1
|
Lam UTF, Nguyen TTT, Raechell R, Yang J, Singer H, Chen ES. A Normalization Protocol Reduces Edge Effect in High-Throughput Analyses of Hydroxyurea Hypersensitivity in Fission Yeast. Biomedicines 2023; 11:2829. [PMID: 37893202 PMCID: PMC10604075 DOI: 10.3390/biomedicines11102829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Edge effect denotes better growth of microbial organisms situated at the edge of the solid agar media. Although the precise reason underlying edge effect is unresolved, it is generally attributed to greater nutrient availability with less competing neighbors at the edge. Nonetheless, edge effect constitutes an unavoidable confounding factor that results in misinterpretation of cell fitness, especially in high-throughput screening experiments widely employed for genome-wide investigation using microbial gene knockout or mutant libraries. Here, we visualize edge effect in high-throughput high-density pinning arrays and report a normalization approach based on colony growth rate to quantify drug (hydroxyurea)-hypersensitivity in fission yeast strains. This normalization procedure improved the accuracy of fitness measurement by compensating cell growth rate discrepancy at different locations on the plate and reducing false-positive and -negative frequencies. Our work thus provides a simple and coding-free solution for a struggling problem in robotics-based high-throughput screening experiments.
Collapse
Affiliation(s)
- Ulysses Tsz-Fung Lam
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore; (U.T.-F.L.); (T.T.T.N.); (R.R.)
| | - Thi Thuy Trang Nguyen
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore; (U.T.-F.L.); (T.T.T.N.); (R.R.)
| | - Raechell Raechell
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore; (U.T.-F.L.); (T.T.T.N.); (R.R.)
| | - Jay Yang
- Singer Instruments, Roadwater, Watchet TA23 0RE, UK; (J.Y.); (H.S.)
| | - Harry Singer
- Singer Instruments, Roadwater, Watchet TA23 0RE, UK; (J.Y.); (H.S.)
| | - Ee Sin Chen
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore; (U.T.-F.L.); (T.T.T.N.); (R.R.)
- NUS Center for Cancer Research, National University of Singapore, Singapore 117599, Singapore
- NUS Synthetic Biology for Clinical & Technological Innovation (SynCTI), Life Science Institute, National University of Singapore, Singapore 117456, Singapore
- National University Health System (NUHS), Singapore 119228, Singapore
| |
Collapse
|
2
|
Wang P, Klassmüller T, Karg CA, Kretschmer M, Zahler S, Braig S, Bracher F, Vollmar AM, Moser S. Using the yeast three-hybrid system for the identification of small molecule-protein interactions with the example of ethinylestradiol. Biol Chem 2022; 403:421-431. [PMID: 35224953 DOI: 10.1515/hsz-2021-0355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/10/2022] [Indexed: 12/26/2022]
Abstract
Since the first report on a yeast three-hybrid system, several approaches have successfully utilized different setups for discovering targets of small molecule drugs. Compared to broadly applied MS based target identification approaches, the yeast three-hybrid system represents a complementary method that allows for the straightforward identification of direct protein binders of selected small molecules. One major drawback of this system, however, is that the drug has to be taken up by the yeast cells in sufficient concentrations. Here, we report the establishment of a yeast three-hybrid screen in the deletion strain ABC9Δ, which is characterized by being highly permeable to small molecules. We used this system to screen for protein binding partners of ethinylestradiol, a widely used drug mainly for contraception and hormone replacement therapy. We identified procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (PLOD2 or lysyl hydroxylase, LH2) as a novel direct target and were able to confirm the interaction identified with the yeast three-hybrid system by a complementary method, affinity chromatography, to prove the validity of the hit. Furthermore, we provide evidence for an interaction between the drug and PLOD2 in vitro and in cellulo.
Collapse
Affiliation(s)
- Pengyu Wang
- Pharmaceutical Biology, Department of Pharmacy, Ludwig Maximilians University of Munich, Butenandtstr. 5-13, Building B, D-81377 Munich, Germany
| | - Thomas Klassmüller
- Pharmaceutical Chemistry, Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstr. 7, Building C, D-81377 Munich, Germany
| | - Cornelia A Karg
- Pharmaceutical Biology, Department of Pharmacy, Ludwig Maximilians University of Munich, Butenandtstr. 5-13, Building B, D-81377 Munich, Germany
| | - Maibritt Kretschmer
- Pharmaceutical Biology, Department of Pharmacy, Ludwig Maximilians University of Munich, Butenandtstr. 5-13, Building B, D-81377 Munich, Germany
| | - Stefan Zahler
- Pharmaceutical Biology, Department of Pharmacy, Ludwig Maximilians University of Munich, Butenandtstr. 5-13, Building B, D-81377 Munich, Germany
| | - Simone Braig
- Pharmaceutical Biology, Department of Pharmacy, Ludwig Maximilians University of Munich, Butenandtstr. 5-13, Building B, D-81377 Munich, Germany
| | - Franz Bracher
- Pharmaceutical Chemistry, Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstr. 7, Building C, D-81377 Munich, Germany
| | - Angelika M Vollmar
- Pharmaceutical Biology, Department of Pharmacy, Ludwig Maximilians University of Munich, Butenandtstr. 5-13, Building B, D-81377 Munich, Germany
| | - Simone Moser
- Pharmaceutical Biology, Department of Pharmacy, Ludwig Maximilians University of Munich, Butenandtstr. 5-13, Building B, D-81377 Munich, Germany
| |
Collapse
|
3
|
Jörg M, Madden KS. The right tools for the job: the central role for next generation chemical probes and chemistry-based target deconvolution methods in phenotypic drug discovery. RSC Med Chem 2021; 12:646-665. [PMID: 34124668 PMCID: PMC8152813 DOI: 10.1039/d1md00022e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
The reconnection of the scientific community with phenotypic drug discovery has created exciting new possibilities to develop therapies for diseases with highly complex biology. It promises to revolutionise fields such as neurodegenerative disease and regenerative medicine, where the development of new drugs has consistently proved elusive. Arguably, the greatest challenge in readopting the phenotypic drug discovery approach exists in establishing a crucial chain of translatability between phenotype and benefit to patients in the clinic. This remains a key stumbling block for the field which needs to be overcome in order to fully realise the potential of phenotypic drug discovery. Excellent quality chemical probes and chemistry-based target deconvolution techniques will be a crucial part of this process. In this review, we discuss the current capabilities of chemical probes and chemistry-based target deconvolution methods and evaluate the next advances necessary in order to fully support phenotypic screening approaches in drug discovery.
Collapse
Affiliation(s)
- Manuela Jörg
- School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria 3052 Australia
| | - Katrina S Madden
- School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria 3052 Australia
| |
Collapse
|
4
|
Shabajee P, Gaudeau A, Legros C, Dorval T, Stéphan JP. [From high content screening to target deconvolution: New insights for phenotypic approaches]. Med Sci (Paris) 2021; 37:249-257. [PMID: 33739272 DOI: 10.1051/medsci/2021013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The advent of the molecular biology and the completion of the human genome sequencing prompted the pharmaceutical industry to progressively implement target-centric drug discovery strategies. However, concerns regarding the research and development productivity during the last ten years, combined with technological developments in high-content screening, automation, image analysis and artificial intelligence triggered a renewed interest for the phenotypic drug discovery approaches. Target-centric and phenotypic approaches are more and more considered complementary, hence, positioning the target deconvolution on the critical path. This review analyzes the evolution of the target-centric and phenotypic approaches, focusing more specifically on the high-content screening and the target deconvolution technologies currently available.
