1
|
Xiao JX, Li FX, Ren SJ, Qu J. Studies on the Biomimetic Synthesis of Marine Ladder Polyethers via Endo-Selective Epoxide-to-Epoxonium Ring-Opening Cascades. Angew Chem Int Ed Engl 2024; 63:e202403597. [PMID: 38752455 DOI: 10.1002/anie.202403597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 07/16/2024]
Abstract
Marine ladder polyethers have attracted the attention of chemists and biologists because of their potent biological activities. Synthetic chemists have attempted to construct their polyether frameworks by epoxide ring-opening cascades, as Nakanishi hypothesis describes. However, Baldwin's rules of ring closure state that exo-selective intramolecular cyclization of epoxy alcohols is preferred over endo-selective cyclization. Herein, we investigated epoxide ring-opening cascades of polyepoxy alcohols in [EMIM]BF4/PFTB (1-ethyl-3-methylimidazolium tetrafluoroborate /perfluoro-tert-butyl alcohol) and found that all-endo products were formed via epoxide-to-epoxonium ring-opening cyclizations (not restricted by Baldwin's rules, which only apply to intramolecular hydroxyl-to-epoxide cyclizations). We determined that the key factor enabling polyepoxy alcohols to undergo a high proportion of all-endo-selective cyclization was inhibition of exo-selective hydroxyl-to-epoxide cyclization starting from the terminal hydroxyl group of a polyepoxy alcohol. By introducing a slow-release protecting group to the terminal hydroxyl group, we could markedly increase the cyclization yields of polyether fragments with hydrogen atoms at the ring junctions. For the first time, we constructed consecutively fused six-membered-ring and fused seven-, eight-, and nine-membered-ring polyether fragments by epoxide-to-epoxonium ring-opening cyclizations through the addition of a suitable Lewis acid. We also suggest that the biosynthesis of marine ladder polyethers may proceed via epoxide-to-epoxonium ring-opening cyclization of polyepoxide.
Collapse
Affiliation(s)
- Jia-Xi Xiao
- College of Chemistry, Nankai University, The State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| | - Feng-Xing Li
- College of Chemistry, Nankai University, The State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| | - Shu-Jian Ren
- College of Chemistry, Nankai University, The State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| | - Jin Qu
- College of Chemistry, Nankai University, The State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| |
Collapse
|
2
|
Fergusson CH, Saulog J, Paulo BS, Wilson DM, Liu DY, Morehouse NJ, Waterworth S, Barkei J, Gray CA, Kwan JC, Eustaquio AS, Linington RG. Discovery of a lagriamide polyketide by integrated genome mining, isotopic labeling, and untargeted metabolomics. Chem Sci 2024; 15:8089-8096. [PMID: 38817573 PMCID: PMC11134395 DOI: 10.1039/d4sc00825a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/18/2024] [Indexed: 06/01/2024] Open
Abstract
Microorganisms from the order Burkholderiales have been the source of a number of important classes of natural products in recent years. For example, study of the beetle-associated symbiont Burkholderia gladioli led to the discovery of the antifungal polyketide lagriamide; an important molecule from the perspectives of both biotechnology and chemical ecology. As part of a wider project to sequence Burkholderiales genomes from our in-house Burkholderiales library we identified a strain containing a biosynthetic gene cluster (BGC) similar to the original lagriamide BGC. Structure prediction failed to identify any candidate masses for the products of this BGC from untargeted metabolomics mass spectrometry data. However, genome mining from publicly available databases identified fragments of this BGC from a culture collection strain of Paraburkholderia. Whole genome sequencing of this strain revealed the presence of a homologue of this BGC with very high sequence identity. Stable isotope feeding of the two strains in parallel using our newly developed IsoAnalyst platform identified the product of this lagriamide-like BGC directly from the crude fermentation extracts, affording a culturable supply of this interesting compound class. Using a combination of bioinformatic, computational and spectroscopic methods we defined the absolute configurations for all 11 chiral centers in this new metabolite, which we named lagriamide B. Biological testing of lagriamide B against a panel of 21 bacterial and fungal pathogens revealed antifungal activity against the opportunistic human pathogen Aspergillus niger, while image-based Cell Painting analysis indicated that lagriamide B also causes actin filament disruption in U2-OS osteosarcoma cells.
Collapse
Affiliation(s)
- Claire H Fergusson
- Department of Chemistry, Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| | - Julia Saulog
- Department of Chemistry, Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| | - Bruno S Paulo
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | - Darryl M Wilson
- Department of Chemistry, Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| | - Dennis Y Liu
- Department of Chemistry, Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| | - Nicholas J Morehouse
- Department of Biological Sciences, University of New Brunswick Saint John NB Canada
| | - Samantha Waterworth
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin Madison WI 53705 USA
| | - John Barkei
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin Madison WI 53705 USA
| | - Christopher A Gray
- Department of Biological Sciences, University of New Brunswick Saint John NB Canada
| | - Jason C Kwan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin Madison WI 53705 USA
| | - Alessandra S Eustaquio
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| |
Collapse
|
3
|
Wang Q, Liu N, Deng Y, Guan Y, Xiao H, Nitka TA, Yang H, Yadav A, Vukovic L, Mathews II, Chen X, Kim CY. Triepoxide formation by a flavin-dependent monooxygenase in monensin biosynthesis. Nat Commun 2023; 14:6273. [PMID: 37805629 PMCID: PMC10560226 DOI: 10.1038/s41467-023-41889-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 09/18/2023] [Indexed: 10/09/2023] Open
Abstract
Monensin A is a prototypical natural polyether polyketide antibiotic. It acts by binding a metal cation and facilitating its transport across the cell membrane. Biosynthesis of monensin A involves construction of a polyene polyketide backbone, subsequent epoxidation of the alkenes, and, lastly, formation of cyclic ethers via epoxide-opening cyclization. MonCI, a flavin-dependent monooxygenase, is thought to transform all three alkenes in the intermediate polyketide premonensin A into epoxides. Our crystallographic study has revealed that MonCI's exquisite stereocontrol is due to the preorganization of the active site residues which allows only one specific face of the alkene to approach the reactive C(4a)-hydroperoxyflavin moiety. Furthermore, MonCI has an unusually large substrate-binding cavity that can accommodate premonensin A in an extended or folded conformation which allows any of the three alkenes to be placed next to C(4a)-hydroperoxyflavin. MonCI, with its ability to perform multiple epoxidations on the same substrate in a stereospecific manner, demonstrates the extraordinary versatility of the flavin-dependent monooxygenase family of enzymes.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Ning Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Yaming Deng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Yuze Guan
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Hongli Xiao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Tara A Nitka
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Hui Yang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Anju Yadav
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Lela Vukovic
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 95124, USA
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China.
| | - Chu-Young Kim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Takahashi S. Studies on Streptomyces sp. SN-593: reveromycin biosynthesis, β-carboline biomediator activating LuxR family regulator, and construction of terpenoid biosynthetic platform. J Antibiot (Tokyo) 2022; 75:432-444. [PMID: 35778609 DOI: 10.1038/s41429-022-00539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022]
Abstract
Streptomyces represents an important reservoir for biologically active natural products. Understanding the biosynthetic mechanism and the mode of gene expression is important for enhanced metabolite production and evaluation of biological activities. This review provides an overview of biosynthetic studies investigating reveromycin and β-carboline biomediators that enhanced the production of reveromycin in Streptomyces sp. SN-593 through activation of the LuxR family regulator. Furthermore, based on the optimal expression of a pathway specific regulator controlling the mevalonate pathway gene cluster, Streptomyces sp. SN-593 was developed as a platform for terpenoid compounds mass production.
