1
|
Filley J. A convenient five-segment cassette procedure for DNA insertions coding for novel peptides. PLoS One 2024; 19:e0307713. [PMID: 39058754 PMCID: PMC11280526 DOI: 10.1371/journal.pone.0307713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
A DNA cassette assembly method is described which utilizes inexpensive oligomers no longer than 40 nt in length. The five-segment cassettes have 20 nt overlaps which give an effective length of 80 nt, making it possible to code for peptides up to 20 amino acids long. The cassettes have three phosphate free nicks, which can be successfully inserted into plasmid DNA and used to transform E. coli. The nicks are repaired in vivo by an unknown mechanism. Insertions are not successful for cassettes with greater than three nicks. A procedure is provided for rapid turnaround from DNA design to peptides, which are easily isolated as C-terminal fusions with GFP. The technique generally gives the expected sequence, with errors which occur about 1% of the time. Several representative DNA inserts are described which illustrate the method, as well as chemical details on the new peptides coded for. The peptides can be readily mutated to make it possible to understand how polar and aromatic residues affect GFP-fusion solubility, and how histidine residues can be strategically placed in a peptide for good IMAC retention. The method can be used to explore a large number of new designed peptides as fusion products quickly and economically.
Collapse
Affiliation(s)
- Jonathan Filley
- Oligometrics, Inc., Boulder, Colorado, United States of America
| |
Collapse
|
2
|
Heyns IM, Ganugula R, Varma T, Allamreddy S, Kumar N, Garg P, Kumar MNVR, Arora M. Rationally Designed Naringenin-Conjugated Polyester Nanoparticles Enable Folate Receptor-Mediated Peroral Delivery of Insulin. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45651-45657. [PMID: 37728532 DOI: 10.1021/acsami.3c09866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Receptor-mediated transcytosis of nanoparticles is paramount for the effective delivery of various drugs. Here, we report the design and synthesis of highly functional nanoparticles with specific targeting toward the folate receptor (FR) for the peroral delivery of insulin. In doing so, we demonstrate naringenin (NAR), a citrous flavonoid, as a targeting ligand to FR, with a similar affinity as folic acid. The NAR-decorated nanoparticles indicated a 4-fold increase in FR colocalization compared to unfunctionalized nanoparticles. The NAR-conjugated precision polyester allows for high insulin loading and entrapment efficiencies. As a result, insulin-laden NAR-functional nanoparticles offered a 3-fold higher bioavailability in comparison to unfunctionalized nanoparticles. This work generated a promising contribution to folate-receptor-mediated peroral delivery of insulin, utilizing polymeric nanoparticles decorated with a natural ligand, NAR.
Collapse
Affiliation(s)
- Ingrid M Heyns
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Raghu Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama 35487, United States
| | - Tanmaykumar Varma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar 160062, Punjab, India
| | - Swetha Allamreddy
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Navneet Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar 160062, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar 160062, Punjab, India
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama 35487, United States
- Chemical and Biological Engineering, University of Alabama, SEC 3448, Box 870203, Tuscaloosa, Alabama 35487, United States
| | - Meenakshi Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
3
|
Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, Gaffke L, Węgrzyn G. Phage display and other peptide display technologies. FEMS Microbiol Rev 2021; 46:6407522. [PMID: 34673942 DOI: 10.1093/femsre/fuab052] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Phage display technology, which is based on the presentation of peptide sequences on the surface of bacteriophage virions, was developed over 30 years ago. Improvements in phage display systems have allowed us to employ this method in numerous fields of biotechnology, as diverse as immunological and biomedical applications, the formation of novel materials and many others. The importance of phage display platforms was recognized by awarding the Nobel Prize in 2018 "for the phage display of peptides and antibodies". In contrast to many review articles concerning specific applications of phage display systems published in recent years, we present an overview of this technology, including a comparison of various display systems, their advantages and disadvantages, and examples of applications in various fields of science, medicine, and the broad sense of biotechnology. Other peptide display technologies, which employ bacterial, yeast and mammalian cells, as well as eukaryotic viruses and cell-free systems, are also discussed. These powerful methods are still being developed and improved; thus, novel sophisticated tools based on phage display and other peptide display systems are constantly emerging, and new opportunities to solve various scientific, medical and technological problems can be expected to become available in the near future.
Collapse
Affiliation(s)
- Weronika Jaroszewicz
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | | | - Karolina Pierzynowska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
4
|
Yu K, Alzahrani A, Khoddami S, Cheng JTJ, Mei Y, Gill A, Luo HD, Haney EF, Hilpert K, Hancock REW, Lange D, Kizhakkedathu JN. Rapid Assembly of Infection-Resistant Coatings: Screening and Identification of Antimicrobial Peptides Works in Cooperation with an Antifouling Background. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36784-36799. [PMID: 34328312 DOI: 10.1021/acsami.1c07515] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial adhesion and the succeeding biofilm formation onto surfaces are responsible for implant- and device-associated infections. Bifunctional coatings integrating both nonfouling components and antimicrobial peptides (AMPs) are a promising approach to develop potent antibiofilm coatings. However, the current approaches and chemistry for such coatings are time-consuming and dependent on substrates and involve a multistep process. Also, the information is limited on the influence of the coating structure or its components on the antibiofilm activity of such AMP-based coatings. Here, we report a new strategy to rapidly assemble a stable, potent, and substrate-independent AMP-based antibiofilm coating in a nonfouling background. The coating structure allowed for the screening of AMPs in a relevant nonfouling background to identify optimal peptide combinations that work in cooperation to generate potent antibiofilm activity. The structure of the coating was changed by altering the organization of the hydrophilic polymer chains within the coatings. The coatings were thoroughly characterized using various surface analytical techniques and correlated with the efficiency to prevent biofilm formation against diverse bacteria. The coating method that allowed the conjugation of AMPs without altering the steric protection ability of hydrophilic polymer structure results in a bifunctional surface coating with excellent antibiofilm activity. In contrast, the conjugation of AMPs directly to the hydrophilic polymer chains resulted in a surface with poor antibiofilm activity and increased adhesion of bacteria. Using this coating approach, we further established a new screening method and identified a set of potent surface-tethered AMPs with high activity. The success of this new peptide screening and coating method is demonstrated using a clinically relevant mouse infection model to prevent catheter-associated urinary tract infection (CAUTI).