Collapse
Affiliation(s)
- Preety Shabajee
- Pôle d'expertise Criblage pharmacologique, chimiothèque et biobanques, Institut de Recherches Servier, 125, Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Albane Gaudeau
- Pôle d'expertise Criblage pharmacologique, chimiothèque et biobanques, Institut de Recherches Servier, 125, Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Céline Legros
- Pôle d'expertise Criblage pharmacologique, chimiothèque et biobanques, Institut de Recherches Servier, 125, Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Thierry Dorval
- Pôle d'expertise Criblage pharmacologique, chimiothèque et biobanques, Institut de Recherches Servier, 125, Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Jean-Philippe Stéphan
- Pôle d'expertise Criblage pharmacologique, chimiothèque et biobanques, Institut de Recherches Servier, 125, Chemin de Ronde, 78290 Croissy-sur-Seine, France
| |
Collapse
|
5
|
Conway LP, Li W, Parker CG. Chemoproteomic-enabled phenotypic screening. Cell Chem Biol 2021; 28:371-393. [PMID: 33577749 DOI: 10.1016/j.chembiol.2021.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/26/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
The ID of disease-modifying, chemically accessible targets remains a central priority of modern therapeutic discovery. The phenotypic screening of small-molecule libraries not only represents an attractive approach to identify compounds that may serve as drug leads but also serves as an opportunity to uncover compounds with novel mechanisms of action (MoAs). However, a major bottleneck of phenotypic screens continues to be the ID of pharmacologically relevant target(s) for compounds of interest. The field of chemoproteomics aims to map proteome-wide small-molecule interactions in complex, native systems, and has proved a key technology to unravel the protein targets of pharmacological modulators. In this review, we discuss the application of modern chemoproteomic methods to identify protein targets of phenotypic screening hits and investigate MoAs, with a specific focus on the development of chemoproteomic-enabled compound libraries to streamline target discovery.
Collapse
Affiliation(s)
- Louis P Conway
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Weichao Li
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Parikh SB, Castilho Coelho N, Carvunis AR. LI Detector: a framework for sensitive colony-based screens regardless of the distribution of fitness effects. G3-GENES GENOMES GENETICS 2021; 11:6161305. [PMID: 33693606 PMCID: PMC8022918 DOI: 10.1093/g3journal/jkaa068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022]
Abstract
Microbial growth characteristics have long been used to investigate fundamental questions of biology. Colony-based high-throughput screens enable parallel fitness estimation of thousands of individual strains using colony growth as a proxy for fitness. However, fitness estimation is complicated by spatial biases affecting colony growth, including uneven nutrient distribution, agar surface irregularities, and batch effects. Analytical methods that have been developed to correct for these spatial biases rely on the following assumptions: (1) that fitness effects are normally distributed, and (2) that most genetic perturbations lead to minor changes in fitness. Although reasonable for many applications, these assumptions are not always warranted and can limit the ability to detect small fitness effects. Beneficial fitness effects, in particular, are notoriously difficult to detect under these assumptions. Here, we developed the linear interpolation-based detector (LI Detector) framework to enable sensitive colony-based screening without making prior assumptions about the underlying distribution of fitness effects. The LI Detector uses a grid of reference colonies to assign a relative fitness value to every colony on the plate. We show that the LI Detector is effective in correcting for spatial biases and equally sensitive toward increase and decrease in fitness. LI Detector offers a tunable system that allows the user to identify small fitness effects with unprecedented sensitivity and specificity. LI Detector can be utilized to develop and refine gene-gene and gene-environment interaction networks of colony-forming organisms, including yeast, by increasing the range of fitness effects that can be reliably detected.
Collapse
Affiliation(s)
- Saurin Bipin Parikh
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nelson Castilho Coelho
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Wang Y, Letham DS, John PCL, Zhang R. Using Yeast Hybrid System to Identify Proteins Binding to Small Molecules. Methods Mol Biol 2018; 1794:225-234. [PMID: 29855960 DOI: 10.1007/978-1-4939-7871-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein-small molecule interaction studies provide useful insights into biological processes taking place within the living cell. A special yeast hybrid system, the yeast three-hybrid method, has been developed and used to explore proteins that bind to small molecules, by which means it may be possible to unravel biological processes and dissect function of biological systems. Here we present a protocol employing this method for identifying such binding proteins.
Collapse
Affiliation(s)
- You Wang
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - David S Letham
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Peter C L John
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Ren Zhang
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
8
|
Abstract
Comprehensive identification of direct, physical interactions between biological macromolecules, such as protein-protein, protein-DNA, and protein-RNA interactions, is critical for our understanding of the function of gene products as well as the global organization and interworkings of various molecular machines within the cell. The accurate and comprehensive detection of direct interactions, however, remains a huge challenge due to the inherent structural complexity arising from various post-transcriptional and translational modifications coupled with huge heterogeneity in concentration, affinity, and subcellular location differences existing for any interacting molecules. This has created a need for developing multiple orthogonal and complementary assays for detecting various types of biological interactions. In this introduction, we discuss the methods developed for measuring different types of molecular interactions with an emphasis on direct protein-protein interactions, critical issues for generating high-quality interactome datasets, and the insights into biological networks and human diseases that current interaction mapping efforts provide. Further, we will discuss what future might lie ahead for the continued evolution of two-hybrid methods and the role of interactomics for expanding the advancement of biomedical science.
Collapse
Affiliation(s)
- Soon Gang Choi
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Aaron Richardson
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Luke Lambourne
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
De Clercq DJH, Tavernier J, Lievens S, Van Calenbergh S. Chemical Dimerizers in Three-Hybrid Systems for Small Molecule-Target Protein Profiling. ACS Chem Biol 2016; 11:2075-90. [PMID: 27267544 DOI: 10.1021/acschembio.5b00811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The identification of the molecular targets and mechanisms underpinning the beneficial or detrimental effects of small-molecule leads and drugs constitutes a crucial aspect of current drug discovery. Over the last two decades, three-hybrid (3H) systems have progressively taken an important position in the armamentarium of small molecule-target protein profiling technologies. Yet, a prerequisite for successful 3H analysis is the availability of appropriate chemical inducers of dimerization. Herein, we present a comprehensive and critical overview of the chemical dimerizers specifically applied in both yeast and mammalian three-hybrid systems for small molecule-target protein profiling within the broader scope of target deconvolution and drug discovery. Furthermore, examples and alternative suggestions for typical components of chemical dimerizers for 3H systems are discussed. As illustrated, more tools have become available that increase the sensitivity and efficiency of 3H-based screening platforms. Hence, it is anticipated that the great potential of 3H systems will further materialize in important contributions to drug discovery.
Collapse
Affiliation(s)
- Dries J. H. De Clercq
- Laboratory
for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- Department
of Medical Protein Research, Vlaams Instituut voor Biotechnologie, 9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Sam Lievens
- Department
of Medical Protein Research, Vlaams Instituut voor Biotechnologie, 9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory
for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
10
|
Al-Ali H. The evolution of drug discovery: from phenotypes to targets, and back. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00129g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cumulative scientific and technological advances over the past two centuries have transformed drug discovery from a largely serendipitous process into the high tech pipelines of today.
Collapse
Affiliation(s)
- Hassan Al-Ali
- Miami Project to Cure Paralysis
- University of Miami Miller School of Medicine
- Miami FL 33136
- USA
| |
Collapse
|
11
|
Tang H, Duggan S, Richardson PL, Marin V, Warder SE, McLoughlin SM. Target Identification of Compounds from a Cell Viability Phenotypic Screen Using a Bead/Lysate-Based Affinity Capture Platform. ACTA ACUST UNITED AC 2015; 21:201-11. [DOI: 10.1177/1087057115622431] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/24/2015] [Indexed: 12/23/2022]
Abstract
The pharmaceutical industry has been continually challenged by dwindling target diversity. To obviate this trend, phenotypic screens have been adopted, complementing target-centric screening approaches. Phenotypic screens identify drug leads using clinically relevant and translatable mechanisms, remaining agnostic to targets. While target anonymity is advantageous early in the drug discovery process, it poses challenges to hit progression, including the development of backup series, retaining desired pharmacology during optimization, discovery of markers, and understanding mechanism-driven toxicity. Consequently, significant effort has been expended to elaborate the targets and mechanisms at work for promising screening hits. Affinity capture is commonly leveraged, where the compounds are linked to beads and targets are abstracted from cell homogenates. This technique has proven effective for identifying targets of kinase, PARP, and HDAC inhibitors, and examples of new targets have been reported. Herein, a three-pronged approach to target deconvolution by affinity capture is described, including the implementation of a uniqueness index that helps discriminate between bona fide targets and background. The effectiveness of this approach is demonstrated using characterized compounds that act on known and noncanonical target classes. The platform is subsequently applied to phenotypic screening hits, identifying candidate targets. The success rate of bead-based affinity capture is discussed.