Collapse
Affiliation(s)
- Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Centre for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
5
|
Properties and Mechanisms of Flavin-Dependent Monooxygenases and Their Applications in Natural Product Synthesis. Int J Mol Sci 2022; 23:ijms23052622. [PMID: 35269764 PMCID: PMC8910399 DOI: 10.3390/ijms23052622] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products are usually highly complicated organic molecules with special scaffolds, and they are an important resource in medicine. Natural products with complicated structures are produced by enzymes, and this is still a challenging research field, its mechanisms requiring detailed methods for elucidation. Flavin adenine dinucleotide (FAD)-dependent monooxygenases (FMOs) catalyze many oxidation reactions with chemo-, regio-, and stereo-selectivity, and they are involved in the synthesis of many natural products. In this review, we introduce the mechanisms for different FMOs, with the classical FAD (C4a)-hydroperoxide as the major oxidant. We also summarize the difference between FMOs and cytochrome P450 (CYP450) monooxygenases emphasizing the advantages of FMOs and their specificity for substrates. Finally, we present examples of FMO-catalyzed synthesis of natural products. Based on these explanations, this review will expand our knowledge of FMOs as powerful enzymes, as well as implementation of the FMOs as effective tools for biosynthesis.
Collapse
|
6
|
Bowen JI, Wang L, Crump MP, Willis CL. Synthetic and biosynthetic methods for selective cyclisations of 4,5-epoxy alcohols to tetrahydropyrans. Org Biomol Chem 2022; 20:1150-1175. [PMID: 35029626 PMCID: PMC8827043 DOI: 10.1039/d1ob01905h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Tetrahydropyrans (THPs) are common structural motifs found in natural products and synthetic therapeutic molecules. In Nature these 6-membered oxygen heterocycles are often assembled via intramolecular reactions involving either oxy-Michael additions or ring opening of epoxy-alcohols. Indeed, the polyether natural products have been particularly widely studied due to their fascinating structures and important biological properties; these are commonly formed via endo-selective epoxide-opening cascades. In this review we outline synthetic approaches for endo-selective intramolecular epoxide ring opening (IERO) of 4,5-epoxy-alcohols and their applications in natural product synthesis. In addition, the biosynthesis of THP-containing natural products which utilise IERO reactions are reviewed.
Collapse
Affiliation(s)
- James I Bowen
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Luoyi Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Matthew P Crump
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
7
|
Heinrich S, Grote M, Sievers S, Kushnir S, Schulz F. Polyether Cyclization Cascade Alterations in Response to Monensin Polyketide Synthase Mutations. Chembiochem 2021; 23:e202100584. [PMID: 34729883 DOI: 10.1002/cbic.202100584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/11/2022]
Abstract
The targeted manipulation of polyketide synthases has in recent years led to numerous new-to-nature polyketides. For type I polyketide synthases the response of post-polyketide synthases (PKS) processing enzymes onto the most frequently polyketide backbone manipulations is so far insufficiently studied. In particular, complex processes such as the polyether cyclisation in the biosynthesis of ionophores such as monensin pose interesting objects of research. We present here a study of the substrate promiscuity of the polyether cyclisation cascade enzymes in monensin biosynthesis in the conversion of redox derivatives of the nascent polyketide chain. LC-HRMS/MS2 -based studies revealed a remarkable flexibility of the post-PKS enzymes. They acted on derivatized polyketide backbones based on the three possible polyketide redox states within two different modules and gave rise to an altered polyether structure. One of these monensin derivatives was isolated and characterized by 2D-NMR spectroscopy, crystallography, and bioactivity studies.
Collapse
Affiliation(s)
- Sascha Heinrich
- Organic Chemistry I, Chemistry and Biochemistry of Natural Products, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Marius Grote
- Organic Chemistry I, Chemistry and Biochemistry of Natural Products, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Sonja Sievers
- Max PIanck Institute for molecular Physiology, COMAS - Compound Management and Screening Center, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Susanna Kushnir
- Organic Chemistry I, Chemistry and Biochemistry of Natural Products, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Frank Schulz
- Organic Chemistry I, Chemistry and Biochemistry of Natural Products, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
8
|
Walker PD, Weir ANM, Willis CL, Crump MP. Polyketide β-branching: diversity, mechanism and selectivity. Nat Prod Rep 2021; 38:723-756. [PMID: 33057534 DOI: 10.1039/d0np00045k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2008 to August 2020 Polyketides are a family of natural products constructed from simple building blocks to generate a diverse range of often complex chemical structures with biological activities of both pharmaceutical and agrochemical importance. Their biosynthesis is controlled by polyketide synthases (PKSs) which catalyse the condensation of thioesters to assemble a functionalised linear carbon chain. Alkyl-branches may be installed at the nucleophilic α- or electrophilic β-carbon of the growing chain. Polyketide β-branching is a fascinating biosynthetic modification that allows for the conversion of a β-ketone into a β-alkyl group or functionalised side-chain. The overall transformation is catalysed by a multi-protein 3-hydroxy-3-methylglutaryl synthase (HMGS) cassette and is reminiscent of the mevalonate pathway in terpene biosynthesis. The first step most commonly involves the aldol addition of acetate to the electrophilic carbon of the β-ketothioester catalysed by a 3-hydroxy-3-methylglutaryl synthase (HMGS). Subsequent dehydration and decarboxylation selectively generates either α,β- or β,γ-unsaturated β-alkyl branches which may be further modified. This review covers 2008 to August 2020 and summarises the diversity of β-branch incorporation and the mechanistic details of each catalytic step. This is extended to discussion of polyketides containing multiple β-branches and the selectivity exerted by the PKS to ensure β-branching fidelity. Finally, the application of HMGS in data mining, additional β-branching mechanisms and current knowledge of the role of β-branches in this important class of biologically active natural products is discussed.
Collapse
Affiliation(s)
- P D Walker
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - A N M Weir
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - C L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - M P Crump
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
9
|
Kim MC, Winter JM, Cullum R, Li Z, Fenical W. Complementary Genomic, Bioinformatics, and Chemical Approaches Facilitate the Absolute Structure Assignment of Ionostatin, a Linear Polyketide from a Rare Marine-Derived Actinomycete. ACS Chem Biol 2020; 15:2507-2515. [PMID: 32852937 DOI: 10.1021/acschembio.0c00526] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new linear type-1 polyketide, ionostatin (1), has been fully defined using a combined genomic and bioinformatics approach coupled with confirmatory chemical analyses. The 41 carbon-containing polyether is the product of the 101 kbp ion biosynthetic cluster containing seven modular type-1 polyketide synthases. Ionostatin is composed of 15 chiral centers that were proposed using the stereospecificities installed by the different classes of ketoreductases and enoylreductases and confirmed by rigorous NMR analyses. Incorporated into the structure are two tetrahydrofuran rings that appear to be the product of stereospecific epoxidation, followed by stereospecific ring opening and cyclization. These transformations are proposed to be catalyzed by conserved enzymes analogous to those found in other bacterial-derived polyether biosynthetic clusters. Ionostatin shows moderate cancer cell cytotoxicity against U87 glioblastoma and SKOV3 ovarian carcinoma at 7.4 μg/mL.