Collapse
Affiliation(s)
- Kai Yu
- Centre for Blood Research and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Amal Alzahrani
- The Stone Centre at VGH, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Sara Khoddami
- The Stone Centre at VGH, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - John T J Cheng
- Department of Microbiology and Immunology and Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yan Mei
- Centre for Blood Research and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Arshdeep Gill
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Haiming D Luo
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Evan F Haney
- Department of Microbiology and Immunology and Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Kai Hilpert
- Institute of Infection and Immunology, St. George's University of London (SGUL), London SW17 0RE, United Kingdom
| | - Robert E W Hancock
- Department of Microbiology and Immunology and Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Dirk Lange
- The Stone Centre at VGH, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- The School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
5
|
Progress toward sourcing plants for new bioconjugation tools: a screening evaluation of a model peptide ligase using a synthetic precursor. 3 Biotech 2019; 9:442. [PMID: 31763120 DOI: 10.1007/s13205-019-1983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022] Open
Abstract
In the present study, leaves from 39 phylogenetically distant plant species were sampled and screened for asparaginyl endopeptidase ligase activity using mass spectrometry to test the generality of peptide ligases in plants. A modified version of the sunflower trypsin inhibitor-1 precursor was used as the substrate for reactions with leaf crude extracts and protein fractions. Masses consistent with products of asparaginyl endopeptidase activities that cleave and ligate the substrate into cyclic peptide following the reactions were detected in 8 plants: Nerium oleander and Thevetia peruviana of the family Apocynaceae; Bauhinia variegata, Dermatophyllum secundiflorum, Pithecellobium flexicaule, and Prosopis chilensis of the family Fabaceae; Morus alba of the family Moraceae; and Citrus aurantium of the family Rutaceae. This screening result represents a 20% hit rate for finding asparaginyl endopeptidase ligase activity from the arbitrary plants sampled. Analysis following a 2-h reaction of the substrate with the crude extract of D. secundiflorum leaves showed that the yield of cyclic peptide remained stable around 0.5 ± 0.1% of the substrate over the course of the reaction.
Collapse
|
6
|
Tian R, Zhu L, Qin Z, Wang G, Wang J, Zhang H. Glypican-3 (GPC3) targeted Fe 3O 4 core/Au shell nanocomplex for fluorescence/MRI/photoacoustic imaging-guided tumor photothermal therapy. Biomater Sci 2019; 7:5258-5269. [PMID: 31603456 DOI: 10.1039/c9bm01248f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Low binding affinity and lack of therapy functions limit tumor targeting peptide applications in the biomedical field. Herein, we successfully modified a previous phage display derived Glypican-3 (GPC3) binding peptide (GBP) on the surface of a Fe3O4 Core/Au shell nanocomplex (FANP) to improve GBP binding affinity and enhance FANP tumor photothermal therapy (PTT) efficacy. As a result, GBP-FANP showed improved avidity to GPC-3 (Apparent Kd = 396.3 ± 70.8 nM) compared to that of GPB (Apparent Kd = 735.2 ± 53.6 nM). After intravenous administration, GBP-FANP was found specifically accumulated in GPC-3 positive HepG2 tumors and peaked at 24 h post-injection as observed by magnetic resonance imaging (MRI)/photoacoustic (PA)/fluorescent imaging. Moreover, HepG2 tumors that received GBP-FANP treatment were significantly inhibited with laser irradiation (630 nm, 1 W cm-2, 10 min). In conclusion, our present strategy provides a way of improving peptide ligand avidity with nanotechnology for cancer theranostics applications.
Collapse
Affiliation(s)
- Rui Tian
- Department of Ophthalmology Second Hospital, Jilin University, Changchun, Jilin 130000, China.
| | - Lei Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Zainen Qin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Guohao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Jingjing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Hui Zhang
- Department of Ophthalmology Second Hospital, Jilin University, Changchun, Jilin 130000, China.
| |
Collapse
|
7
|
Algorithm-supported, mass and sequence diversity-oriented random peptide library design. J Cheminform 2019; 11:25. [PMID: 30923940 PMCID: PMC6437963 DOI: 10.1186/s13321-019-0347-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/20/2019] [Indexed: 02/08/2023] Open
Abstract
Random peptide libraries that cover large search spaces are often used for the discovery of new binders, even when the target is unknown. To ensure an accurate population representation, there is a tendency to use large libraries. However, parameters such as the synthesis scale, the number of library members, the sequence deconvolution and peptide structure elucidation, are challenging when increasing the library size. To tackle these challenges, we propose an algorithm-supported approach to peptide library design based on molecular mass and amino acid diversity. The aim is to simplify the tedious permutation identification in complex mixtures, when mass spectrometry is used, by avoiding mass redundancy. For this purpose, we applied multi (two- and three-)-objective genetic algorithms to discriminate between library members based on defined parameters. The optimizations led to diverse random libraries by maximizing the number of amino acid permutations and minimizing the mass and/or sequence overlapping. The algorithm-suggested designs offer to the user a choice of appropriate compromise solutions depending on the experimental needs. This implies that diversity rather than library size is the key element when designing peptide libraries for the discovery of potential novel biologically active peptides.
Collapse
|
8
|
Current state of in vivo panning technologies: Designing specificity and affinity into the future of drug targeting. Adv Drug Deliv Rev 2018; 130:39-49. [PMID: 29964079 DOI: 10.1016/j.addr.2018.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/24/2018] [Accepted: 06/22/2018] [Indexed: 11/20/2022]
Abstract
Targeting ligands are used in drug delivery to improve drug distribution to desired cells or tissues and to facilitate cellular entry. In vivo biopanning, whereby billions of potential ligand sequences are screened in biologically-relevant and complex conditions, is a powerful method for identification of novel target ligands. This tool has impacted drug delivery technologies and expanded our arsenal of therapeutics and diagnostics. Within this review we will discuss current in vivo panning technologies and ways that these technologies can be improved to advance next-generation drug delivery strategies.
Collapse
|
9
|
Ngambenjawong C, Gustafson HH, Sylvestre M, Pun SH. A Facile Cyclization Method Improves Peptide Serum Stability and Confers Intrinsic Fluorescence. Chembiochem 2017; 18:2395-2398. [PMID: 29044914 DOI: 10.1002/cbic.201700446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 01/03/2023]
Abstract
Peptides are a growing class of macromolecules used in pharmaceutics. The path toward the clinical use of candidate peptides involves sequence optimization and cyclization for stability and affinity. For internalized peptides, tagging is also often required for intracellular trafficking studies, although fluorophore conjugation has an impact on peptide binding, permeability, and localization. Herein, a strategy based on cysteine arylation with tetrafluoroterephthalonitrile (4F-2CN), which simultaneously cyclizes peptides and imparts fluorescence, is reported. The 4F-2CN cyclization of an M2 macrophage-targeting peptide yields, in a single step, a peptide with improved serum stability, intrinsic fluorescence, and increased binding affinity. In a murine breast cancer model, it is demonstrated that the intrinsic fluorescence from the cyclized peptide is sufficient for monitoring biodistribution by whole-organ fluorescence imaging and cell internalization by flow cytometry.
Collapse
Affiliation(s)
- Chayanon Ngambenjawong
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Ave NE, Foege, Seattle, WA, 98195, USA
| | - Heather H Gustafson
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Ave NE, Foege, Seattle, WA, 98195, USA
| | - Meilyn Sylvestre
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Ave NE, Foege, Seattle, WA, 98195, USA
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Ave NE, Foege, Seattle, WA, 98195, USA
| |
Collapse
|
10
|
High-Affinity α-Conotoxin PnIA Analogs Designed on the Basis of the Protein Surface Topography Method. Sci Rep 2016; 6:36848. [PMID: 27841338 PMCID: PMC5107951 DOI: 10.1038/srep36848] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/21/2016] [Indexed: 11/08/2022] Open
Abstract
Despite some success for small molecules, elucidating structure-function relationships for biologically active peptides - the ligands for various targets in the organism - remains a great challenge and calls for the development of novel approaches. Some of us recently proposed the Protein Surface Topography (PST) approach, which benefits from a simplified representation of biomolecules' surface as projection maps, which enables the exposure of the structure-function dependencies. Here, we use PST to uncover the "activity pattern" in α-conotoxins - neuroactive peptides that effectively target nicotinic acetylcholine receptors (nAChRs). PST was applied in order to design several variants of the α-conotoxin PnIA, which were synthesized and thoroughly studied. Among the best was PnIA[R9, L10], which exhibits nanomolar affinity for the α7 nAChR, selectivity and a slow wash-out from this target. Importantly, these mutations could hardly be delineated by "standard" structure-based drug design. The proposed combination of PST with a set of experiments proved very efficient for the rational construction of new bioactive molecules.