Collapse
Affiliation(s)
- Hua Tang
- Target Enabling Science and Technologies, AbbVie, North Chicago, IL, USA
| | - Shannon Duggan
- Drug Metabolism & Pharmacokinetics, AbbVie, North Chicago, IL, USA
| | | | - Violeta Marin
- Discovery Chemistry and Technologies, AbbVie, North Chicago, IL, USA
| | - Scott E. Warder
- Target Enabling Science and Technologies, AbbVie, North Chicago, IL, USA
| | | |
Collapse
|
12
|
Shams N, Mosslemin MH, Anaraki-Ardakani H. An Efficient Synthesis of Bis-Purine Derivatives by a PPh3-catalysed Double Addition of Dialkylated Xanthine Derivatives to Alkyl Propiolates. JOURNAL OF CHEMICAL RESEARCH 2015. [DOI: 10.3184/174751915x14396278385301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reaction between 5,7-dialkylated xanthine derivatives (2 equiv.) and an alkyl propiolate in the presence of catalytic amounts of triphenyl phosphine yields alkyl 2,3-bis(1,3-dialkyl-2,6-dioxo/oxothio-2,3-dihydro-1H-purin-7(6H)-yl)propanoates in excellent yield.
Collapse
Affiliation(s)
- Nasim Shams
- Department of Chemistry, Yazd Branch, Islamic Azad University, PO Box 89195-155, Yazd, Iran
| | | | | |
Collapse
|
13
|
Zheng W, Li G, Li X. Affinity purification in target identification: the specificity challenge. Arch Pharm Res 2015; 38:1661-85. [DOI: 10.1007/s12272-015-0635-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/07/2015] [Indexed: 12/16/2022]
|
14
|
Odell AV, Tran F, Foderaro JE, Poupart S, Pathak R, Westwood NJ, Ward GE. Yeast three-hybrid screen identifies TgBRADIN/GRA24 as a negative regulator of Toxoplasma gondii bradyzoite differentiation. PLoS One 2015; 10:e0120331. [PMID: 25789621 PMCID: PMC4366382 DOI: 10.1371/journal.pone.0120331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/06/2015] [Indexed: 12/17/2022] Open
Abstract
Differentiation of the protozoan parasite Toxoplasma gondii into its latent bradyzoite stage is a key event in the parasite's life cycle. Compound 2 is an imidazopyridine that was previously shown to inhibit the parasite lytic cycle, in part through inhibition of parasite cGMP-dependent protein kinase. We show here that Compound 2 can also enhance parasite differentiation, and we use yeast three-hybrid analysis to identify TgBRADIN/GRA24 as a parasite protein that interacts directly or indirectly with the compound. Disruption of the TgBRADIN/GRA24 gene leads to enhanced differentiation of the parasite, and the TgBRADIN/GRA24 knockout parasites show decreased susceptibility to the differentiation-enhancing effects of Compound 2. This study represents the first use of yeast three-hybrid analysis to study small-molecule mechanism of action in any pathogenic microorganism, and it identifies a previously unrecognized inhibitor of differentiation in T. gondii. A better understanding of the proteins and mechanisms regulating T. gondii differentiation will enable new approaches to preventing the establishment of chronic infection in this important human pathogen.
Collapse
Affiliation(s)
- Anahi V Odell
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Fanny Tran
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Jenna E Foderaro
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Séverine Poupart
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Ravi Pathak
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Nicholas J Westwood
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Gary E Ward
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
15
|
Mayi T, Facca C, Anne S, Vernis L, Huang ME, Legraverend M, Faye G. Yeast as a model system to screen purine derivatives against human CDK1 and CDK2 kinases. J Biotechnol 2014; 195:30-6. [PMID: 25541464 DOI: 10.1016/j.jbiotec.2014.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 11/19/2022]
Abstract
Cyclin-dependent kinases (Cdk) play crucial roles in cell cycle progression. Aberrant activation of Cdk1 has been observed in a number of primary tumors and Cdk2 is deregulated in various malignancies. The therapeutic value of targeting Cdk1 and Cdk2 has been explored in a number of experimental systems. In the present study, taking advantage of the fact that deletion of the yeast CDC28 gene is functionally complemented by human CDK1 or CDK2, we set up an in vivo screen system to evaluate the inhibitory potency of purine derivatives against these two human Cdks. We constructed three isogenic strains highly sensitive to small molecules and harboring genes CDK1, CDK2 or CDC28, under the control of the CDC28 promoter. In a proof of principle assay, we determined the inhibitory effect of 82 purine derivatives on the growth rate of these strains. Thirty-three of them were revealed to be able to inhibit the Cdk1- or Cdk2-harboring strains but not the Cdc28-harboring strain, suggesting a specific inhibitory effect on human Cdks. Our data demonstrate that the yeast-based assay is an efficient system to identify potential specific inhibitors that should be preferentially selected for further investigation in cultured human cell lines.
Collapse
Affiliation(s)
- Thérèse Mayi
- INSERM U612, Institut Curie, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
| | - Céline Facca
- CNRS UMR2027, Institut Curie, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
| | - Sandrine Anne
- CNRS UMR146, Institut Curie, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
| | - Laurence Vernis
- CNRS UMR3348, Institut Curie, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
| | - Meng-Er Huang
- CNRS UMR3348, Institut Curie, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
| | - Michel Legraverend
- CNRS UMR176, Institut Curie, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
| | - Gérard Faye
- CNRS UMR3348, Institut Curie, Bât. 110-112, Centre Universitaire, 91405 Orsay, France.
| |
Collapse
|
16
|
Stasi M, De Luca M, Bucci C. Two-hybrid-based systems: powerful tools for investigation of membrane traffic machineries. J Biotechnol 2014; 202:105-17. [PMID: 25529347 DOI: 10.1016/j.jbiotec.2014.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 01/18/2023]
Abstract
Protein-protein interactions regulate biological processes and are fundamental for cell functions. Recently, efforts have been made to define interactomes, which are maps of protein-protein interactions that are useful for understanding biological pathways and networks and for investigating how perturbations of these networks lead to diseases. Therefore, interactomes are becoming fundamental for establishing the molecular basis of human diseases and contributing to the discovery of effective therapies. Interactomes are constructed based on experimental data present in the literature and computational predictions of interactions. Several biochemical, genetic and biotechnological techniques have been used in the past to identify protein-protein interactions. The yeast two-hybrid system has beyond doubt represented a revolution in the field, being a versatile tool and allowing the immediate identification of the interacting proteins and isolation of the cDNA coding for the interacting peptide after in vivo screening. Recently, variants of the yeast two-hybrid assay have been developed, including high-throughput systems that promote the rapidly growing field of proteomics. In this review we will focus on the role of this technique in the discovery of Rab interacting proteins, highlighting the importance of high-throughput two-hybrid screening as a tool to study the complexity of membrane traffic machineries.