Collapse
Affiliation(s)
- Min Cheol Kim
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Jaclyn M. Winter
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Reiko Cullum
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Zhifei Li
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Moores Comprehensive Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
10
|
The biosynthetic pathway to tetromadurin (SF2487/A80577), a polyether tetronate antibiotic. PLoS One 2020; 15:e0239054. [PMID: 32925967 PMCID: PMC7489565 DOI: 10.1371/journal.pone.0239054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/30/2020] [Indexed: 12/03/2022] Open
Abstract
The type I polyketide SF2487/A80577 (herein referred to as tetromadurin) is a polyether tetronate ionophore antibiotic produced by the terrestrial Gram-positive bacterium Actinomadura verrucosospora. Tetromadurin is closely related to the polyether tetronates tetronasin (M139603) and tetronomycin, all of which are characterised by containing a tetronate, cyclohexane, tetrahydropyran, and at least one tetrahydrofuran ring. We have sequenced the genome of Actinomadura verrucosospora to identify the biosynthetic gene cluster responsible for tetromadurin biosynthesis (the mad gene cluster). Based on bioinformatic analysis of the 32 genes present within the cluster a plausible biosynthetic pathway for tetromadurin biosynthesis is proposed. Functional confirmation of the mad gene cluster is obtained by performing in-frame deletions in each of the genes mad10 and mad31, which encode putative cyclase enzymes responsible for cyclohexane and tetrahydropyran formation, respectively. Furthermore, the A. verrucosospora Δmad10 mutant produces a novel tetromadurin metabolite that according to mass spectrometry analysis is analogous to the recently characterised partially cyclised tetronasin intermediate lacking its cyclohexane and tetrahydropyran rings. Our results therefore elucidate the biosynthetic machinery of tetromadurin biosynthesis and lend support for a conserved mechanism of cyclohexane and tetrahydropyran biosynthesis across polyether tetronates.
Collapse
|
11
|
Regulatory Patterns of Crp on Monensin Biosynthesis in Streptomyces cinnamonensis. Microorganisms 2020; 8:microorganisms8020271. [PMID: 32079344 PMCID: PMC7074812 DOI: 10.3390/microorganisms8020271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 01/03/2023] Open
Abstract
Monensin, produced by Streptomyces cinnamonensis, is a polyether ionophore antibiotic widely used as a coccidiostat and a growth-promoting agent in agricultural industry. In this study, cyclic AMP receptor protein (Crp), the global transcription factor for regulation of monensin biosynthesis, was deciphered. The overexpression and antisense RNA silencing of crp revealed that Crp plays a positive role in monensin biosynthesis. RNA sequencing analysis indicated that Crp exhibited extensive regulatory effects on genes involved in both primary metabolic pathways and the monensin biosynthetic gene cluster (mon). The primary metabolic genes, including acs, pckA, accB, acdH, atoB, mutB, epi and ccr, which are pivotal in the biosynthesis of monensin precursors malonyl-CoA, methylmalonyl-CoA and ethylmalonyl-CoA, are transcriptionally upregulated by Crp. Furthermore, Crp upregulates the expression of most mon genes, including all PKS genes (monAI to monAVIII), tailoring genes (monBI-monBII-monCI, monD and monAX) and a pathway-specific regulatory gene (monRI). Enhanced precursor supply and the upregulated expression of mon cluser by Crp would allow the higher production of monensin in S. cinnamonensis. This study gives a more comprehensive understanding of the global regulator Crp and extends the knowledge of Crp regulatory mechanism in Streptomyces.
Collapse
|
12
|
Genomics-driven discovery of the biosynthetic gene cluster of maduramicin and its overproduction in Actinomadura sp. J1-007. ACTA ACUST UNITED AC 2020; 47:275-285. [DOI: 10.1007/s10295-019-02256-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Abstract
Maduramicin is the most efficient and possesses the largest market share of all anti-coccidiosis polyether antibiotics (ionophore); however, its biosynthetic gene cluster (BGC) has yet to been identified, and the associated strains have not been genetically engineered. Herein, we performed whole-genome sequencing of a maduramicin-producing industrial strain of Actinomadura sp. J1-007 and identified its BGC. Additionally, we analyzed the identified BGCs in silico to predict the biosynthetic pathway of maduramicin. We then developed a conjugation method for the non-spore-forming Actinomadura sp. J1-007, consisting of a site-specific integration method for gene overexpression. The maduramicin titer increased by 30% to 7.16 g/L in shake-flask fermentation following overexpression of type II thioesterase MadTE that is the highest titer at present. Our findings provide insights into the biosynthetic mechanism of polyethers and provide a platform for the metabolic engineering of maduramicin-producing microorganisms for overproduction and development of maduramicin analogs in the future.
Collapse
|
13
|
Wan X, Yao G, Liu Y, Chen J, Jiang H. Research Progress in the Biosynthetic Mechanisms of Marine Polyether Toxins. Mar Drugs 2019; 17:E594. [PMID: 31652489 PMCID: PMC6835853 DOI: 10.3390/md17100594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/28/2022] Open
Abstract
Marine polyether toxins, mainly produced by marine dinoflagellates, are novel, complex, and diverse natural products with extensive toxicological and pharmacological effects. Owing to their harmful effects during outbreaks of marine red tides, as well as their potential value for the development of new drugs, marine polyether toxins have been extensively studied, in terms of toxicology, pharmacology, detection, and analysis, structural identification, as well as their biosynthetic mechanisms. Although the biosynthetic mechanisms of marine polyether toxins are still unclear, certain progress has been made. In this review, research progress and current knowledge on the biosynthetic mechanisms of polyether toxins are summarized, including the mechanisms of carbon skeleton deletion, pendant alkylation, and polyether ring formation, along with providing a summary of mined biosynthesis-related genes. Finally, future research directions and applications of marine polyether toxins are discussed.
Collapse
Affiliation(s)
- Xiukun Wan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Yanli Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Jisheng Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
14
|
Abstract
Enzyme-mediated cascade reactions are widespread in biosynthesis. To facilitate comparison with the mechanistic categorizations of cascade reactions by synthetic chemists and delineate the common underlying chemistry, we discuss four types of enzymatic cascade reactions: those involving nucleophilic, electrophilic, pericyclic, and radical reactions. Two subtypes of enzymes that generate radical cascades exist at opposite ends of the oxygen abundance spectrum. Iron-based enzymes use O2 to generate high valent iron-oxo species to homolyze unactivated C-H bonds in substrates to initiate skeletal rearrangements. At anaerobic end, enzymes reversibly cleave S-adenosylmethionine (SAM) to generate the 5'-deoxyadenosyl radical as a powerful oxidant to initiate C-H bond homolysis in bound substrates. The latter enzymes are termed radical SAM enzymes. We categorize the former as "thwarted oxygenases".