Collapse
|
11
|
Ngambenjawong C, Pineda JMB, Pun SH. Engineering an Affinity-Enhanced Peptide through Optimization of Cyclization Chemistry. Bioconjug Chem 2016; 27:2854-2862. [PMID: 27779387 DOI: 10.1021/acs.bioconjchem.6b00502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peptide cyclization is a strategy used to improve stability and activity of peptides. The most commonly used cyclization method is disulfide bridge formation of cysteine-containing peptides, as is typically found in nature. Over the years, an increasing number of alternative chemistries for peptide cyclization with improved efficiency, kinetics, orthogonality, and stability have been reported. However, there has been less appreciation for the opportunity to fine-tune peptide activity via the diverse chemical entities introduced at the site of linkage by different cyclization strategies. Here, we demonstrate how cyclization optimization of an M2 "anti-inflammatory" macrophage-binding peptide (M2pep) resulted in a significant increase in binding affinity of the optimized analog to M2 macrophages while maintaining binding selectivity compared to M1 "pro-inflammatory" macrophages. In this study, we report synthesis and evaluation of four cyclic M2pep(RY) analogs with diverse cyclization strategies: (1) Asp-[amide]-Lys, (2) azido-Lys-[triazole(copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC))]-propargyl-Gly, (3) Cys-[decafluorobiphenyl (DFBP)]-Cys, and (4) Cys-[decafluorobiphenyl sulfone (DFS)]-Cys, whereby the chemical entity or linker at the linkage site is shown in the square bracket and is between the residues involved in cyclization. These peptides are compared to a disulfide-cyclized M2pep(RY) that we previously reported as a serum-stable, affinity-enhanced analog to the original linear M2pep. DFBP-cyclized M2pep(RY) exhibits the highest binding activity to M2 macrophages with apparent dissociation constant (KD) about 2.03 μM compared to 36.3 μM for the original disulfide-cyclized M2pep(RY) and 220 μM for the original linear peptide. DFS-cyclized M2pep(RY) also binds more strongly than the original cyclized analog, whereas amide- and triazole-cyclized M2pep(RY) analogs bind less strongly. We verified that DFBP alone has negligible binding to M2 macrophages and the incorporation of diphenylalanine to the original sequence improves binding activity at the expense of solubility and increased toxicity. In conclusion, we report development of cyclic M2pep(RY) analogs with diverse cyclization strategies leading to the discovery of DFBP-cyclized M2pep(RY) with enhanced M2 macrophage-binding activity.
Collapse
Affiliation(s)
- Chayanon Ngambenjawong
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington , Seattle, Washington 98195, United States
| | - Julio Marco B Pineda
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington , Seattle, Washington 98195, United States
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
12
|
Courbet A, Molina F, Amar P. Computing with synthetic protocells. Acta Biotheor 2015; 63:309-23. [PMID: 25969126 DOI: 10.1007/s10441-015-9258-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/05/2015] [Indexed: 11/30/2022]
Abstract
In this article we present a new kind of computing device that uses biochemical reactions networks as building blocks to implement logic gates. The architecture of a computing machine relies on these generic and composable building blocks, computation units, that can be used in multiple instances to perform complex boolean functions. Standard logical operations are implemented by biochemical networks, encapsulated and insulated within synthetic vesicles called protocells. These protocells are capable of exchanging energy and information with each other through transmembrane electron transfer. In the paradigm of computation we propose, protoputing, a machine can solve only one problem and therefore has to be built specifically. Thus, the programming phase in the standard computing paradigm is represented in our approach by the set of assembly instructions (specific attachments) that directs the wiring of the protocells that constitute the machine itself. To demonstrate the computing power of protocellular machines, we apply it to solve a NP-complete problem, known to be very demanding in computing power, the 3-SAT problem. We show how to program the assembly of a machine that can verify the satisfiability of a given boolean formula. Then we show how to use the massive parallelism of these machines to verify in less than 20 min all the valuations of the input variables and output a fluorescent signal when the formula is satisfiable or no signal at all otherwise.
Collapse
Affiliation(s)
- Alexis Courbet
- Sys2diag, FRE CNRS 3690, 1682 rue de la Valsière, 34184, Montpellier, France
| | | | | |
Collapse
|
13
|
In silico study of peptide inhibitors against BACE 1. SYSTEMS AND SYNTHETIC BIOLOGY 2015; 9:67-72. [PMID: 25972990 DOI: 10.1007/s11693-015-9169-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
Abstract
Peptides are increasingly used as inhibitors of various disease specific targets. Several naturally occurring and synthetically developed peptides are undergoing clinical trials. Our work explores the possibility of reusing the non-expressing DNA sequences to predict potential drug-target specific peptides. Recently, we experimentally demonstrated the artificial synthesis of novel proteins from non-coding regions of Escherichia coli genome. In this study, a library of synthetic peptides (Synpeps) was constructed from 2500 intergenic E. coli sequences and screened against Beta-secretase 1 protein, a known drug target for Alzheimer's disease (AD). Secondary and tertiary protein structure predictions followed by protein-protein docking studies were performed to identify the most promising enzyme inhibitors. Interacting residues and favorable binding poses of lead peptide inhibitors were studied. Though initial results are encouraging, experimental validation is required in future to develop efficient target specific inhibitors against AD.
Collapse
|
14
|
Witucki LA, Borowicz LS, Pedley AM, Curtis-Fisk J, Kuszpit EG. Identification of FAK substrate peptides via colorimetric screening of a one-bead one-peptide combinatorial library. J Pept Sci 2015; 21:302-11. [PMID: 25728406 DOI: 10.1002/psc.2751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/19/2014] [Accepted: 12/30/2014] [Indexed: 11/09/2022]
Abstract
Focal adhesion kinase (FAK) is a protein tyrosine kinase that is associated with regulating cellular functions such as cell adhesion and migration and has emerged as an important target for cancer research. Short peptide substrates that are selectively and efficiently phosphorylated by FAK have not been previously identified and tested. Here we report the synthesis and screening of a one-bead one-peptide combinatorial library to identify novel substrates for FAK. Using a solid-phase colorimetric antibody tagging detection platform, the peptide beads phosphorylated by FAK were sequenced via Edman degradation and then validated through radioisotope kinetic studies with [γ-(32)P] ATP to derive Michaelis-Menton constants. The combination of results gathered from both colorimetric and radioisotope kinase assays led to the rational design of a second generation of FAK peptide substrates. Out of all the potential peptide substrates evaluated, the most active was GDYVEFKKK with a K(M) = 92 μM and a Vmax = 1920 nmol/min/mg. Peptide substrates discovered within this study may be useful diagnostic tools for future kinase investigations and may lead to novel therapeutic agents.
