1
|
Mishra S, Mishra Y, Kumar A. Marine-derived bioactive compounds for neuropathic pain: pharmacology and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03667-7. [PMID: 39797987 DOI: 10.1007/s00210-024-03667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management. Marine organisms, including fungi, algae, cone snails, sponges, soft corals, tunicates, and fish, produce a diverse range of secondary metabolites with significant pharmacological properties. These include peptides (e.g., conopeptides, piscidin 1), non-peptides (e.g., guanidinium toxins, astaxanthin, docosahexaenoic acid, fucoidan, apigenin, fumagillin, aaptamine, flexibilide, excavatolide B, capnellenes, austrasulfones, lemnalol), and crude extracts (e.g., Spirulina platensis, Dunaliella salina, Cliothosa aurivilli). These compounds exhibit diverse mechanisms of action, such as modulating ion channels (e.g., transient receptor potential channels, voltage-gated sodium, calcium, and potassium channels, and G protein-coupled inwardly rectifying potassium channels), interacting with cell-surface receptors (e.g., nicotinic acetylcholine, NMDA, kainate, GABAB, and neurotensin receptors), inhibiting norepinephrine transporters, reducing oxidative stress, and attenuating neuroinflammation. These effects collectively contribute to alleviating nerve degeneration and symptoms of neuropathic pain, including hyperalgesia, allodynia, and associated psychomotor disturbances. Marine-derived bioactive compounds represent promising alternatives to conventional neuropathic pain treatments, to advance their development and assess their integration into neuropathic pain management strategies.
Collapse
Affiliation(s)
- Swapnil Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
| |
Collapse
|
2
|
McMahon KL, Vetter I, Schroeder CI. Voltage-Gated Sodium Channel Inhibition by µ-Conotoxins. Toxins (Basel) 2024; 16:55. [PMID: 38251271 PMCID: PMC10819908 DOI: 10.3390/toxins16010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
µ-Conotoxins are small, potent pore-blocker inhibitors of voltage-gated sodium (NaV) channels, which have been identified as pharmacological probes and putative leads for analgesic development. A limiting factor in their therapeutic development has been their promiscuity for different NaV channel subtypes, which can lead to undesirable side-effects. This review will focus on four areas of µ-conotoxin research: (1) mapping the interactions of µ-conotoxins with different NaV channel subtypes, (2) µ-conotoxin structure-activity relationship studies, (3) observed species selectivity of µ-conotoxins and (4) the effects of µ-conotoxin disulfide connectivity on activity. Our aim is to provide a clear overview of the current status of µ-conotoxin research.
Collapse
Affiliation(s)
- Kirsten L. McMahon
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Christina I. Schroeder
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
3
|
McMahon KL, Tran HNT, Deuis JR, Craik DJ, Vetter I, Schroeder CI. µ-Conotoxins Targeting the Human Voltage-Gated Sodium Channel Subtype NaV1.7. Toxins (Basel) 2022; 14:toxins14090600. [PMID: 36136538 PMCID: PMC9506549 DOI: 10.3390/toxins14090600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
µ-Conotoxins are small, potent, peptide voltage-gated sodium (NaV) channel inhibitors characterised by a conserved cysteine framework. Despite promising in vivo studies indicating analgesic potential of these compounds, selectivity towards the therapeutically relevant subtype NaV1.7 has so far been limited. We recently identified a novel µ-conotoxin, SxIIIC, which potently inhibits human NaV1.7 (hNaV1.7). SxIIIC has high sequence homology with other µ-conotoxins, including SmIIIA and KIIIA, yet shows different NaV channel selectivity for mammalian subtypes. Here, we evaluated and compared the inhibitory potency of µ-conotoxins SxIIIC, SmIIIA and KIIIA at hNaV channels by whole-cell patch-clamp electrophysiology and discovered that these three closely related µ-conotoxins display unique selectivity profiles with significant variations in inhibitory potency at hNaV1.7. Analysis of other µ-conotoxins at hNaV1.7 shows that only a limited number are capable of inhibition at this subtype and that differences between the number of residues in loop 3 appear to influence the ability of µ-conotoxins to inhibit hNaV1.7. Through mutagenesis studies, we confirmed that charged residues in this region also affect the selectivity for hNaV1.4. Comparison of µ-conotoxin NMR solution structures identified differences that may contribute to the variance in hNaV1.7 inhibition and validated the role of the loop 1 extension in SxIIIC for improving potency at hNaV1.7, when compared to KIIIA. This work could assist in designing µ-conotoxin derivatives specific for hNaV1.7.
Collapse
Affiliation(s)
- Kirsten L. McMahon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hue N. T. Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jennifer R. Deuis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Correspondence: (I.V.); (C.I.S.)
| | - Christina I. Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
- Correspondence: (I.V.); (C.I.S.)
| |
Collapse
|
4
|
Alles SRA, Smith PA. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. FRONTIERS IN PAIN RESEARCH 2021; 2:750583. [PMID: 35295464 PMCID: PMC8915663 DOI: 10.3389/fpain.2021.750583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.