Collapse
Affiliation(s)
- Christopher T Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (CheM-H), Stanford University, Stanford, CA, 94305, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
15
|
Grote M, Schulz F. Exploring the Promiscuous Enzymatic Activation of Unnatural Polyketide Extender Units in Vitro and in Vivo for Monensin Biosynthesis. Chembiochem 2019; 20:1183-1189. [DOI: 10.1002/cbic.201800734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Marius Grote
- Fakultät für Chemie und BiochemieRuhr-Universität Bochum Universitätsstrassee 150 44780 Bochum Germany
| | - Frank Schulz
- Fakultät für Chemie und BiochemieRuhr-Universität Bochum Universitätsstrassee 150 44780 Bochum Germany
| |
Collapse
|
16
|
Affiliation(s)
- Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (CheM-H)Stanford University Stanford CA 94305 USA
| | - Bradley S. Moore
- Center for Marine Biotechnology and BiomedicineScripps Institution of OceanographyUniversity of California, San Diego La Jolla CA 92093 USA
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San Diego La Jolla CA 92093 USA
| |
Collapse
|
17
|
Wang B, Guo F, Dong SH, Zhao H. Activation of silent biosynthetic gene clusters using transcription factor decoys. Nat Chem Biol 2019; 15:111-114. [PMID: 30598544 PMCID: PMC6339570 DOI: 10.1038/s41589-018-0187-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/07/2018] [Indexed: 11/09/2022]
Abstract
Here we report a transcription factor decoy strategy for targeted activation of eight large silent polyketide synthase and non-ribosomal peptide synthetase gene clusters, ranging from 50 to 134 kilobases (kb) in multiple streptomycetes, and characterization of a novel oxazole family compound produced by a 98-kb biosynthetic gene cluster. Owing to its simplicity and ease of use, this strategy can be scaled up readily for discovery of natural products in streptomycetes.
Collapse
Affiliation(s)
- Bin Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Fang Guo
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shi-Hui Dong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huimin Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
18
|
|
19
|
Lindner F, Friedrich S, Hahn F. Total Synthesis of Complex Biosynthetic Late-Stage Intermediates and Bioconversion by a Tailoring Enzyme from Jerangolid Biosynthesis. J Org Chem 2018; 83:14091-14101. [DOI: 10.1021/acs.joc.8b02047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Frederick Lindner
- Professur für Organische Chemie (Lebensmittelchemie), Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Steffen Friedrich
- Professur für Organische Chemie (Lebensmittelchemie), Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Frank Hahn
- Professur für Organische Chemie (Lebensmittelchemie), Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
20
|
Meng S, Tang GL, Pan HX. Enzymatic Formation of Oxygen-Containing Heterocycles in Natural Product Biosynthesis. Chembiochem 2018; 19:2002-2022. [PMID: 30039582 DOI: 10.1002/cbic.201800225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 01/12/2023]
Abstract
Oxygen-containing heterocycles are widely encountered in natural products that display diverse pharmacological properties and have potential benefits to human health. The formation of O-heterocycles catalyzed by different types of enzymes in the biosynthesis of natural products not only contributes to the structural diversity of these compounds, but also enriches our understanding of nature's ability to construct complex molecules. This minireview focuses on the various modes of enzymatic O-heterocyclization identified in natural product biosynthesis and summarizes the possible mechanisms involved in ring closure.
Collapse
Affiliation(s)
- Song Meng
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hai-Xue Pan
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
21
|
Flórez LV, Scherlach K, Miller IJ, Rodrigues A, Kwan JC, Hertweck C, Kaltenpoth M. An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. Nat Commun 2018; 9:2478. [PMID: 29946103 PMCID: PMC6018673 DOI: 10.1038/s41467-018-04955-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
Microbial symbionts are often a source of chemical novelty and can contribute to host defense against antagonists. However, the ecological relevance of chemical mediators remains unclear for most systems. Lagria beetles live in symbiosis with multiple strains of Burkholderia bacteria that protect their offspring against pathogens. Here, we describe the antifungal polyketide lagriamide, and provide evidence supporting that it is produced by an uncultured symbiont, Burkholderia gladioli Lv-StB, which is dominant in field-collected Lagria villosa. Interestingly, lagriamide is structurally similar to bistramides, defensive compounds found in marine tunicates. We identify a gene cluster that is probably involved in lagriamide biosynthesis, provide evidence for horizontal acquisition of these genes, and show that the naturally occurring symbiont strains on the egg are protective in the soil environment. Our findings highlight the potential of microbial symbionts and horizontal gene transfer as influential sources of ecological innovation.
Collapse
Affiliation(s)
- Laura V Flórez
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128, Mainz, Germany.
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany.
| | - Ian J Miller
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705-2222, USA
| | - Andre Rodrigues
- Department of Biochemistry and Microbiology, UNESP-São Paulo State University, Av. 24A, n. 1515-Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Jason C Kwan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705-2222, USA
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
- Natural Product Chemistry, Friedrich Schiller University, 07743, Jena, Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128, Mainz, Germany
| |
Collapse
|
22
|
Chakraborty K, Thilakan B, Raola VK. Antimicrobial polyketide furanoterpenoids from seaweed-associated heterotrophic bacterium Bacillus subtilis MTCC 10403. PHYTOCHEMISTRY 2017; 142:112-125. [PMID: 28704687 DOI: 10.1016/j.phytochem.2017.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 05/17/2023]
Abstract
Brown seaweed Anthophycus longifolius (Turner) Kützing (family Sargassaceae) associated heterotrophic bacterium Bacillus subtilis MTCC 10403 was found to be a potent isolate with broad range of antibacterial activity against important perceptive food pathogens Vibrio parahaemolyticus, V. vulnificus, and Aeromonas hydrophila. This bacterium was positive for polyketide synthetase gene (KC589397), and therefore, was selected to bioprospect specialized metabolites bearing polyketide backbone. Bioactivity-guided chromatographic fractionation of the ethyl acetate extract of the seaweed-associated bacterium segregated four homologous polyketide furanoterpenoids with potential antibacterial activities against clinically important pathogens. The minimum inhibitory concentration (MIC) assay showed that the referral antibiotics tetracycline and ampicillin were active at 25 μg/mL against the test pathogens, whereas the previously undescribed (4E)-methyl 13-((16-(furan-2-yl) ethyl)-octahydro-7-hydroxy-4-((E)-23-methylbut-21-enyl)-2H-chromen-6-yl)-4-methylpent-4-enoate (compound 1) and methyl 3-(hexahydro-9-((E)-3-methylpent-1-enyl)-4H-furo[3,2-g]isochromen-6-yl) propanoate (compound 3) displayed antibacterial activities against the test pathogens at a lesser concentration (MIC < 7 μg/mL). The title compounds were characterized by comprehensive nuclear magnetic resonance and mass spectroscopic experiments. Polyketide synthase catalyzed putative biosynthetic mechanism additionally corroborated the structural ascriptions of the hitherto undescribed furanoterpenoids from seaweed-associated bacterial symbiont. The electronic and hydrophobic parameters appeared to hold a conspicuous part in directing the antibacterial properties of the compounds. Seaweed-associated B. subtilis MTCC 10403 demonstrated to represent a potential source of antimicrobial polyketides for pharmaceutical applications.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Bioprospecting Section of Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, 682018, Kerala, India.