Collapse
Affiliation(s)
- Laurie A Witucki
- Department of Chemistry, Grand Valley State University, Allendale, MI, 49401, USA
| | | | | | | | | |
Collapse
|
15
|
Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. Current approaches in SELEX: An update to aptamer selection technology. Biotechnol Adv 2015; 33:1141-61. [PMID: 25708387 DOI: 10.1016/j.biotechadv.2015.02.008] [Citation(s) in RCA: 416] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/26/2015] [Accepted: 02/13/2015] [Indexed: 12/21/2022]
Abstract
Systematic evolution of ligands by exponential enrichment (SELEX) is a well-established and efficient technology for the generation of oligonucleotides with a high target affinity. These SELEX-derived single stranded DNA and RNA molecules, called aptamers, were selected against various targets, such as proteins, cells, microorganisms, chemical compounds etc. They have a great potential in the use as novel antibodies, in cancer theragnostics and in biomedical research. Vast interest in aptamers stimulated continuous development of SELEX, which underwent numerous modifications since its first application in 1990. Novel modifications made the selection process more efficient, cost-effective and significantly less time-consuming. This article brings a comprehensive and up-to-date review of recent advances in SELEX methods and pinpoints advantages, main obstacles and limitations. The post-SELEX strategies and examples of application are also briefly outlined in this review.
Collapse
Affiliation(s)
- Mariia Darmostuk
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic.
| | - Silvie Rimpelova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic.
| | - Helena Gbelcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic; Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, Bratislava 811 08, Slovak Republic.
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic.
| |
Collapse
|
16
|
D’Hondt M, Bracke N, Taevernier L, Gevaert B, Verbeke F, Wynendaele E, De Spiegeleer B. Related impurities in peptide medicines. J Pharm Biomed Anal 2014; 101:2-30. [DOI: 10.1016/j.jpba.2014.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/05/2014] [Accepted: 06/08/2014] [Indexed: 12/16/2022]
|
17
|
Uhlig T, Kyprianou T, Martinelli FG, Oppici CA, Heiligers D, Hills D, Calvo XR, Verhaert P. The emergence of peptides in the pharmaceutical business: From exploration to exploitation. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.05.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
|
19
|
Affiliation(s)
- Bethany Powell Gray
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| | - Kathlynn C. Brown
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| |
Collapse
|
20
|
Han KQ, Wu G, Lv F. Development of QSAR-Improved Statistical Potential for the Structure-Based Analysis of ProteinPeptide Binding Affinities. Mol Inform 2013; 32:783-92. [DOI: 10.1002/minf.201300064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/21/2013] [Indexed: 12/21/2022]
|
21
|
Bábíčková J, Tóthová Ľ, Boor P, Celec P. In vivo phage display--a discovery tool in molecular biomedicine. Biotechnol Adv 2013; 31:1247-59. [PMID: 23623852 DOI: 10.1016/j.biotechadv.2013.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/15/2013] [Accepted: 04/15/2013] [Indexed: 12/13/2022]
Abstract
In vivo phage display is a high-throughput method for identifying target ligands specific for different vascular beds. Targeting is possible due to the heterogeneous expression of receptors and other antigens in a particular vascular bed. Such expression is additionally influenced by the physiological or pathological status of the vasculature. In vivo phage display represents a technique that is usable in both, vascular mapping and targeted drug development. In this review, several important methodological aspects of in vivo phage display experiments are discussed. These include choosing an appropriate phage library, an appropriate animal model and the route of phage library administration. In addition, peptides or antibodies identified by in vivo phage display homing to specific types of vascular beds, including the altered vasculature present in several types of diseases are summarized. Still, confirmation in independent experiments and reproduction of identified sequences are needed for enhancing the clinical applicability of in vivo phage display research.
Collapse
Affiliation(s)
- Janka Bábíčková
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia; Division of Nephrology, RWTH University, Aachen, Germany
| | | | | | | |
Collapse
|
22
|
Evolutionary screening and adsorption behavior of engineered M13 bacteriophage and derived dodecapeptide for selective decoration of gold interfaces. J Colloid Interface Sci 2013; 389:220-9. [DOI: 10.1016/j.jcis.2012.08.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 11/19/2022]
|
23
|
Bingham JP, Andrews EA, Kiyabu SM, Cabalteja CC. Drugs from slugs. Part II--conopeptide bioengineering. Chem Biol Interact 2012; 200:92-113. [PMID: 23063744 DOI: 10.1016/j.cbi.2012.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/27/2012] [Accepted: 09/17/2012] [Indexed: 11/27/2022]
Abstract
The biological transformation of toxins as research probes, or as pharmaceutical drug leads, is an onerous and drawn out process. Issues regarding changes to pharmacological specificity, desired potency, and bioavailability are compounded naturally by their inherent toxicity. These often scuttle their progress as they move up the narrowing drug development pipeline. Yet one class of peptide toxins, from the genus Conus, has in many ways spearheaded the expansion of new peptide bioengineering techniques to aid peptide toxin pharmaceutical development. What has now emerged is the sequential bioengineering of new research probes and drug leads that owe their lineage to these highly potent and isoform specific peptides. Here we discuss the progressive bioengineering steps that many conopeptides have transitioned through, and specifically illustrate some of the biochemical approaches that have been established to maximize their biological research potential and pharmaceutical worth.
Collapse
Affiliation(s)
- Jon-Paul Bingham
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA.
| | | | | | | |
Collapse
|
24
|
Kojima C, Fukada H, Inui T. Synthesis and binding properties of peptidomimetics based on a dendritic polymer. Polym J 2012. [DOI: 10.1038/pj.2012.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Rapid probing of biological surfaces with a sparse-matrix peptide library. PLoS One 2011; 6:e23551. [PMID: 21858167 PMCID: PMC3156232 DOI: 10.1371/journal.pone.0023551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/20/2011] [Indexed: 02/02/2023] Open
Abstract
Finding unique peptides to target specific biological surfaces is crucial to basic research and technology development, though methods based on biological arrays or large libraries limit the speed and ease with which these necessary compounds can be found. We reasoned that because biological surfaces, such as cell surfaces, mineralized tissues, and various extracellular matrices have unique molecular compositions, they present unique physicochemical signatures to the surrounding medium which could be probed by peptides with appropriately corresponding physicochemical properties. To test this hypothesis, a naïve pilot library of 36 peptides, varying in their hydrophobicity and charge, was arranged in a two-dimensional matrix and screened against various biological surfaces. While the number of peptides in the matrix library was very small, we obtained “hits” against all biological surfaces probed. Sequence refinement of the “hits” led to peptides with markedly higher specificity and binding activity against screened biological surfaces. Genetic studies revealed that peptide binding to bacteria was mediated, at least in some cases, by specific cell-surface molecules, while examination of human tooth sections showed that this method can be used to derive peptides with highly specific binding to human tissue.