Collapse
Affiliation(s)
- Mariangela Stasi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Maria De Luca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
17
|
Terminal protection of small molecule-linked DNA for small molecule-protein interaction assays. Int J Mol Sci 2014; 15:5221-32. [PMID: 24670475 PMCID: PMC4013559 DOI: 10.3390/ijms15045221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/15/2014] [Accepted: 03/17/2014] [Indexed: 01/24/2023] Open
Abstract
Methods for the detection of specific interactions between diverse proteins and various small-molecule ligands are of significant importance in understanding the mechanisms of many critical physiological processes of organisms. The techniques also represent a major avenue to drug screening, molecular diagnostics, and public safety monitoring. Terminal protection assay of small molecule-linked DNA is a demonstrated novel methodology which has exhibited great potential for the development of simple, sensitive, specific and high-throughput methods for the detection of small molecule–protein interactions. Herein, we review the basic principle of terminal protection assay, the development of associated methods, and the signal amplification strategies adopted for performance improving in small molecule–protein interaction assay.
Collapse
|
18
|
Dejonghe W, Russinova E. Target identification strategies in plant chemical biology. FRONTIERS IN PLANT SCIENCE 2014; 5:352. [PMID: 25104953 PMCID: PMC4109434 DOI: 10.3389/fpls.2014.00352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/30/2014] [Indexed: 05/03/2023]
Abstract
The current needs to understand gene function in plant biology increasingly require more dynamic and conditional approaches opposed to classic genetic strategies. Gene redundancy and lethality can substantially complicate research, which might be solved by applying a chemical genetics approach. Now understood as the study of small molecules and their effect on biological systems with subsequent target identification, chemical genetics is a fast developing field with a strong history in pharmaceutical research and drug discovery. In plant biology however, chemical genetics is still largely in the starting blocks, with most studies relying on forward genetics and phenotypic analysis for target identification, whereas studies including direct target identification are limited. Here, we provide an overview of recent advances in chemical genetics in plant biology with a focus on target identification. Furthermore, we discuss different strategies for direct target identification and the possibilities and challenges for plant biology.
Collapse
Affiliation(s)
- Wim Dejonghe
- Department of Plant Systems Biology, VIBGhent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
| | - Eugenia Russinova
- Department of Plant Systems Biology, VIBGhent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
- *Correspondence: Eugenia Russinova, Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, VIB-Ghent University, Technologiepark 927, 9052 Ghent, Belgium e-mail:
| |
Collapse
|
19
|
Ogunleye LO, Jester BW, Riemen AJ, Badran AH, Wang P, Ghosh I. When tight is too tight: Dasatinib and its lower affinity analogue for profiling kinase inhibitors in a three-hybrid split-luciferase system. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00275f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report new CIDs based on Dasatinib and its analogues for profiling kinase inhibitors using a split-luciferase screen.
Collapse
Affiliation(s)
- Luca O. Ogunleye
- University of Arizona
- Department of Chemistry and Biochemistry
- Tucson
- USA
| | | | | | - Ahmed H. Badran
- University of Arizona
- Department of Chemistry and Biochemistry
- Tucson
- USA
| | - Ping Wang
- University of Arizona
- Department of Chemistry and Biochemistry
- Tucson
- USA
| | - Indraneel Ghosh
- University of Arizona
- Department of Chemistry and Biochemistry
- Tucson
- USA
| |
Collapse
|
20
|
Kawatani M, Osada H. Affinity-based target identification for bioactive small molecules. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00276d] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A variety of new approaches of affinity-based target identification for bioactive small molecules are being developed, facilitating drug development and understanding complicated biological processes.
Collapse
|
21
|
CDK/CK1 inhibitors roscovitine and CR8 downregulate amplified MYCN in neuroblastoma cells. Oncogene 2013; 33:5675-87. [PMID: 24317512 DOI: 10.1038/onc.2013.513] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 10/09/2013] [Accepted: 10/21/2013] [Indexed: 12/15/2022]
Abstract
To understand the mechanisms of action of (R)-roscovitine and (S)-CR8, two related pharmacological inhibitors of cyclin-dependent kinases (CDKs), we applied a variety of '-omics' techniques to the human neuroblastoma SH-SY5Y and IMR32 cell lines: (1) kinase interaction assays, (2) affinity competition on immobilized broad-spectrum kinase inhibitors, (3) affinity chromatography on immobilized (R)-roscovitine and (S)-CR8, (4) whole genome transcriptomics analysis and specific quantitative PCR studies, (5) global quantitative proteomics approach and western blot analysis of selected proteins. Altogether, the results show that the major direct targets of these two molecules belong to the CDKs (1,2,5,7,9,12), DYRKs, CLKs and CK1s families. By inhibiting CDK7, CDK9 and CDK12, these inhibitors transiently reduce RNA polymerase 2 activity, which results in downregulation of a large set of genes. Global transcriptomics and proteomics analysis converge to a central role of MYC transcription factors downregulation. Indeed, CDK inhibitors trigger rapid and massive downregulation of MYCN expression in MYCN-amplified neuroblastoma cells as well as in nude mice xenografted IMR32 cells. Inhibition of casein kinase 1 may also contribute to the antitumoral activity of (R)-roscovitine and (S)-CR8. This dual mechanism of action may be crucial in the use of these kinase inhibitors for the treatment of MYC-dependent cancers, in particular neuroblastoma where MYCN amplification is a strong predictor factor for high-risk disease.
Collapse
|
22
|
Li J, Yuan J, Cheng KCC, Inglese J, Su XZ. Chemical genomics for studying parasite gene function and interaction. Trends Parasitol 2013; 29:603-11. [PMID: 24215777 DOI: 10.1016/j.pt.2013.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 12/20/2022]
Abstract
With the development of new technologies in genome sequencing, gene expression profiling, genotyping, and high-throughput screening of chemical compound libraries, small molecules are playing increasingly important roles in studying gene expression regulation, gene-gene interaction, and gene function. Here we briefly review and discuss some recent advancements in drug target identification and phenotype characterization using combinations of high-throughput screening of small-molecule libraries and various genome-wide methods such as whole-genome sequencing, genome-wide association studies (GWAS), and genome-wide expression analysis. These approaches can be used to search for new drugs against parasite infections, to identify drug targets or drug resistance genes, and to infer gene function.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | | | | | | | | |
Collapse
|
23
|
Ferro E, Trabalzini L. The yeast two-hybrid and related methods as powerful tools to study plant cell signalling. PLANT MOLECULAR BIOLOGY 2013; 83:287-301. [PMID: 23794143 DOI: 10.1007/s11103-013-0094-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 06/15/2013] [Indexed: 05/25/2023]
Abstract
One basic property of proteins is their ability to specifically target and form non-covalent complexes with other proteins. Such protein-protein interactions play key roles in all biological processes, extending from the formation of cellular macromolecular structures and enzymatic complexes to the regulation of signal transduction pathways. Identifying and characterizing protein interactions and entire interaction networks (interactomes) is therefore prerequisite to understand these processes on a molecular and biophysical level. Since its original description in 1989, the yeast two-hybrid system has been extensively used to identify protein-protein interactions from many different organisms, thus providing a convenient mean to both screen for proteins that interact with a protein of interest and to characterize the known interaction between two proteins. In these years the technique has improved to overcome the limitations of the original assay, and many efforts have been made to scale up the technique and to adapt it to large scale studies. In addition, variations have been introduced to enlarge the range of proteins and interactors that can be assayed by hybrid-based approaches. Several groups studying molecular mechanisms that underlie plant cell signal transduction pathways have successfully used the yeast two-hybrid system or related methods. In this review we provide a brief description of the technology, attempt to point out some of the pitfalls and benefits of the different systems that can be employed, and mention some of the areas, within the plant cell signalling field, where hybrid-based interaction assays have been particularly informative.