| | - Bini Thilakan
- Marine Bioprospecting Section of Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, 682018, Kerala, India
| | - Vamshi Krishna Raola
- Marine Bioprospecting Section of Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, 682018, Kerala, India
| |
Collapse
|
23
|
Maneesh A, Chakraborty K. Unprecedented antioxidative and anti-inflammatory aryl polyketides from the brown seaweed Sargassum wightii. Food Res Int 2017; 100:640-649. [PMID: 28873732 DOI: 10.1016/j.foodres.2017.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/28/2017] [Accepted: 07/02/2017] [Indexed: 11/15/2022]
Abstract
Previously undescribed aryl polyketide lactones, 4-(8-ethyl-tetrahydro-7-oxo-2H-pyran-5-yl)-propyl-4'-methylbenzoate (compound 1) and methyl-2-(12-oxo-7-phenyl-8-vinyl-1-oxa-4,9-cyclododecadien-3-yl)-acetate (compound 2) were purified from ethyl acetate-methanol fraction of the brown seaweed Sargassum wightii. The structures were proposed based on their NMR and mass spectrometric data. The antioxidative activities of the lactones were significantly greater (P<0.05) (IC50 1,1-diphenyl-2-picrylhydrazyl radical scavenging 0.24-0.32mg/mL) than α-tocopherol (IC50 0.63mg/mL). The title compounds displayed considerably greater 5-lipoxygenase inhibitory activity (IC50 0.56 and 0.29mg/mL, respectively) in conjunction with higher selectivity indices (anti-cycloxygense-1IC50/anti-cycloxygense-2IC50 >1) compared to non-steroidal anti-inflammatory drugs (SIaspirin 0.03, SIibuprofen 0.43). Putative biosynthetic pathway of title polyketide products through polyketide synthase enzyme cascade catalyzed reactions substantiated the structural attributions of the hitherto unreported aryl polyketides. This is the first report of the occurrence and characterization of two rare skeletal types, oxo-2H-pyranyl and oxa-cyclododecadienyl macrolactone featuring the aryl substituent from marine organisms with potential antioxidative and anti-inflammatory activities.
Collapse
Affiliation(s)
- Anusree Maneesh
- Marine Bioprospecting Section of Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala, India
| | - Kajal Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala, India.
| |
Collapse
|
24
|
Characterization of three pathway-specific regulators for high production of monensin in Streptomyces cinnamonensis. Appl Microbiol Biotechnol 2017; 101:6083-6097. [PMID: 28685195 DOI: 10.1007/s00253-017-8353-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022]
Abstract
Monensin, a polyether ionophore antibiotic, is produced by Streptomyces cinnamonensis and worldwide used as a coccidiostat and growth-promoting agent in the field of animal feeding. The monensin biosynthetic gene cluster (mon) has been reported. In this study, the potential functions of three putatively pathway-specific regulators (MonH, MonRI, and MonRII) were clarified. The results from gene inactivation, complementation, and overexpression showed that MonH, MonRI, and MonRII positively regulate monensin production. Both MonH and MonRI are essential for monensin biosynthesis, while MonRII is non-essential and could be completely replaced by additional expression of monRI. Transcriptional analysis of the mon cluster by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and electrophoresis mobility shift assays (EMSAs) revealed a co-regulatory cascade process. MonH upregulates the transcription of monRII, and MonRII in turn enhances the transcription of monRI. MonRII is an autorepressor, while MonRI is an autoactivator. MonH activates the transcription of monCII-monE, and upregulates the transcription of monT that is repressed by MonRII. monAX and monD are activated by MonRI, and upregulated by MonRII. Co-regulation of those post-polyketide synthase (post-PKS) genes by MonH, MonRI, and MonRII would contribute to high production of monensin. These results shed new light on the transcriptional regulatory cascades of antibiotic biosynthesis in Streptomyces.
Collapse
|
25
|
Abstract
Oxidative cyclizations are important transformations that occur widely during natural product biosynthesis. The transformations from acyclic precursors to cyclized products can afford morphed scaffolds, structural rigidity, and biological activities. Some of the most dramatic structural alterations in natural product biosynthesis occur through oxidative cyclization. In this Review, we examine the different strategies used by nature to create new intra(inter)molecular bonds via redox chemistry. This Review will cover both oxidation- and reduction-enabled cyclization mechanisms, with an emphasis on the former. Radical cyclizations catalyzed by P450, nonheme iron, α-KG-dependent oxygenases, and radical SAM enzymes are discussed to illustrate the use of molecular oxygen and S-adenosylmethionine to forge new bonds at unactivated sites via one-electron manifolds. Nonradical cyclizations catalyzed by flavin-dependent monooxygenases and NAD(P)H-dependent reductases are covered to show the use of two-electron manifolds in initiating cyclization reactions. The oxidative installations of epoxides and halogens into acyclic scaffolds to drive subsequent cyclizations are separately discussed as examples of "disappearing" reactive handles. Last, oxidative rearrangement of rings systems, including contractions and expansions, will be covered.
Collapse
Affiliation(s)
- Man-Cheng Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Yi Zou
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, 443 Via Ortega, Stanford, CA 94305
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Xie X, Garg A, Khosla C, Cane DE. Mechanism and Stereochemistry of Polyketide Chain Elongation and Methyl Group Epimerization in Polyether Biosynthesis. J Am Chem Soc 2017; 139:3283-3292. [PMID: 28157306 DOI: 10.1021/jacs.7b00278] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The polyketide synthases responsible for the biosynthesis of the polyether antibiotics nanchangmycin (1) and salinomycin (4) harbor a number of redox-inactive ketoreductase (KR0) domains that are implicated in the generation of C2-epimerized (2S)-2-methyl-3-ketoacyl-ACP intermediates. Evidence that the natural substrate for the polyether KR0 domains is, as predicted, a (2R)-2-methyl-3-ketoacyl-ACP intermediate, came from a newly developed coupled ketosynthase (KS)-ketoreductase (KR) assay that established that the decarboxylative condensation of methylmalonyl-CoA with S-propionyl-N-acetylcysteamine catalyzed by the Nan[KS1][AT1] didomain from module 1 of the nanchangmycin synthase generates exclusively the corresponding (2R)-2-methyl-3-ketopentanoyl-ACP (7a) product. In tandem equilibrium isotope exchange experiments, incubation of [2-2H]-(2R,3S)-2-methyl-3-hydroxypentanoyl-ACP (6a) with redox-active, epimerase-inactive EryKR6 from module 6 of the 6-deoxyerythronolide B synthase and catalytic quantities of NADP+ in the presence of redox-inactive, recombinant NanKR10 or NanKR50, from modules 1 and 5 of the nanchangmycin synthase, or recombinant SalKR70 from module 7 of the salinomycin synthase, resulted in first-order, time-dependent washout of deuterium from 6a. Control experiments confirmed that this washout was due to KR0-catalyzed isotope exchange of the reversibly generated, transiently formed oxidation product [2-2H]-(2R)-2-methyl-3-ketopentanoyl-ACP (7a), consistent with the proposed epimerase activity of each of the KR0 domains. Although they belong to the superfamily of short chain dehydrogenase-reductases, the epimerase-active KR0 domains from polyether synthases lack one or both residues of the conserved Tyr-Ser dyad that has previously been implicated in KR-catalyzed epimerizations.