Collapse
|
26
|
Pérez Y, Mann E, Herradón B. Preparation and characterization of gold nanoparticles capped by peptide–biphenyl hybrids. J Colloid Interface Sci 2011; 359:443-53. [DOI: 10.1016/j.jcis.2011.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/30/2011] [Accepted: 04/09/2011] [Indexed: 01/15/2023]
|
27
|
Castel G, Chtéoui M, Heyd B, Tordo N. Phage display of combinatorial peptide libraries: application to antiviral research. Molecules 2011; 16:3499-518. [PMID: 21522083 PMCID: PMC6263255 DOI: 10.3390/molecules16053499] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 12/14/2022] Open
Abstract
Given the growing number of diseases caused by emerging or endemic viruses, original strategies are urgently required: (1) for the identification of new drugs active against new viruses and (2) to deal with viral mutants in which resistance to existing antiviral molecules has been selected. In this context, antiviral peptides constitute a promising area for disease prevention and treatment. The identification and development of these inhibitory peptides require the high-throughput screening of combinatorial libraries. Phage-display is a powerful technique for selecting unique molecules with selective affinity for a specific target from highly diverse combinatorial libraries. In the last 15 years, the use of this technique for antiviral purposes and for the isolation of candidate inhibitory peptides in drug discovery has been explored. We present here a review of the use of phage display in antiviral research and drug discovery, with a discussion of optimized strategies combining the strong screening potential of this technique with complementary rational approaches for identification of the best target. By combining such approaches, it should be possible to maximize the selection of molecules with strong antiviral potential.
Collapse
Affiliation(s)
| | | | | | - Noël Tordo
- Unité Postulante des Stratégies Antivirales, CNRS URA-3015, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
28
|
Gruber CW, Muttenthaler M, Freissmuth M. Ligand-based peptide design and combinatorial peptide libraries to target G protein-coupled receptors. Curr Pharm Des 2011; 16:3071-88. [PMID: 20687879 DOI: 10.2174/138161210793292474] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 07/21/2010] [Indexed: 01/20/2023]
Abstract
G protein-coupled receptors (GPCRs) are considered to represent the most promising drug targets; it has been repeatedly said that a large fraction of the currently marketed drugs elicit their actions by binding to GPCRs (with cited numbers varying from 30-50%). Closer scrutiny, however, shows that only a modest fraction of (≈60) GPCRs are, in fact, exploited as drug targets, only ≈20 of which are peptide-binding receptors. The vast majority of receptors in the humane genome have not yet been explored as sites of action for drugs. Given the drugability of this receptor class, it appears that opportunities for drug discovery abound. In addition, GPCRs provide for binding sites other than the ligand binding sites (referred to as the "orthosteric site"). These additional sites include (i) binding sites for ligands (referred to as "allosteric ligands") that modulate the affinity and efficacy of orthosteric ligands, (ii) the interaction surface that recruits G proteins and arrestins, (iii) the interaction sites of additional proteins (GIPs, GPCR interacting proteins that regulate G protein signaling or give rise to G protein-independent signals). These sites can also be targeted by peptides. Combinatorial and natural peptide libraries are therefore likely to play a major role in identifying new GPCR ligands at each of these sites. In particular the diverse natural peptide libraries such as the venom peptides from marine cone-snails and plant cyclotides have been established as a rich source of drug leads. High-throughput screening and combinatorial chemistry approaches allow for progressing from these starting points to potential drug candidates. This will be illustrated by focusing on the ligand-based drug design of oxytocin (OT) and vasopressin (AVP) receptor ligands using natural peptide leads as starting points.
Collapse
Affiliation(s)
- Christian W Gruber
- Institute of Pharmacology, Center of Biomolecular Medicine & Pharmacology, Medical University of Vienna, Waehringer Str. 13a, A-1090 Vienna, Austria
| | | | | |
Collapse
|
29
|
Proteau-Gagné A, Bournival V, Rochon K, Dory YL, Gendron L. Exploring the Backbone of Enkephalins To Adjust Their Pharmacological Profile for the δ-Opioid Receptor. ACS Chem Neurosci 2010; 1:757-69. [PMID: 22778812 DOI: 10.1021/cn1000759] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/08/2010] [Indexed: 12/23/2022] Open
Abstract
The role of each of the four amide bonds in Leu(5)-enkephalin was investigated by systematically and sequentially replacing each with its corresponding trans-alkene. Six Leu(5)-enkephalin analogs based on six dipeptide surrogates and two Met(5)-enkephalin analogs were synthesized and thoroughly tested using a δ-opioid receptor internalization assay, an ERK1/2 activation assay, and a competition binding assay to evaluate their biological properties. We observed that an E-alkene can efficiently replace the first amide bond of Leu(5)- and Met(5)-enkephalin without significantly affecting biological activity. By contrast, the second amide bond was found to be highly sensitive to the same modification, suggesting that it is involved in biologically essential intra- or intermolecular interactions. Finally, we observed that the affinity and activity of analogs containing an E-alkene at either the third or fourth position were partially reduced, indicating that these amide bonds are less important for these intra- or intermolecular interactions. Overall, our study demonstrates that the systematic and sequential replacement of amide bonds by E-alkene represents an efficient way to explore peptide backbones.
Collapse
Affiliation(s)
| | | | | | - Yves L. Dory
- Laboratoire de synthèse supramoléculaire, Département de chimie,
| | | |
Collapse
|
30
|
Caulfield MJ, Dudkin VY, Ottinger EA, Getty KL, Zuck PD, Kaufhold RM, Hepler RW, McGaughey GB, Citron M, Hrin RC, Wang YJ, Miller MD, Joyce JG. Small molecule mimetics of an HIV-1 gp41 fusion intermediate as vaccine leads. J Biol Chem 2010; 285:40604-11. [PMID: 20943652 DOI: 10.1074/jbc.m110.172197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe here a novel platform technology for the discovery of small molecule mimetics of conformational epitopes on protein antigens. As a model system, we selected mimetics of a conserved hydrophobic pocket within the N-heptad repeat region of the HIV-1 envelope protein, gp41. The human monoclonal antibody, D5, binds to this target and exhibits broadly neutralizing activity against HIV-1. We exploited the antigen-binding property of D5 to select complementary small molecules using a high throughput screen of a diverse chemical collection. The resulting small molecule leads were rendered immunogenic by linking them to a carrier protein and were shown to elicit N-heptad repeat-binding antibodies in a fraction of immunized mice. Plasma from HIV-1-infected subjects shown previously to contain broadly neutralizing antibodies was found to contain antibodies capable of binding to haptens represented in the benzylpiperidine leads identified as a result of the high throughput screen, further validating these molecules as vaccine leads. Our results suggest a new paradigm for vaccine discovery using a medicinal chemistry approach to identify lead molecules that, when optimized, could become vaccine candidates for infectious diseases that have been refractory to conventional vaccine development.