Collapse
Affiliation(s)
- Elisa Ferro
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Fiorentina, 1, 53100, Siena, Italy,
| | | |
Collapse
|
24
|
Tran F, Odell AV, Ward GE, Westwood NJ. A modular approach to triazole-containing chemical inducers of dimerisation for yeast three-hybrid screening. Molecules 2013; 18:11639-57. [PMID: 24064457 PMCID: PMC4031444 DOI: 10.3390/molecules180911639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 11/30/2022] Open
Abstract
The yeast three-hybrid (Y3H) approach shows considerable promise for the unbiased identification of novel small molecule-protein interactions. In recent years, it has been successfully used to link a number of bioactive molecules to novel protein binding partners. However despite its potential importance as a protein target identification method, the Y3H technique has not yet been widely adopted, in part due to the challenges associated with the synthesis of the complex chemical inducers of dimerisation (CIDs). The development of a modular approach using potentially “off the shelf” synthetic components was achieved and allowed the synthesis of a family of four triazole-containing CIDs, MTX-Cmpd2.2-2.5. These CIDs were then compared using the Y3H approach with three of them giving a strong positive interaction with a known target of compound 2, TgCDPK1. These results showed that the modular nature of our synthetic strategy may help to overcome the challenges currently encountered with CID synthesis and should contribute to the Y3H approach reaching its full potential as an unbiased target identification strategy.
Collapse
Affiliation(s)
- Fanny Tran
- School of Chemistry and Biomolecular Sciences Research Complex, University of St Andrews and EaStCHEM, North Haugh, St Andrews, Fife, Scotland KY16 9ST, UK
| | - Anahi V. Odell
- Department of Microbiology and Molecular Genetics, 316 Stafford Hall, University of Vermont, 95 Carrigan Drive, Burlington, VT 05405, USA
| | - Gary E. Ward
- Department of Microbiology and Molecular Genetics, 316 Stafford Hall, University of Vermont, 95 Carrigan Drive, Burlington, VT 05405, USA
- Authors to whom correspondence should be addressed; E-Mails: ; ; Tel.: +44-(0)1334-46316 (N.J.W.); +1-802-656-4868 (G.E.W.); Fax: +44-(0)1334-462595 (N.J.W.); +1-802-656-8749 (G.E.W.)
| | - Nicholas J. Westwood
- School of Chemistry and Biomolecular Sciences Research Complex, University of St Andrews and EaStCHEM, North Haugh, St Andrews, Fife, Scotland KY16 9ST, UK
- Authors to whom correspondence should be addressed; E-Mails: ; ; Tel.: +44-(0)1334-46316 (N.J.W.); +1-802-656-4868 (G.E.W.); Fax: +44-(0)1334-462595 (N.J.W.); +1-802-656-8749 (G.E.W.)
| |
Collapse
|
25
|
|
26
|
Shepard AR, Conrow RE, Pang IH, Jacobson N, Rezwan M, Rutschmann K, Auerbach D, SriRamaratnam R, Cornish VW. Identification of PDE6D as a molecular target of anecortave acetate via a methotrexate-anchored yeast three-hybrid screen. ACS Chem Biol 2013; 8:549-58. [PMID: 23301619 DOI: 10.1021/cb300296m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glaucoma and age-related macular degeneration are ocular diseases targeted clinically by anecortave acetate (AA). AA and its deacetylated metabolite, anecortave desacetate (AdesA), are intraocular pressure (IOP)-lowering and angiostatic cortisenes devoid of glucocorticoid activity but with an unknown mechanism of action. We used a methotrexate-anchored yeast three-hybrid (Y3H) technology to search for binding targets for AA in human trabecular meshwork (TM) cells, the target cell type that controls IOP, a major risk factor in glaucoma. Y3H hits were filtered by competitive Y3H screens and coimmunoprecipitation experiments and verified by surface plasmon resonance analysis to yield a single target, phosphodiesterase 6-delta (PDE6D). PDE6D is a prenyl-binding protein with additional function outside the PDE6 phototransduction system. Overexpression of PDE6D in mouse eyes caused elevated IOP, and this elevation was reversed by topical ocular application of either AA or AdesA. The identification of PDE6D as the molecular binding partner of AA provides insight into the role of this drug candidate in treating glaucoma.
Collapse
Affiliation(s)
- Allan R. Shepard
- Alcon,
a Novartis Company, Fort Worth, Texas 76134, United States
| | | | - Iok-Hou Pang
- Alcon,
a Novartis Company, Fort Worth, Texas 76134, United States
| | - Nasreen Jacobson
- Alcon,
a Novartis Company, Fort Worth, Texas 76134, United States
| | | | | | | | - Rohitha SriRamaratnam
- Department of Chemistry, Columbia University, New York, New York 10027, United
States
| | - Virginia W. Cornish
- Department of Chemistry, Columbia University, New York, New York 10027, United
States
| |
Collapse
|
27
|
Ziegler S, Pries V, Hedberg C, Waldmann H. Identifizierung der Zielproteine bioaktiver Verbindungen: Die Suche nach der Nadel im Heuhaufen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208749] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Ziegler S, Pries V, Hedberg C, Waldmann H. Target identification for small bioactive molecules: finding the needle in the haystack. Angew Chem Int Ed Engl 2013; 52:2744-92. [PMID: 23418026 DOI: 10.1002/anie.201208749] [Citation(s) in RCA: 360] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Indexed: 01/10/2023]
Abstract
Identification and confirmation of bioactive small-molecule targets is a crucial, often decisive step both in academic and pharmaceutical research. Through the development and availability of several new experimental techniques, target identification is, in principle, feasible, and the number of successful examples steadily grows. However, a generic methodology that can successfully be applied in the majority of the cases has not yet been established. Herein we summarize current methods for target identification of small molecules, primarily for a chemistry audience but also the biological community, for example, the chemist or biologist attempting to identify the target of a given bioactive compound. We describe the most frequently employed experimental approaches for target identification and provide several representative examples illustrating the state-of-the-art. Among the techniques currently available, protein affinity isolation using suitable small-molecule probes (pulldown) and subsequent mass spectrometric analysis of the isolated proteins appears to be most powerful and most frequently applied. To provide guidance for rapid entry into the field and based on our own experience we propose a typical workflow for target identification, which centers on the application of chemical proteomics as the key step to generate hypotheses for potential target proteins.
Collapse
Affiliation(s)
- Slava Ziegler
- Max-Planck-Institut für molekulare Physiologie, Abt. Chemische Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | | | | | | |
Collapse
|
29
|
Lee J, Bogyo M. Target deconvolution techniques in modern phenotypic profiling. Curr Opin Chem Biol 2013; 17:118-26. [PMID: 23337810 DOI: 10.1016/j.cbpa.2012.12.022] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/19/2012] [Accepted: 12/30/2012] [Indexed: 01/12/2023]
Abstract
The past decade has seen rapid growth in the use of diverse compound libraries in classical phenotypic screens to identify modulators of a given process. The subsequent process of identifying the molecular targets of active hits, also called 'target deconvolution', is an essential step for understanding compound mechanism of action and for using the identified hits as tools for further dissection of a given biological process. Recent advances in 'omics' technologies, coupled with in silico approaches and the reduced cost of whole genome sequencing, have greatly improved the workflow of target deconvolution and have contributed to a renaissance of 'modern' phenotypic profiling. In this review, we will outline how both new and old techniques are being used in the difficult process of target identification and validation as well as discuss some of the ongoing challenges remaining for phenotypic screening.