Collapse
Affiliation(s)
- Xinqiang Xie
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| | - Ashish Garg
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| | - Chaitan Khosla
- Departments of Chemical Engineering, Chemistry, and Biochemistry, Stanford University , Stanford, California 94305, United States
| | - David E Cane
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| |
Collapse
|
27
|
Chakraborty K, Thilakan B, Chakraborty RD, Raola VK, Joy M. O-heterocyclic derivatives with antibacterial properties from marine bacterium Bacillus subtilis associated with seaweed, Sargassum myriocystum. Appl Microbiol Biotechnol 2017; 101:569-583. [PMID: 27624095 DOI: 10.1007/s00253-016-7810-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/07/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022]
Abstract
The brown seaweed, Sargassum myriocystum associated with heterotrophic bacterium, Bacillus subtilis MTCC 10407 (JF834075) exhibited broad-spectra of potent antibacterial activities against pathogenic bacteria Aeromonas hydrophila, Vibrio vulnificus, and Vibrio parahaemolyticus. B. subtilis MTCC 10407 was found to be positive for polyketide synthetase (pks) gene, and therefore, was considered to characterize secondary metabolites bearing polyketide backbone. Using bioassay-guided fractionation, two new antibacterial O-heterocyclic compounds belonging to pyranyl benzoate analogs of polyketide origin, with activity against pathogenic bacteria, have been isolated from the ethyl acetate extract of B. subtilis MTCC 10407. In the present study, the secondary metabolites of B. subtilis MTCC 10407 with potent antibacterial action against bacterial pathogens was recognized to represent the platform of pks-1 gene-encoded products. Two homologous compounds 3 (3-(methoxycarbonyl)-4-(5-(2-ethylbutyl)-5,6-dihydro-3-methyl-2H-pyran-2-yl)-butyl benzoate) and 4 [2-(8-butyl-3-ethyl-3,4,4a,5,6,8a-hexahydro-2H-chromen-6-yl)-ethyl benzoate] also have been isolated from the ethyl acetate extract of host seaweed S. myriocystum. The two compounds isolated from ethyl acetate extract of S. myriocystum with lesser antibacterial properties shared similar structures with the compounds purified from B. subtilis that suggested the ecological and metabolic relationship between these compounds in seaweed-bacterial relationship. Tetrahydropyran-2-one moiety of the tetrahydropyrano-[3,2b]-pyran-2(3H)-one system of 1 might be cleaved by the metabolic pool of seaweeds to afford methyl 3-(dihydro-3-methyl-2H-pyranyl)-propanoate moiety of 3, which was found to have no significant antibacterial activity. It is therefore imperative that the presence of dihydro-methyl-2H-pyran-2-yl propanoate system is essentially required to impart the greater activity. The direct involvement of polarisability (Pl) with the target bioactivity in 2 implied that inductive (field/polar) rather than the steric effect (parachor) appears to be the key factor influencing the induction of antibacterial activity. The present work may have a footprint on the use of novel O-heterocyclic polyketide products from seaweed-associated bacterium for biotechnological, food, and pharmaceutical applications mainly as novel antimicrobial secondary metabolites.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.
| | - Bini Thilakan
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India
| | - Rekha Devi Chakraborty
- Crustacean Fisheries Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India
| | - Vamshi Krishna Raola
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India
| | - Minju Joy
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India
| |
Collapse
|
28
|
Chemical and biological studies of reveromycin A. J Antibiot (Tokyo) 2016; 69:723-730. [PMID: 27270304 DOI: 10.1038/ja.2016.57] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/12/2022]
Abstract
The research on antibiotics requires the integration of broad areas, such as microbiology, organic chemistry, biochemistry and pharmacology. It is similar to the field of chemical biology that is recently popular as an approach for drug discovery. When we isolate a new compound from a microorganism, we can pursue the interesting research on chemistry and biology. In this review, I would like to introduce our achievements in relation to reveromycin A.
Collapse
|
29
|
|
30
|
Hemmerling F, Hahn F. Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides. Beilstein J Org Chem 2016; 12:1512-50. [PMID: 27559404 PMCID: PMC4979870 DOI: 10.3762/bjoc.12.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/22/2016] [Indexed: 01/01/2023] Open
Abstract
This review highlights the biosynthesis of heterocycles in polyketide natural products with a focus on oxygen and nitrogen-containing heterocycles with ring sizes between 3 and 6 atoms. Heterocycles are abundant structural elements of natural products from all classes and they often contribute significantly to their biological activity. Progress in recent years has led to a much better understanding of their biosynthesis. In this context, plenty of novel enzymology has been discovered, suggesting that these pathways are an attractive target for future studies.