Collapse
Affiliation(s)
- Michael J Caulfield
- Department of Vaccine Basic Research, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Deschuyteneer G, Garcia S, Michiels B, Baudoux B, Degand H, Morsomme P, Soumillion P. Intein-mediated cyclization of randomized peptides in the periplasm of Escherichia coli and their extracellular secretion. ACS Chem Biol 2010; 5:691-700. [PMID: 20527881 DOI: 10.1021/cb100072u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Split-inteins can be used to generate backbone cyclized peptide as a source of new bioactive molecules. In this work we show that cysteine-mediated splicing can be performed in the oxidative environment of the periplasm of Escherichia coli. Cyclization of the TEM-1 beta-lactamase and of small randomized peptides was demonstrated using an artificially permuted version of the DnaB mini-intein from Synechocystis sp. PCC6803 strain fused to a signal sequence. For small peptides, a signal sequence that promotes cotranslational translocation had to be used. Efficient backbone cyclization was observed for more than 50% of combinatorial peptides featuring a fully randomized sequence inserted between a serine and glycine that are necessary for fast splicing. Furthermore, by coexpressing a mutant of the pIV outer membrane pore protein of fd bacteriophage, we showed that peptides can diffuse in the extracellular medium. These results open new routes for searching compounds acting on new targets such as exported and membrane proteins or pathogen microorganisms.
Collapse
Affiliation(s)
| | | | | | | | - Hervé Degand
- Physiologie Moléculaire, Institut des Sciences de la Vie, Université catholique de Louvain, Place Croix du Sud 4-5, B-1348 Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- Physiologie Moléculaire, Institut des Sciences de la Vie, Université catholique de Louvain, Place Croix du Sud 4-5, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
32
|
Bidoia C, Mazzorana M, Pagano MA, Arrigoni G, Meggio F, Pinna LA, Bertazzoni U. The pleiotropic protein kinase CK2 phosphorylates HTLV-1 Tax protein in vitro, targeting its PDZ-binding motif. Virus Genes 2010; 41:149-57. [PMID: 20526659 DOI: 10.1007/s11262-010-0494-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/19/2010] [Indexed: 01/15/2023]
Abstract
The HTLV-1 transactivator Tax is an oncoprotein capable of deregulating the expression of many cellular genes and interfering with signalling pathways. Here we show that Tax-1 is phosphorylated in vitro by the pleiotropic human serine/threonine kinase CK2 at three residues, Ser-336, Ser-344 and Thr-351, close to and within its C-terminal PDZ-binding motif. We also show that the mutation of Thr-351 to aspartate abolishes Tax-1 binding to the scaffold protein hDlg, a tumour suppressor factor, while having no effect on transactivation. These results suggest that CK2, whose constitutive activity is often hijacked by viruses to sustain their vital cycle, could modulate Tax-1 oncogenic interactions.
Collapse
Affiliation(s)
- Carlo Bidoia
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada Le Grazie 8, Verona, Italy.
| | | | | | | | | | | | | |
Collapse
|
33
|
Bucks ME, Savinov SN. Direct evaluation of cellular internalization rates using chromogenic disulfides. MOLECULAR BIOSYSTEMS 2010; 6:1176-9. [PMID: 20405082 DOI: 10.1039/c003969a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical assay, which exploits the maintenance of the cytoplasmic redox balance in live cells, has been developed to report in real time on relative cellular internalization rates of molecules derivatized as chromogenic disulfides.
Collapse
Affiliation(s)
- Megan E Bucks
- Department of Chemistry, Purdue University, West Lafayette, IN 47909, USA
| | | |
Collapse
|
34
|
From combinatorial peptide selection to drug prototype (I): targeting the vascular endothelial growth factor receptor pathway. Proc Natl Acad Sci U S A 2010; 107:5112-7. [PMID: 20190181 DOI: 10.1073/pnas.0915141107] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inhibition of blood vessel formation is a viable therapeutic approach in angiogenesis-dependent diseases. We previously used a combinatorial screening on vascular endothelial growth factor (VEGF)-activated endothelial cells to select the sequence CPQPRPLC and showed that the motif Arg-Pro-Leu targets VEGF receptor-1 and neuropilin-1. Here, we evaluated and validated (D)(LPR), a derivative molecule with strong antiangiogenesis attributes. This prototype drug markedly inhibits neovascularization in three mouse models: Matrigel-based assay, functional human/murine blood vessel formation, and retinopathy of prematurity. In addition to its systemic activity, (D)(LPR) also inhibits retinal angiogenesis when administered in an eye-drop formulation. Finally, in preliminary studies, we have showed targeted drug activity in an experimental tumor-bearing mouse model. These results show that drugs targeting extracellular domains of VEGF receptors are active, affect signal transduction, and have potential for clinical application. On a larger context, this study illustrates the power of ligand-directed selection plus retro-inversion for rapid drug discovery and development.
Collapse
|
35
|
Kenrick SA, Daugherty PS. Bacterial display enables efficient and quantitative peptide affinity maturation. Protein Eng Des Sel 2010; 23:9-17. [PMID: 19903738 DOI: 10.1093/protein/gzp065] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A quantitative screening method was developed to enable isolation and affinity maturation of peptide ligands specific for a given target from peptide libraries displayed on the outer surface of Escherichia coli using multi-parameter flow cytometry. From a large, random 15-mer peptide library, screening identified a core motif of W-E/D-W-E/D that conferred binding to vascular endothelial growth factor (VEGF). One cycle of affinity maturation resulted in the identification of several families of VEGF-binding peptides having distinct consensus sequences, from which a preferred disulfide constraint emerged. In the second affinity maturation cycle, high affinity peptides were favored by the addition of a decoy protein that bound an adjacent epitope on the display scaffold. The decoy apparently reduced rebinding or avidity effects, and the resulting peptides exhibited consensus at 12 of 19 amino acid positions. Peptides identified and affinity matured using bacterial display were remarkably similar to the best affinity matured using phage display and exhibited comparable dissociation constants (within 2-fold; K(D) = 4.7 x 10(-7) M). Screening of bacterial-displayed peptide libraries using cytometry enabled optimization of screening conditions to favor affinity and specificity and rapid clonal characterization. Bacterial display thus provides a new quantitative tool for the discovery and evolutionary optimization of protein-specific peptide ligands.
Collapse
Affiliation(s)
- Sophia A Kenrick
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
36
|
Abstract
Whilst significant advances have been made in the delivery of nucleic acids to mammalian cells, most of the used strategies do not distinguish between normal and cancer cells. The same challenge is also facing radioactive- and chemo-therapies which are highly toxic and poorly tolerated due to limited tumor specificity. Regardless of the nature of the drug, there is a need for developing a technology platform which targets drugs only to tumors cells, leaving normal cells undamaged. Among the targeting strategies, receptor-targeted delivery provides an innovative strategy to selectively direct therapeutics to cancer cells. Receptor-binding ligands (e.g., peptides, antibodies, aptamers) can be incorporated into gene delivery vesicles or directly conjugated to siRNA in the hope in promoting their localization in target cell expressing the cognate receptors. The present chapter discusses the current progress made in the specific delivery of siRNAs.