Collapse
Affiliation(s)
- Jiyoun Lee
- Department of Global Medical Science, Sungshin Women's University, Seoul 142-732, Republic of Korea.
| | | |
Collapse
|
30
|
Miao Q, Zhang CC, Kast J. Chemical proteomics and its impact on the drug discovery process. Expert Rev Proteomics 2013; 9:281-91. [PMID: 22809207 DOI: 10.1586/epr.12.22] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Despite the rapid growth of postgenomic data and fast-paced technology advancement, drug discovery is still a lengthy and difficult process. More effective drug design requires a better understanding of the interaction between drug candidates and their targets/off-targets in various situations. The ability of chemical proteomics to integrate a multiplicity of disciplines enables the direct analysis of protein activities on a proteome-wide scale, which has enormous potential to facilitate drug target elucidation and lead drug verification. Over recent years, chemical proteomics has experienced rapid growth and provided a valuable method for drug target identification and inhibitor discovery. This review introduces basic concepts and technologies of different popular chemical proteomic approaches. It also covers the essential features and recent advances of each approach while underscoring their potentials in drug discovery and development.
Collapse
Affiliation(s)
- Qing Miao
- The Biomedical Research Centre, University of British Columbia, Room #401, 2222 Health Sciences Mall, Vancouver, BC, V6T1Z3 Canada
| | | | | |
Collapse
|
31
|
Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 2012; 76:331-82. [PMID: 22688816 DOI: 10.1128/mmbr.05021-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays.
Collapse
|
32
|
Yeast “N”-hybrid systems for protein–protein and drug–protein interaction discovery. Methods 2012; 57:423-9. [DOI: 10.1016/j.ymeth.2012.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/01/2012] [Accepted: 06/08/2012] [Indexed: 01/05/2023] Open
|
33
|
Abstract
Regulatory T cells (Tregs) are essential for controlling peripheral tolerance by the active suppression of various immune cells including conventional T effector cells (Teffs). Downstream of the T cell receptor (TCR), more than 500 protein kinases encoded by the human genome have to be considered in signaling cascades regulating the activation of Tregs and Teffs, respectively. Following TCR engagement, Tregs posses a number of unique attributes, such as constitutive expression of Foxp3, hyporesponsiveness and poor cytokine production. Furthermore, recent studies showed that altered regulation of protein kinases is important for Treg function. These data indicate that signaling pathways in Tregs are distinctly organized and alterations at the level of protein kinases contribute to the unique Treg phenotype. However, kinase-based signaling networks in Tregs are poorly understood and necessitate further systematic characterization. In this study, we analyzed the differential expression of kinases in Tregs and Teffs by using a kinase-selective proteome strategy. In total, we revealed quantitative information on 185 kinases expressed in the human CD4(+) T cell subsets. The majority of kinases was equally abundant in both T cell subsets, but 11 kinases were differentially expressed in Tregs. Most strikingly, Tregs showed an altered expression of cell cycle kinases including CDK6. Quantitative proteomics generates first comparative insight into the kinase complements of the CD4(+) Teff and Treg subset. Treg-specific expression pattern of 11 protein kinases substantiate the current opinion that TCR-mediated signaling cascades are altered in Tregs and further suggests that Tregs exhibit significant specificities in cell-cycle control and progression.
Collapse
|
34
|
Hamdi A, Colas P. Yeast two-hybrid methods and their applications in drug discovery. Trends Pharmacol Sci 2012; 33:109-18. [DOI: 10.1016/j.tips.2011.10.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 01/08/2023]
|
35
|
Inhibitors of the cellular trafficking of ricin. Toxins (Basel) 2012; 4:15-27. [PMID: 22347620 PMCID: PMC3277095 DOI: 10.3390/toxins4010015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 12/26/2022] Open
Abstract
Throughout the last decade, efforts to identify and develop effective inhibitors of the ricin toxin have focused on targeting its N-glycosidase activity. Alternatively, molecules disrupting intracellular trafficking have been shown to block ricin toxicity. Several research teams have recently developed high-throughput phenotypic screens for small molecules acting on the intracellular targets required for entry of ricin into cells. These screens have identified inhibitory compounds that can protect cells, and sometimes even animals against ricin. We review these newly discovered cellular inhibitors of ricin intoxication, discuss the advantages and drawbacks of chemical-genetics approaches, and address the issues to be resolved so that the therapeutic development of these small-molecule compounds can progress.
Collapse
|
36
|
König S, Nimtz M, Scheiter M, Ljunggren HG, Bryceson YT, Jänsch L. Kinome analysis of receptor-induced phosphorylation in human natural killer cells. PLoS One 2012; 7:e29672. [PMID: 22238634 PMCID: PMC3251586 DOI: 10.1371/journal.pone.0029672] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/01/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells contribute to the defense against infected and transformed cells through the engagement of multiple germline-encoded activation receptors. Stimulation of the Fc receptor CD16 alone is sufficient for NK cell activation, whereas other receptors, such as 2B4 (CD244) and DNAM-1 (CD226), act synergistically. After receptor engagement, protein kinases play a major role in signaling networks controlling NK cell effector functions. However, it has not been characterized systematically which of all kinases encoded by the human genome (kinome) are involved in NK cell activation. RESULTS A kinase-selective phosphoproteome approach enabled the determination of 188 kinases expressed in human NK cells. Crosslinking of CD16 as well as 2B4 and DNAM-1 revealed a total of 313 distinct kinase phosphorylation sites on 109 different kinases. Phosphorylation sites on 21 kinases were similarly regulated after engagement of either CD16 or co-engagement of 2B4 and DNAM-1. Among those, increased phosphorylation of FYN, KCC2G (CAMK2), FES, and AAK1, as well as the reduced phosphorylation of MARK2, were reproducibly observed both after engagement of CD16 and co-engagement of 2B4 and DNAM-1. Notably, only one phosphorylation on PAK4 was differentally regulated. CONCLUSIONS The present study has identified a significant portion of the NK cell kinome and defined novel phosphorylation sites in primary lymphocytes. Regulated phosphorylations observed in the early phase of NK cell activation imply these kinases are involved in NK cell signaling. Taken together, this study suggests a largely shared signaling pathway downstream of distinct activation receptors and constitutes a valuable resource for further elucidating the regulation of NK cell effector responses.
Collapse
Affiliation(s)
- Sebastian König
- Department of Molecular Structural Biology, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Manfred Nimtz
- Department of Molecular Structural Biology, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Maxi Scheiter
- Department of Molecular Structural Biology, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Yenan T. Bryceson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lothar Jänsch
- Department of Molecular Structural Biology, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
37
|
Cottier S, Mönig T, Wang Z, Svoboda J, Boland W, Kaiser M, Kombrink E. The yeast three-hybrid system as an experimental platform to identify proteins interacting with small signaling molecules in plant cells: potential and limitations. FRONTIERS IN PLANT SCIENCE 2011; 2:101. [PMID: 22639623 PMCID: PMC3355722 DOI: 10.3389/fpls.2011.00101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/07/2011] [Indexed: 05/18/2023]
Abstract
Chemical genetics is a powerful scientific strategy that utilizes small bioactive molecules as experimental tools to unravel biological processes. Bioactive compounds occurring in nature represent an enormous diversity of structures that can be used to dissect functions of biological systems. Once the bioactivity of a natural or synthetic compound has been critically evaluated the challenge remains to identify its molecular target and mode of action, which usually is a time-consuming and labor-intensive process. To facilitate this task, we decided to implement the yeast three-hybrid (Y3H) technology as a general experimental platform to scan the whole Arabidopsis proteome for targets of small signaling molecules. The Y3H technology is based on the yeast two-hybrid system and allows direct cloning of proteins that interact in vivo with a synthetic hybrid ligand, which comprises the biologically active molecule of interest covalently linked to methotrexate (Mtx). In yeast nucleus the hybrid ligand connects two fusion proteins: the Mtx part binding to dihydrofolate reductase fused to a DNA-binding domain (encoded in the yeast strain), and the bioactive molecule part binding to its potential protein target fused to a DNA-activating domain (encoded on a cDNA expression vector). During cDNA library screening, the formation of this ternary, transcriptional activator complex leads to reporter gene activation in yeast cells, and thereby allows selection of the putative targets of small bioactive molecules of interest. Here we present the strategy and experimental details for construction and application of a Y3H platform, including chemical synthesis of different hybrid ligands, construction of suitable cDNA libraries, the choice of yeast strains, and appropriate screening conditions. Based on the results obtained and the current literature we discuss the perspectives and limitations of the Y3H approach for identifying targets of small bioactive molecules.