Collapse
Affiliation(s)
- Franziska Hemmerling
- Institut für Organische Chemie and Zentrum für Biomolekulare Wirkstoffe, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany; Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Frank Hahn
- Institut für Organische Chemie and Zentrum für Biomolekulare Wirkstoffe, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany; Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
31
|
Pang B, Wang M, Liu W. Cyclization of polyketides and non-ribosomal peptides on and off their assembly lines. Nat Prod Rep 2016; 33:162-73. [PMID: 26604034 DOI: 10.1039/c5np00095e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modular polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) are multifunctional megaenzymes that serve as templates to program the assembly of short carboxylic acids and amino acids in a primarily co-linear manner. The variation, combination, permutation and evolution of their functional units (e.g., modules, domains and proteins) along with their association with external enzymes have resulted in the generation of numerous versions of templates, the roles of which have not been fully recognized in the structural diversification of polyketides, non-ribosomal peptides and their hybrids present in nature. In this Highlight, we focus on the assembly-line enzymology and associated chemistry by providing examples of some newly characterized cyclization reactions that occur on and off the assembly lines during and after chain elongation for the purpose of elucidating the template effects of PKSs and NRPSs. A fundamental understanding of the underlying biosynthetic logic would facilitate the elucidation of chemical information contained within the PKS or NRPS templates and benefit the development of strategies for genome mining, biosynthesis-inspired chemical synthesis and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Bo Pang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Min Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. and Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
32
|
Zheng Q, Tian Z, Liu W. Recent advances in understanding the enzymatic reactions of [4+2] cycloaddition and spiroketalization. Curr Opin Chem Biol 2016; 31:95-102. [DOI: 10.1016/j.cbpa.2016.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 11/25/2022]
|
33
|
Sundaram S, Hertweck C. On-line enzymatic tailoring of polyketides and peptides in thiotemplate systems. Curr Opin Chem Biol 2016; 31:82-94. [DOI: 10.1016/j.cbpa.2016.01.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/21/2015] [Accepted: 01/15/2016] [Indexed: 11/26/2022]
|
34
|
Khomutnyk YY, Argüelles AJ, Winschel GA, Sun Z, Zimmerman PM, Nagorny P. Studies of the Mechanism and Origins of Enantioselectivity for the Chiral Phosphoric Acid-Catalyzed Stereoselective Spiroketalization Reactions. J Am Chem Soc 2015; 138:444-56. [DOI: 10.1021/jacs.5b12528] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yaroslav Ya. Khomutnyk
- Department of Chemistry, University of Michigan, 930 North University
Avenue, Ann Arbor, Michigan 48109, United States
| | - Alonso J. Argüelles
- Department of Chemistry, University of Michigan, 930 North University
Avenue, Ann Arbor, Michigan 48109, United States
| | - Grace A. Winschel
- Department of Chemistry, University of Michigan, 930 North University
Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhankui Sun
- Department of Chemistry, University of Michigan, 930 North University
Avenue, Ann Arbor, Michigan 48109, United States
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, 930 North University
Avenue, Ann Arbor, Michigan 48109, United States
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, 930 North University
Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
35
|
Yoneda N, Fukata Y, Asano K, Matsubara S. Asymmetric Synthesis of Spiroketals with Aminothiourea Catalysts. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508405] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Yoneda N, Fukata Y, Asano K, Matsubara S. Asymmetric Synthesis of Spiroketals with Aminothiourea Catalysts. Angew Chem Int Ed Engl 2015; 54:15497-500. [DOI: 10.1002/anie.201508405] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Naoki Yoneda
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku‐Katsura, Nishikyo, Kyoto 615‐8510 (Japan)
| | - Yukihiro Fukata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku‐Katsura, Nishikyo, Kyoto 615‐8510 (Japan)
| | - Keisuke Asano
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku‐Katsura, Nishikyo, Kyoto 615‐8510 (Japan)
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku‐Katsura, Nishikyo, Kyoto 615‐8510 (Japan)
| |
Collapse
|
37
|
Luhavaya H, Dias MVB, Williams SR, Hong H, de Oliveira LG, Leadlay PF. Enzymology of Pyran Ring A Formation in Salinomycin Biosynthesis. ACTA ACUST UNITED AC 2015; 127:13826-13829. [PMID: 27587902 PMCID: PMC4988243 DOI: 10.1002/ange.201507090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 01/25/2023]
Abstract
Tetrahydropyran rings are a common feature of complex polyketide natural products, but much remains to be learned about the enzymology of their formation. The enzyme SalBIII from the salinomycin biosynthetic pathway resembles other polyether epoxide hydrolases/cyclases of the MonB family, but SalBIII plays no role in the conventional cascade of ring opening/closing. Mutation in the salBIII gene gave a metabolite in which ring A is not formed. Using this metabolite in vitro as a substrate analogue, SalBIII has been shown to form pyran ring A. We have determined the X-ray crystal structure of SalBIII, and structure-guided mutagenesis of putative active-site residues has identified Asp38 and Asp104 as an essential catalytic dyad. The demonstrated pyran synthase activity of SalBIII further extends the impressive catalytic versatility of α+β barrel fold proteins.
Collapse
Affiliation(s)
- Hanna Luhavaya
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA (UK)
| | - Marcio V B Dias
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1374, 05508-000, São Paulo-SP (Brazil)
| | - Simon R Williams
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK)
| | - Hui Hong
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA (UK)
| | - Luciana G de Oliveira
- Department of Organic Chemistry, University of Campinas UNICAMP, Cidade Universitária Zeferino Vaz s/n, P.O. Box 6154, 13083-970, Campinas-SP (Brazil)
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA (UK)
| |
Collapse
|
38
|
Luhavaya H, Dias MVB, Williams SR, Hong H, de Oliveira LG, Leadlay PF. Enzymology of Pyran Ring A Formation in Salinomycin Biosynthesis. Angew Chem Int Ed Engl 2015; 54:13622-5. [PMID: 26377145 PMCID: PMC4648038 DOI: 10.1002/anie.201507090] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 02/06/2023]
Abstract
Tetrahydropyran rings are a common feature of complex polyketide natural products, but much remains to be learned about the enzymology of their formation. The enzyme SalBIII from the salinomycin biosynthetic pathway resembles other polyether epoxide hydrolases/cyclases of the MonB family, but SalBIII plays no role in the conventional cascade of ring opening/closing. Mutation in the salBIII gene gave a metabolite in which ring A is not formed. Using this metabolite in vitro as a substrate analogue, SalBIII has been shown to form pyran ring A. We have determined the X-ray crystal structure of SalBIII, and structure-guided mutagenesis of putative active-site residues has identified Asp38 and Asp104 as an essential catalytic dyad. The demonstrated pyran synthase activity of SalBIII further extends the impressive catalytic versatility of α+β barrel fold proteins.
Collapse
Affiliation(s)
- Hanna Luhavaya
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA (UK)
| | - Marcio V B Dias
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1374, 05508-000, São Paulo-SP (Brazil)
| | - Simon R Williams
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK)
| | - Hui Hong
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA (UK)
| | - Luciana G de Oliveira
- Department of Organic Chemistry, University of Campinas UNICAMP, Cidade Universitária Zeferino Vaz s/n, P.O. Box 6154, 13083-970, Campinas-SP (Brazil)
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA (UK).
| |
Collapse
|
39
|
|
40
|
Tan YY, Hsu WH, Shih TW, Lin CH, Pan TM. Proteomic insight into the effect of ethanol on citrinin biosynthesis pathway in Monascus purpureus NTU 568. Food Res Int 2014; 64:733-742. [DOI: 10.1016/j.foodres.2014.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 07/30/2014] [Accepted: 08/14/2014] [Indexed: 01/07/2023]
|
41
|
Van Wagoner RM, Satake M, Wright JLC. Polyketide biosynthesis in dinoflagellates: what makes it different? Nat Prod Rep 2014; 31:1101-37. [DOI: 10.1039/c4np00016a] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
Asymmetric opening of styrene oxide with p-toluidine catalyzed by BINOL polyols and their lithium complexes. Russ Chem Bull 2014. [DOI: 10.1007/s11172-013-0195-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Minami A, Ose T, Sato K, Oikawa A, Kuroki K, Maenaka K, Oguri H, Oikawa H. Allosteric regulation of epoxide opening cascades by a pair of epoxide hydrolases in monensin biosynthesis. ACS Chem Biol 2014; 9:562-9. [PMID: 24320215 DOI: 10.1021/cb4006485] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multistep catalysis of epoxide hydrolase/cyclase in the epoxide opening cascade is an intriguing issue in polyether biosynthesis. A pair of structurally homologous epoxide hydrolases was found in gene clusters of ionophore polyethers. In the epoxide opening reactions with MonBI and MonBII involved in monensin biosynthesis, we found that MonBII and catalytically inactive MonBI mutant catalyzed two-step reactions of bisepoxide substrate analogue to afford bicyclic product although MonBII alone catalyzed only the first cyclization. The X-ray crystal structure of MonBI dimers suggested the importance of the KSD motif in MonBI/MonBI interaction, which was further supported by gel filtration chromatography of wild-type MonBI and mutant MonBI. The involvement of the KSD motif in heterodimer formation was confirmed by in vitro assay. Direct evidence of MonBI/MonBII interaction was obtained by native mass spectrometry. Its dissociation constant was determined as 2.21 × 10(-5) M by surface plasmon resonance. Our results suggested the involvement of an allosteric regulation mechanism by MonBI/MonBII interaction in monensin skeletal construction.