Collapse
Affiliation(s)
- Mouldy Sioud
- Department of Immunology, Institute for Cancer Research, Radiumhospitalet-Rikshopitalet Universtity Hospital, Oslo, Norway
| |
Collapse
|
37
|
Castel G, Tordo N. [New strategies for the development of antiviral molecules]. REVUE FRANCOPHONE DES LABORATOIRES : RFL 2009; 2009:91-100. [PMID: 32288807 PMCID: PMC7140268 DOI: 10.1016/s1773-035x(09)70313-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 09/30/2009] [Indexed: 11/29/2022]
Abstract
Antiviral research is a recent discipline and the number of molecules available to fight against viral infections remains still insufficient. However, both diseases caused by emerging endemic viruses and the existence of resistance from some viruses against antiviral make necessary a constant search for new antiviral drugs. Parallel to the development of traditional molecules such as nucleoside analogues, whose effectiveness is well demonstrated, pharmaceutical industry is now turning to new solutions such as antiviral peptides, which constitute a new exploration field in therapy. The recent progress in disciplines such as genomics, proteomics and structural biology have improved our fundamental understanding of the viral world. These advances can be used to efficiently create new drugs more selective and more effective. Identification and development of these molecules require the use of newer techniques such as high-throughput screening of combinatorial compound libraries and the use of new bioinformatics tools. This review aims to present some recent methods for the development of antiviral molecules.
Collapse
Affiliation(s)
- Guillaume Castel
- Unité postulante des stratégies antivirales – CNRS URA-3015, Institut Pasteur, 25, rue du Docteur-Roux, 75724 Paris cedex 15
| | - Noël Tordo
- Unité postulante des stratégies antivirales – CNRS URA-3015, Institut Pasteur, 25, rue du Docteur-Roux, 75724 Paris cedex 15
| |
Collapse
|
38
|
Oyston PCF, Fox MA, Richards SJ, Clark GC. Novel peptide therapeutics for treatment of infections. J Med Microbiol 2009; 58:977-987. [DOI: 10.1099/jmm.0.011122-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As antibiotic resistance increases worldwide, there is an increasing pressure to develop novel classes of antimicrobial compounds to fight infectious disease. Peptide therapeutics represent a novel class of therapeutic agents. Some, such as cationic antimicrobial peptides and peptidoglycan recognition proteins, have been identified from studies of innate immune effector mechanisms, while others are completely novel compounds generated in biological systems. Currently, only selected cationic antimicrobial peptides have been licensed, and only for topical applications. However, research using new approaches to identify novel antimicrobial peptide therapeutics, and new approaches to delivery and improving stability, will result in an increased range of peptide therapeutics available in the clinic for broader applications.
Collapse
Affiliation(s)
- P. C. F. Oyston
- Microbiology, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - M. A. Fox
- Microbiology, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - S. J. Richards
- Microbiology, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - G. C. Clark
- Microbiology, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
39
|
Sharma SC, Memic A, Rupasinghe CN, Duc ACE, Spaller MR. T7 phage display as a method of peptide ligand discovery for PDZ domain proteins. Biopolymers 2009; 92:183-93. [PMID: 19235856 DOI: 10.1002/bip.21172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The use of bacteriophage T7 is presented as a peptide display platform to identify short binding sequences for PDZ domain proteins. Two different domains are examined, the 10th PDZ domain (PDZ10) of the multi-PDZ domain protein 1 (MUPP1) and the third PDZ domain (PDZ3) of postsynaptic density-95 (PSD-95) protein. Using the T7Select 415-1b construct, which displays 415 peptides per phage particle, a random heptapeptide and focused octapeptide libraries were constructed and subjected to iterative selection-enrichment cycles against surface-immobilized PDZ3 and PDZ10 proteins. The derived consensus sequences, together with those of high-frequency clones, were used as the basis for individual chemically synthesized peptides. Each peptide was subjected to isothermal titration calorimetry binding determinations against the corresponding PDZ domain under standard solution conditions. For MUPP1 PDZ10, binding analysis demonstrated that one of the heptapeptides, Ac-IGRISRV, displayed a two-fold improved affinity over the octapeptide derived from the carboxy terminus of the hc-Kit protein, which we had recently demonstrated as among the highest affinity ligands reported to date for that domain. In the case of PSD-95 PDZ3, peptides were found that possessed low-micromolar dissociation constants, as well as those that rediscovered the C-terminal sequence (KQTSV) of the protein CRIPT, a known natural binding protein of PDZ3. These successful examples of ligand discovery against two distinctly different PDZ domains demonstrate that the T7 phage platform could prove broadly applicable to the numerous other PDZ domains for which binding peptides are absent or of insufficient affinity.
Collapse
Affiliation(s)
- Sudhir C Sharma
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
40
|
Li S, McGuire MJ, Lin M, Liu YH, Oyama T, Sun X, Brown KC. Synthesis and characterization of a high-affinity {alpha}v{beta}6-specific ligand for in vitro and in vivo applications. Mol Cancer Ther 2009; 8:1239-49. [PMID: 19435868 DOI: 10.1158/1535-7163.mct-08-1098] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The α(v)β(6) integrin is an attractive therapeutic target for several cancers due to its role in metastasis and its negligible expression in normal tissues. We previously identified a peptide from a phage-displayed peptide library that binds specifically to α(v)β(6). The tetrameric version of the peptide has higher affinity for its cellular targets than the corresponding monomers. However, the inefficient synthesis limits its clinical potential. We report here a convergent synthesis producing the tetrameric peptide in high yield and purity. The ease of the synthesis allows for rapid optimization of the peptide. We have optimized this α(v)β(6) integrin-binding peptide, determining the minimal binding domain and valency. Importantly, the half-maximal binding affinity of the optimal peptide for its target cell is in the 40 to 60 pmol/L range, rivaling the affinity of commonly used antibody-targeting reagents. This peptide mediates cell-specific uptake, is functional in diagnostic formats, is stable in sera, and can home to a tumor in an animal. We anticipate that this high-affinity ligand for α(v)β(6) will find clinical use as a diagnostic and therapeutic reagent.
Collapse
Affiliation(s)
- Shunzi Li
- Division of Translational Research, Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9185, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Falciani C, Pini A, Bracci L. Oligo-branched peptides for tumor targeting: from magic bullets to magic forks. Expert Opin Biol Ther 2009; 9:171-8. [DOI: 10.1517/14712590802620501] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Sun Y, Liu FF, Shi QH. Approaches to high-performance preparative chromatography of proteins. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009; 113:217-254. [PMID: 19373447 DOI: 10.1007/10_2008_32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Preparative liquid chromatography is widely used for the purification of chemical and biological substances. Different from high-performance liquid chromatography for the analysis of many different components at minimized sample loading, high-performance preparative chromatography is of much larger scale and should be of high resolution and high capacity at high operation speed and low to moderate pressure drop. There are various approaches to this end. For biochemical engineers, the traditional way is to model and optimize a purification process to make it exert its maximum capability. For high-performance separations, however, we need to improve chromatographic technology itself. We herein discuss four approaches in this review, mainly based on the recent studies in our group. The first is the development of high-performance matrices, because packing material is the central component of chromatography. Progress in the fabrication of superporous materials in both beaded and monolithic forms are reviewed. The second topic is the discovery and design of affinity ligands for proteins. In most chromatographic methods, proteins are separated based on their interactions with the ligands attached to the surface of porous media. A target-specific ligand can offer selective purification of desired proteins. Third, electrochromatography is discussed. An electric field applied to a chromatographic column can induce additional separation mechanisms besides chromatography, and result in electrokinetic transport of protein molecules and/or the fluid inside pores, thus leading to high-performance separations. Finally, expanded-bed adsorption is described for process integration to reduce separation steps and process time.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China,
| | | | | |
Collapse
|
43
|
Abstract
RNA interference (RNAi) is a natural mechanism for gene silencing that can be harnessed for the development of RNA-based drugs. Although synthetic small interfering RNA (siRNAs) can be delivered in vitro to virtually all cell types using lipid-based transfection agents or electroporation, efficient strategies for achieving either systemic or targeted delivery remains one of the major in vivo challenges. Among the targeting strategies, receptor-targeted delivery provides an innovative strategy to selectively direct therapeutics to cancer cells. Receptor-binding peptides can be incorporated into gene-delivery vesicles or directly conjugated to siRNAs in the hope of promoting their localization in target cells expressing the cognate receptors. This chapter discusses the current status of siRNA-targeting strategies using either peptides identified through iterative screening of random peptide phage libraries or naturally occurring peptides. Also, transcriptional targeting strategies and detailed protocols for the selection of cancer cell-binding peptide from random peptide libraries are described.
