
- David Geffen School of Medicine at University of California Los Angeles, United States
| | - Robert Martin Bilder
- David Geffen School of Medicine at University of California Los Angeles, United States
| | - Robert Franklin Asarnow
- Department of Psychology, University of California Los Angeles, United States; David Geffen School of Medicine at University of California Los Angeles, United States
| |
Collapse
|
13
|
Abstract
Childhood-onset schizophrenia is a rare pediatric onset psychiatric disorder continuous with and typically more severe than its adult counterpart. Neuroimaging research conducted on this population has revealed similarly severe neural abnormalities. When taken as a whole, neuroimaging research in this population shows generally decreased cortical gray matter coupled with white matter connectivity abnormalities, suggesting an anatomical basis for deficits in executive function. Subcortical abnormalities are pronounced in limbic structures, where volumetric deficits are likely related to social skill deficits, and cerebellar deficits that have been correlated to cognitive abnormalities. Structures relevant to motor processing also show a significant alteration, with volumetric increase in basal ganglia structures likely due to antipsychotic administration. Neuroimaging of this disorder shows an important clinical image of exaggerated cortical loss, altered white matter connectivity, and differences in structural development of subcortical areas during the course of development and provides important background to the disease state.
Collapse
|
14
|
Klein C, Bespalov A. Development of novel therapy of schizophrenia in children and adolescents. Expert Opin Investig Drugs 2014; 23:1531-40. [PMID: 24970455 DOI: 10.1517/13543784.2014.933806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Typical and atypical antipsychotics are efficacious treatments for early-onset schizophrenia (EOS) with very subtle differences in their efficacy. Therefore, when choosing an antipsychotic, the side-effect profile of the individual antipsychotic needs to be taken into account. There is a growing body of neurobiological and genetic evidence for early-onset patients, but these findings have not yet translated into the clinic. AREAS COVERED The authors summarize the current treatment options for EOS and discuss the novel treatment options that are under evaluation. The authors focus specifically on Phase II and Phase III clinical trials. EXPERT OPINION Currently, there are no truly groundbreaking pharmacological treatment options emerging in EOS. There are several newer antipsychotic agents (iloperidone, lurasidone, asenapine, blonanserin) that are currently in clinical trials. It is unclear whether therapeutic efficacy of any of these agents will be superior or even similar to the existing treatment and the main differentiating factor between individual drugs remains to be their side-effect profile. Beyond these antipsychotics, oxytocin and N-acetylcysteine are the only new pharmacological treatment options that are being evaluated in EOS. Therefore, a major change in the treatment development paradigm is necessary to identify novel and efficacious drugs.
Collapse
Affiliation(s)
- Corinna Klein
- Department of Pharmacology, Neuroscience Research, AbbVie Deutschland GmbH & Co KG , Knollstrasse, D-67008 Ludwigshafen , Germany +49 621 589 1370 ; +49 621 589 3232 ;
| | | |
Collapse
|