Collapse
Affiliation(s)
- Atsushi Minami
- Division of Chemistry, Graduate School of Science and ‡Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - Toyoyuki Ose
- Division of Chemistry, Graduate School of Science and ‡Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - Kyohei Sato
- Division of Chemistry, Graduate School of Science and ‡Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - Azusa Oikawa
- Division of Chemistry, Graduate School of Science and ‡Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - Kimiko Kuroki
- Division of Chemistry, Graduate School of Science and ‡Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - Katsumi Maenaka
- Division of Chemistry, Graduate School of Science and ‡Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroki Oguri
- Division of Chemistry, Graduate School of Science and ‡Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - Hideaki Oikawa
- Division of Chemistry, Graduate School of Science and ‡Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
44
|
Hüttel W, Spencer JB, Leadlay PF. Intermediates in monensin biosynthesis: A late step in biosynthesis of the polyether ionophore monensin is crucial for the integrity of cation binding. Beilstein J Org Chem 2014; 10:361-8. [PMID: 24605157 PMCID: PMC3943991 DOI: 10.3762/bjoc.10.34] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/30/2013] [Indexed: 12/20/2022] Open
Abstract
Polyether antibiotics such as monensin are biosynthesised via a cascade of directed ring expansions operating on a putative polyepoxide precursor. The resulting structures containing fused cyclic ethers and a lipophilic backbone can form strong ionophoric complexes with certain metal cations. In this work, we demonstrate for monensin biosynthesis that, as well as ether formation, a late-stage hydroxylation step is crucial for the correct formation of the sodium monensin complex. We have investigated the last two steps in monensin biosynthesis, namely hydroxylation catalysed by the P450 monooxygenase MonD and O-methylation catalysed by the methyl-transferase MonE. The corresponding genes were deleted in-frame in a monensin-overproducing strain of Streptomyces cinnamonensis. The mutants produced the expected monensin derivatives in excellent yields (ΔmonD: 1.13 g L−1 dehydroxymonensin; ΔmonE: 0.50 g L−1 demethylmonensin; and double mutant ΔmonDΔmonE: 0.34 g L−1 dehydroxydemethylmonensin). Single crystals were obtained from purified fractions of dehydroxymonensin and demethylmonensin. X-ray structure analysis revealed that the conformation of sodium dimethylmonensin is very similar to that of sodium monensin. In contrast, the coordination of the sodium ion is significantly different in the sodium dehydroxymonensin complex. This shows that the final constitution of the sodium monensin complex requires this tailoring step as well as polyether formation.
Collapse
Affiliation(s)
- Wolfgang Hüttel
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK, ; Institute for Pharmaceutical Sciences, Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Jonathan B Spencer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1QW, UK
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
45
|
Abstract
Important biomimetic steps in natural product synthesis have been promoted by transition metals, as exemplified by this beautiful ruthenium-catalyzed rearrangement of an endoperoxide into elysiapyrone A. Such reactions are supposed to occur during the biosynthesis, yet under different catalysis conditions.
Collapse
Affiliation(s)
- Xu-Wen Li
- Muséum National d'Histoire Naturelle and Centre National de la Recherche Scientifique
- Unité “Molécules de Communication et Adaptation des Micro-organismes” (UMR 7245 CNRS-MNHN)
- 75005 Paris, France
| | - Bastien Nay
- Muséum National d'Histoire Naturelle and Centre National de la Recherche Scientifique
- Unité “Molécules de Communication et Adaptation des Micro-organismes” (UMR 7245 CNRS-MNHN)
- 75005 Paris, France
| |
Collapse
|
46
|
Pöplau P, Frank S, Morinaka BI, Piel J. Eine enzymatische Domäne für die Erzeugung cyclischer Ether in komplexen Polyketiden. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307406] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Pöplau P, Frank S, Morinaka BI, Piel J. An Enzymatic Domain for the Formation of Cyclic Ethers in Complex Polyketides. Angew Chem Int Ed Engl 2013; 52:13215-8. [DOI: 10.1002/anie.201307406] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Indexed: 11/06/2022]
|
48
|
Minami A, Oguri H, Watanabe K, Oikawa H. Biosynthetic machinery of ionophore polyether lasalocid: enzymatic construction of polyether skeleton. Curr Opin Chem Biol 2013; 17:555-61. [DOI: 10.1016/j.cbpa.2013.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/29/2013] [Accepted: 06/01/2013] [Indexed: 02/02/2023]
|
49
|
Sun P, Zhao Q, Yu F, Zhang H, Wu Z, Wang Y, Wang Y, Zhang Q, Liu W. Spiroketal formation and modification in avermectin biosynthesis involves a dual activity of AveC. J Am Chem Soc 2013; 135:1540-8. [PMID: 23294008 DOI: 10.1021/ja311339u] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Avermectins (AVEs), which are widely used for the treatment of agricultural parasitic diseases, belong to a family of 6,6-spiroketal moiety-containing, macrolide natural products. AVE biosynthesis is known to employ a type I polyketide synthase (PKS) system to assemble the molecular skeleton for further functionalization. It remains unknown how and when spiroketal formation proceeds, particularly regarding the role of AveC, a unique protein in the pathway that shares no sequence homology to any enzyme of known function. Here, we report the unprecedented, dual function of AveC by correlating its activity with spiroketal formation and modification during the AVE biosynthetic process. The findings in this study were supported by characterizing extremely unstable intermediates, products and their spontaneous derivative products from the simplified chemical profile and by comparative analysis of in vitro biotransformations and in vivo complementations mediated by AveC and MeiC (the counterpart in biosynthesizing the naturally occurring, AVE-like meilingmycins). AveC catalyzes the stereospecific spiroketalization of a dihydroxy-ketone polyketide intermediate and the optional dehydration to determine the regiospecific saturation characteristics of spiroketal diversity. These reactions take place between the closures of the hexene ring and 16-membered macrolide and the formation of the hexahydrobenzofuran unit. MeiC can replace the spirocyclase activity of AveC, but it lacks the independent dehydratase activity. Elucidation of the generality and specificity of AveC-type proteins allows for the rationalization of previously published results that were not completely understood, suggesting that enzyme-mediated spiroketal formation was initially underestimated, but is, in fact, widespread in nature for the control of stereoselectivity.
Collapse
Affiliation(s)
- Peng Sun
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Acortatarins A and B have been synthesized via stereoselective spirocyclizations of glycals. Mercury-mediated spirocyclization of a pyrrole monoalcohol side chain leads to acortatarin A. Glycal epoxidation and reductive spirocyclization of a pyrrole dialdehyde side chain leads to acortatarin B. Acid equilibration and crystallographic analysis indicate that acortatarin B is a contrathermodynamic spiroketal with distinct ring conformations compared to acortatarin A.
Collapse
Affiliation(s)
- Jacqueline M Wurst
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New York 10065, USA
| | | | | |
Collapse
|