Collapse
|
44
|
Mascini M, Sergi M, Monti D, Carlo MD, Compagnone D. Oligopeptides as Mimic of Acetylcholinesterase: From the Rational Design to the Application in Solid-Phase Extraction for Pesticides. Anal Chem 2008; 80:9150-6. [DOI: 10.1021/ac801030j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Mascini
- Department of Food Science, University of Teramo, 64023 Teramo, Italy, and Department of Chemical Technology Science, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - M. Sergi
- Department of Food Science, University of Teramo, 64023 Teramo, Italy, and Department of Chemical Technology Science, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - D. Monti
- Department of Food Science, University of Teramo, 64023 Teramo, Italy, and Department of Chemical Technology Science, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - M. Del Carlo
- Department of Food Science, University of Teramo, 64023 Teramo, Italy, and Department of Chemical Technology Science, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - D. Compagnone
- Department of Food Science, University of Teramo, 64023 Teramo, Italy, and Department of Chemical Technology Science, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
45
|
Paschke M, Tiede C, Höhne W. Engineering a circularly permuted GFP scaffold for peptide presentation. J Mol Recognit 2008; 20:367-78. [PMID: 17918771 DOI: 10.1002/jmr.844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The use of peptides as in vivo and in vitro ligand binding agents is hampered by the high flexibility, low stability and lack of intrinsic detection signal of peptide aptamers. Recent attempts to overcome these limitations included the integration of the binding peptide into a stable protein scaffold. In this paper, we present the optimization and testing of a circularly permuted variant of the green fluorescent protein (GFP). We examined the ability of the optimized scaffold to accept peptide insertions at three different regions. The three regions chosen are localized in close spatial proximity to each other and support different conformations of the inserted peptides. In all the three regions peptides with a biased, but still comprehensive, amino acid repertoire could be presented without disturbing the function of the optimized GFP-scaffold.
Collapse
Affiliation(s)
- Matthias Paschke
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Monbijoustrasse 20, D-10117 Berlin, Germany. mailto:
| | | | | |
Collapse
|
46
|
Bratkovič T, Lunder M, Urleb U, Štrukelj B. Peptide inhibitors of MurD and MurE, essential enzymes of bacterial cell wall biosynthesis. J Basic Microbiol 2008; 48:202-6. [DOI: 10.1002/jobm.200700133] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Screening of rationally designed oligopeptides for Listeria monocytogenes detection by means of a high density colorimetric microarray. Mikrochim Acta 2008. [DOI: 10.1007/s00604-008-0035-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Smith BD, Raines RT. Genetic selection for peptide inhibitors of angiogenin. Protein Eng Des Sel 2008; 21:289-94. [PMID: 18308863 DOI: 10.1093/protein/gzm089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The improper regulation of angiogenesis is implicit in a variety of diseases, including cancer. Angiogenin is unique among angiogenic factors in having ribonucleolytic activity. Inhibitors of this activity could serve as chemotherapeutics. The ribonucleolytic activity of angiogenin is toxic to the Origami strain of Escherichia coli. Herein, this cytotoxicity was used to identify inhibitors from a random nonapeptide library tethered to the C-terminus of human angiogenin. The selected sequences fell into three classes: (i) extremely hydrophobic, (ii) putative protease (ClpXP) substrates and (iii) slightly anionic. Two peptides corresponding to sequences in the last class were synthesized chemically and found to inhibit the ribonucleolytic activity of human angiogenin in vitro with micromolar values of Ki. Both peptides also inhibit bovine pancreatic ribonuclease, a homolog of angiogenin, though one exhibits selectivity for angiogenin. The affinity and selectivity of these peptides are comparable with the best known inhibitors of angiogenin. Moreover, the strategy used to identify them is general and could be applied to other cytotoxins.
Collapse
Affiliation(s)
- Bryan D Smith
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
| | | |
Collapse
|
49
|
Tavassoli A, Benkovic SJ. Split-intein mediated circular ligation used in the synthesis of cyclic peptide libraries in E. coli. Nat Protoc 2008; 2:1126-33. [PMID: 17546003 DOI: 10.1038/nprot.2007.152] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in chemical biology and the advantages presented by in vivo screening have highlighted the need for a robust and flexible biologically synthesized small-molecule library. Herein we describe a method for the biosynthesis of cyclic peptide libraries of up to 10(8) members in Escherichia coli using split-intein circular ligation of peptides and proteins (SICLOPPS). The method utilizes split-intein chemistry to cyclize randomized peptide sequences. The cyclic peptide library can potentially be of any size and the peptide itself may contain unlimited random residues. However, the library size is limited by the transformation efficiency of E. coli and random residues are generally limited to five, but additional amino acids can be used in the cyclic peptide backbone, varying the structure and ring size of the cyclic peptide. SICLOPPS libraries have been combined with a bacterial reverse two-hybrid system in our labs and used in the identification of inhibitors of several protein-protein interactions. This protocol is expected to take around 3-4 weeks to implement.
Collapse
Affiliation(s)
- Ali Tavassoli
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | | |
Collapse
|
50
|
Sathuluri RR, Yamamura S, Tamiya E. Microsystems technology and biosensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008; 109:285-350. [PMID: 17999038 DOI: 10.1007/10_2007_078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This review addresses the recent developments in miniaturized microsystems or lab-on-a-chip devices for biosensing of different biomolecules: DNA, proteins, small molecules, and cells, especially at the single-molecule and single-cell level. In order to sense these biomolecules with sensitivity we have fabricated chip devices with respect to the biomolecule to be analyzed. The details of the fabrication are also dealt with in this review. We mainly developed microarray and microfluidic chip devices for DNA, protein, and cell analyses. In addition, we have introduced the porous anodic alumina layer chip with nanometer scale and gold nanoparticles for label-free sensing of DNA and protein interactions. We also describe the use of microarray and microfluidic chip devices for cell-based assays and single-cell analysis in drug discovery research.
Collapse
Affiliation(s)
- Ramachandra Rao Sathuluri
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa, 923-1292, Japan
| | | | | |
Collapse
|