Collapse
Affiliation(s)
- Stéphanie Cottier
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding ResearchKöln, Germany
| | - Timon Mönig
- Center for Medical Biotechnology, University of Duisburg–EssenEssen, Germany
| | - Zheming Wang
- Center for Medical Biotechnology, University of Duisburg–EssenEssen, Germany
| | - Jiří Svoboda
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical EcologyJena, Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical EcologyJena, Germany
| | - Markus Kaiser
- Center for Medical Biotechnology, University of Duisburg–EssenEssen, Germany
| | - Erich Kombrink
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding ResearchKöln, Germany
| |
Collapse
|
38
|
Titov DV, Liu JO. Identification and validation of protein targets of bioactive small molecules. Bioorg Med Chem 2011; 20:1902-9. [PMID: 22226983 DOI: 10.1016/j.bmc.2011.11.070] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/22/2011] [Accepted: 11/30/2011] [Indexed: 12/22/2022]
Abstract
Identification and validation of protein targets of bioactive small molecules is an important problem in chemical biology and drug discovery. Currently, no single method is satisfactory for this task. Here, we provide an overview of common methods for target identification and validation that historically were most successful. We have classified for the first time the existing methods into two distinct and complementary types, the 'top-down' and 'bottom-up' approaches. In a typical top-down approach, the cellular phenotype is used as a starting point and the molecular target is approached through systematic narrowing down of possibilities by taking advantage of the detailed existing knowledge of cellular pathways and processes. In contrast, the bottom-up approach entails the direct detection and identification of the molecular targets using affinity-based or genetic methods. A special emphasis is placed on target validation, including correlation analysis and genetic methods, as this area is often ignored despite its importance.
Collapse
Affiliation(s)
- Denis V Titov
- Department of Pharmacology, Johns Hopkins University School of Medicine, MD, USA
| | | |
Collapse
|
39
|
Chidley C, Haruki H, Pedersen MG, Muller E, Johnsson K. A yeast-based screen reveals that sulfasalazine inhibits tetrahydrobiopterin biosynthesis. Nat Chem Biol 2011; 7:375-83. [PMID: 21499265 DOI: 10.1038/nchembio.557] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 02/22/2011] [Indexed: 12/22/2022]
Abstract
We introduce an approach for detection of drug-protein interactions that combines a new yeast three-hybrid screening for identification of interactions with affinity chromatography for their unambiguous validation. We applied the methodology to the profiling of clinically approved drugs, resulting in the identification of previously known and unknown drug-protein interactions. In particular, we were able to identify off-targets for erlotinib and atorvastatin, as well as an enzyme target for the anti-inflammatory drug sulfasalazine. We demonstrate that sulfasalazine and its metabolites, sulfapyridine and mesalamine, are inhibitors of the enzyme catalyzing the final step in the biosynthesis of the cofactor tetrahydrobiopterin. The interference with tetrahydrobiopterin metabolism provides an explanation for some of the beneficial and deleterious properties of sulfasalazine and furthermore suggests new and improved therapies for the drug. This work thus establishes a powerful approach for drug profiling and provides new insights in the mechanism of action of clinically approved drugs.
Collapse
Affiliation(s)
- Christopher Chidley
- Institute of Chemical Sciences and Engineering, Institute of Bioengineering, National Centre of Competence in Research Chemical Biology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Jester BW, Cox KJ, Gaj A, Shomin CD, Porter JR, Ghosh I. A coiled-coil enabled split-luciferase three-hybrid system: applied toward profiling inhibitors of protein kinases. J Am Chem Soc 2010; 132:11727-35. [PMID: 20669947 DOI: 10.1021/ja104491h] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The 518 protein kinases encoded in the human genome are exquisitely regulated and their aberrant function(s) are often associated with human disease. Thus, in order to advance therapeutics and to probe signal transduction cascades, there is considerable interest in the development of inhibitors that can selectively target protein kinases. However, identifying specific compounds against such a large array of protein kinases is difficult to routinely achieve utilizing traditional activity assays, where purified protein kinases are necessary. Toward a simple, rapid, and practical method for identifying specific inhibitors, we describe the development and application of a split-protein methodology utilizing a coiled-coil-assisted three-hybrid system. In this approach, a protein kinase of interest is attached to the C-terminal fragment of split-firefly luciferase and the coiled-coil Fos, which is specific for the coiled-coil Jun, is attached to the N-terminal fragment. Upon addition of Jun conjugated to a pan-kinase inhibitor such as staurosporine, a three-hybrid complex is established with concomitant reassembly of the split-luciferase enzyme. An inhibitor can be potentially identified by the commensurate loss in split-luciferase activity by displacement of the modified staurosporine. We demonstrate that this new three-hybrid approach is potentially general by testing protein kinases from the different kinase families. To interrogate whether this method allows for screening inhibitors, we tested six different protein kinases against a library of 80 known protein kinase inhibitors. Finally, we demonstrate that this three-hybrid system can potentially provide a rapid method for structure/function analysis as well as aid in the identification of allosteric inhibitors.
Collapse
Affiliation(s)
- Benjamin W Jester
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
41
|
Glauner H, Ruttekolk IR, Hansen K, Steemers B, Chung YD, Becker F, Hannus S, Brock R. Simultaneous detection of intracellular target and off-target binding of small molecule cancer drugs at nanomolar concentrations. Br J Pharmacol 2010; 160:958-70. [PMID: 20590591 DOI: 10.1111/j.1476-5381.2010.00732.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE In vitro assays that determine activities of drug candidates with isolated targets have only limited predictive value for activities in cellular assays. Poor membrane permeability and off-target binding are major reasons for such discrepancies. However, it still difficult to directly analyse off-target binding at the same time as target binding, on a subcellular level. Here, we present a combination of fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) as a solution to this problem. EXPERIMENTAL APPROACH The well-established dihydrofolate reductase inhibitor methotrexate and the kinase inhibitors PD173956 and purvalanol B were conjugated via polyethylene glycol linkers with the fluorophore Cy5. The cellular uptake and subcellular distribution of these compounds in single human cancer-derived cells were investigated by confocal laser scanning microscopy. In addition, molecular interactions inside the cell with the respective target proteins and off-target binding were detected simultaneously in the nanomolar range by FCCS and FCS, respectively, using cells expressing green fluorescent protein fusion proteins of dihydrofolate reductase and Abelson kinase 1. KEY RESULTS Large differences in the interaction patterns were found for these compounds. For methotrexate-Cy5, drug-target interactions could be detected and dissociation constants determined. In contrast, PD173956-Cy5 showed strong interactions with intracellular high-molecular weight structures, other than its target. CONCLUSIONS AND IMPLICATIONS The combination of FCS and FCCS provides a powerful means to assess subcellular pharmacokinetics and dynamics of drug candidates at nanomolar concentrations.
Collapse
Affiliation(s)
- Heike Glauner
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ulrich NC, Kuder CH, Hohl RJ, Wiemer DF. Biologically active biotin derivatives of schweinfurthin F. Bioorg Med Chem Lett 2010; 20:6716-20. [PMID: 20869871 DOI: 10.1016/j.bmcl.2010.08.143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 08/28/2010] [Accepted: 08/31/2010] [Indexed: 11/28/2022]
Abstract
As a prelude to efforts to identify schweinfurthin binding proteins, an ester conjugate and an amide conjugate of schweinfurthin F and biotin have been prepared by chemical synthesis. These compounds maintain activity in SF-295 cells comparable to the parent system, and display the lower potency in A549 cells that is a characteristic of the schweinfurthin pattern of activity.
Collapse
Affiliation(s)
- Natalie C Ulrich
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, United States
| | | | | | | |
Collapse
|
43
|
Sekigawa M, Kunoh T, Wada SI, Mukai Y, Ohshima K, Ohta S, Goshima N, Sasaki R, Mizukami T. Comprehensive screening of human genes with inhibitory effects on yeast growth and validation of a yeast cell-based system for screening chemicals. ACTA ACUST UNITED AC 2010; 15:368-78. [PMID: 20237203 DOI: 10.1177/1087057110363822] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To evaluate yeast as a high-throughput cell-based system for screening chemicals that may lead to drug development, 10,302 full-length human cDNAs (~50% of the total cDNAs) were introduced into yeast. Approximately 5.6% (583 clones) of the cDNAs repressed the growth of yeast. Notably, ~25% of the repressive cDNAs encoded uncharacterized proteins. Small chemicals can be readily surveyed by monitoring their restorative effects on the growth of yeast. The authors focused on protein kinases because protein kinases are involved in various diseases. Among 263 protein kinase cDNAs (~50% of the total) expressed in yeast, 60 cDNAs (~23%), including c-Yes, a member of the Src tyrosine kinase family, inhibited the growth of yeast. Known inhibitors for protein kinases were examined for whether they reversed the c-Yes-induced inhibition of the yeast growth. Among 85 inhibitors tested, 6 compounds (PP2, PP1, SU6656, purvalanol, radicicol, and geldanamycin) reversed the inhibition, indicating a high specificity sufficient for validating this screening system. Human c-Yes was found to interact with Hsc82, one of the yeast chaperones. Radicicol and geldanamycin probably exerted their actions through interactions with Hsc82. These results indicate that when human proteins requiring molecular chaperones for their activities are subjected to the yeast screening system, 2 groups of chemicals may be found. The actions of one group are exerted through direct interactions with the human proteins, whereas those of the other group are mediated through interactions with chaperones.
Collapse
|
44
|
Pan C, Olsen JV, Daub H, Mann M. Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 2009; 8:2796-808. [PMID: 19651622 PMCID: PMC2816010 DOI: 10.1074/mcp.m900285-mcp200] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 07/29/2009] [Indexed: 01/14/2023] Open
Abstract
Aberrant signaling causes many diseases, and manipulating signaling pathways with kinase inhibitors has emerged as a promising area of drug research. Most kinase inhibitors target the conserved ATP-binding pocket; therefore specificity is a major concern. Proteomics has previously been used to identify the direct targets of kinase inhibitors upon affinity purification from cellular extracts. Here we introduce a complementary approach to evaluate the effects of kinase inhibitors on the entire cell signaling network. We used triple labeling SILAC (stable isotope labeling by amino acids in cell culture) to compare cellular phosphorylation levels for control, epidermal growth factor stimulus, and growth factor combined with kinase inhibitors. Of thousands of phosphopeptides, less than 10% had a response pattern indicative of targets of U0126 and SB202190, two widely used MAPK inhibitors. Interestingly, 83% of the growth factor-induced phosphorylation events were affected by either or both inhibitors, showing quantitatively that early signaling processes are predominantly transmitted through the MAPK cascades. In contrast to MAPK inhibitors, dasatinib, a clinical drug directed against BCR-ABL, which is the cause of chronic myelogenous leukemia, affected nearly 1,000 phosphopeptides. In addition to the proximal effects on ABL and its immediate targets, dasatinib broadly affected the downstream MAPK pathways. Pathway mapping of regulated sites implicated a variety of cellular functions, such as chromosome remodeling, RNA splicing, and cytoskeletal organization, some of which have been described in the literature before. Our assay is streamlined and generic and could become a useful tool in kinase drug development.
Collapse
Affiliation(s)
- Cuiping Pan
- From the Departments of ‡Proteomics and Signal Transduction and
| | - Jesper V. Olsen
- From the Departments of ‡Proteomics and Signal Transduction and
- §Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Henrik Daub
- ¶Molecular Biology, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried near Munich, Germany and
| | - Matthias Mann
- From the Departments of ‡Proteomics and Signal Transduction and
| |
Collapse
|
45
|
Abstract
The medical and pharmaceutical communities are facing a dire need for new druggable targets, while, paradoxically, the targets of some drugs that are in clinical use or development remain elusive. Many compounds have been found to be more promiscuous than originally anticipated, which can potentially lead to side effects, but which may also open up additional medical uses. As we move toward systems biology and personalized medicine, comprehensively determining small molecule-target interaction profiles and mapping these on signaling and metabolic pathways will become increasingly necessary. Chemical proteomics is a powerful mass spectrometry-based affinity chromatography approach for identifying proteome-wide small molecule-protein interactions. Here we will provide a critical overview of the basic concepts and recent advances in chemical proteomics and review recent applications, with a particular emphasis on kinase inhibitors and natural products.
Collapse
Affiliation(s)
- Uwe Rix
- Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| | | |
Collapse
|
46
|
Smyth LA, Collins I. Measuring and interpreting the selectivity of protein kinase inhibitors. J Chem Biol 2009; 2:131-51. [PMID: 19568781 PMCID: PMC2725273 DOI: 10.1007/s12154-009-0023-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/08/2009] [Accepted: 05/15/2009] [Indexed: 12/23/2022] Open
Abstract
Protein kinase inhibitors are a well-established class of clinically useful drugs, particularly for the treatment of cancer. Achieving inhibitor selectivity for particular protein kinases often remains a significant challenge in the development of new small molecules as drugs or as tools for chemical biology research. This review summarises the methodologies available for measuring kinase inhibitor selectivity, both in vitro and in cells. The interpretation of kinase inhibitor selectivity data is discussed, particularly with reference to the structural biology of the protein targets. Measurement and prediction of kinase inhibitor selectivity will be important for the development of new multi-targeted kinase inhibitors.
Collapse
Affiliation(s)
- Lynette A Smyth
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK,
| | | |
Collapse
|
47
|
Saxena C, Higgs RE, Zhen E, Hale JE. Small-molecule affinity chromatography coupled mass spectrometry for drug target deconvolution. Expert Opin Drug Discov 2009; 4:701-14. [DOI: 10.1517/17460440903005565] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Kim DJ, Yi YW, Kim JH. In Situ Monitoring of Bindings between Dasatinib and Its Target Protein Kinases Using Magnetic Nanoparticles in Live Cells. J Am Chem Soc 2008; 130:16466-7. [DOI: 10.1021/ja8063843] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dae-Joong Kim
- CGK Co., Ltd., Daejeon Bioventure Town, 461-8, Jeonmin-Dong, Yuseong-Gu, Daejeon, 305-811, Korea
| | - Yong-Weon Yi
- CGK Co., Ltd., Daejeon Bioventure Town, 461-8, Jeonmin-Dong, Yuseong-Gu, Daejeon, 305-811, Korea
| | - Jin Hwan Kim
- CGK Co., Ltd., Daejeon Bioventure Town, 461-8, Jeonmin-Dong, Yuseong-Gu, Daejeon, 305-811, Korea
| |
Collapse
|
49
|
Bettayeb K, Sallam H, Ferandin Y, Popowycz F, Fournet G, Hassan M, Echalier A, Bernard P, Endicott J, Joseph B, Meijer L. N-&-N, a new class of cell death-inducing kinase inhibitors derived from the purine roscovitine. Mol Cancer Ther 2008; 7:2713-24. [DOI: 10.1158/1535-7163.mct-08-0080] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
CR8, a potent and selective, roscovitine-derived inhibitor of cyclin-dependent kinases. Oncogene 2008; 27:5797-807. [DOI: 10.1038/onc.2008.191] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|