Collapse
Affiliation(s)
- Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Peter A Smith
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Markowska A, Markowski AR, Jarocka-Karpowicz I. The Importance of 6-Aminohexanoic Acid as a Hydrophobic, Flexible Structural Element. Int J Mol Sci 2021; 22:12122. [PMID: 34830000 PMCID: PMC8618066 DOI: 10.3390/ijms222212122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
6-aminohexanoic acid is an ω-amino acid with a hydrophobic, flexible structure. Although the ω-amino acid in question is mainly used clinically as an antifibrinolytic drug, other applications are also interesting and important. This synthetic lysine derivative, without an α-amino group, plays a significant role in chemical synthesis of modified peptides and in the polyamide synthetic fibers (nylon) industry. It is also often used as a linker in various biologically active structures. This review concentrates on the role of 6-aminohexanoic acid in the structure of various molecules.
Collapse
Affiliation(s)
- Agnieszka Markowska
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Adam Roman Markowski
- Department of Internal Medicine and Gastroenterology, Polish Red Cross Memorial Municipal Hospital, 79 Henryk Sienkiewicz Street, 15-003 Bialystok, Poland;
| | - Iwona Jarocka-Karpowicz
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland;
| |
Collapse
|
6
|
Sanches K, Wai DCC, Norton RS. Conformational dynamics in peptide toxins: Implications for receptor interactions and molecular design. Toxicon 2021; 201:127-140. [PMID: 34454969 DOI: 10.1016/j.toxicon.2021.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Peptide toxins are potent and often exquisitely selective probes of the structure and function of ion channels and receptors, and are therefore of significant interest to the pharmaceutical and biotech industries as both pharmacological tools and therapeutic leads. The three-dimensional structures of peptide toxins are essential as a basis for understanding their structure-activity relationships and their binding to target receptors, as well as in guiding the design of analogues with modified potency and/or selectivity for key targets. NMR spectroscopy has played a key role in elucidating the structures of peptide toxins and probing their structure-function relationships. In this article, we highlight the additional important contribution of NMR to characterising the dynamics of peptide toxins. We also compare the information available from NMR measurements with that afforded by molecular dynamics simulations. We describe several examples of the importance of dynamics measurements over a range of timescales for understanding the structure-function relationships of peptide toxins and their receptor engagement. Peptide toxins that inhibit the voltage-gated potassium channel KV1.3 with pM affinities display different degrees of conformational flexibility, even though they contain multiple disulfide bonds, and this flexibility can affect the relative orientation of residues that have been shown to be critical for channel binding. Information on the dynamic properties of peptide toxins is important in the design of analogues or mimetics where receptor-bound structures are not available.
Collapse
Affiliation(s)
- Karoline Sanches
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, 3052, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
7
|
Eagles DA, Chow CY, King GF. Fifteen years of Na
V
1.7 channels as an analgesic target: Why has excellent in vitro pharmacology not translated into in vivo analgesic efficacy? Br J Pharmacol 2020; 179:3592-3611. [DOI: 10.1111/bph.15327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- David A. Eagles
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - Chun Yuen Chow
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - Glenn F. King
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| |
Collapse
|
8
|
Horne WS, Grossmann TN. Proteomimetics as protein-inspired scaffolds with defined tertiary folding patterns. Nat Chem 2020; 12:331-337. [PMID: 32029906 DOI: 10.1038/s41557-020-0420-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
Proteins have evolved as a variable platform that provides access to molecules with diverse shapes, sizes and functions. These features have inspired chemists for decades to seek artificial mimetics of proteins with improved or novel properties. Such work has focused primarily on small protein fragments, often isolated secondary structures; however, there has lately been a growing interest in the design of artificial molecules that mimic larger, more complex tertiary folds. In this Perspective, we define these agents as 'proteomimetics' and discuss the recent advances in the field. Proteomimetics can be divided into three categories: protein domains with side-chain functionality that alters the native linear-chain topology; protein domains in which the chemical composition of the polypeptide backbone has been partially altered; and protein-like folded architectures that are composed entirely of non-natural monomer units. We give an overview of these proteomimetic approaches and outline remaining challenges facing the field.
Collapse
Affiliation(s)
- W Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Cabalteja CC, Mihalko DS, Seth Horne W. Heterogeneous-Backbone Foldamer Mimics of a Computationally Designed, Disulfide-Rich Miniprotein. Chembiochem 2019; 20:103-110. [PMID: 30326175 PMCID: PMC6314896 DOI: 10.1002/cbic.201800558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 12/29/2022]
Abstract
Disulfide-rich peptides have found widespread use in the development of bioactive agents; however, low proteolytic stability and the difficulty of exerting synthetic control over chain topology present barriers to their application in some systems. Herein, we report a method that enables the creation of artificial backbone ("foldamer") mimics of compact, disulfide-rich tertiary folds. Systematic replacement of a subset of natural α-residues with various artificial building blocks in the context of a computationally designed prototype sequence leads to "heterogeneous-backbone" variants that undergo clean oxidative folding, adopt tertiary structures indistinguishable from that of the prototype, and enjoy proteolytic protection beyond that inherent to the topologically constrained scaffold. Collectively, these results demonstrate systematic backbone substitution to be a viable method to engineer the properties of disulfide-rich sequences and expands the repertoire of protein mimicry by foldamers to an exciting new structural class.
Collapse
Affiliation(s)
- Chino C. Cabalteja
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260 (USA)
| | - Daniel S. Mihalko
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260 (USA)
| | - W. Seth Horne
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260 (USA)
| |
Collapse
|
10
|
Dong M, Wang F, Yan Z, Yu S, Wei J, Wu Q, Liu Z, Tang Y, Ding J, Dai Q. Structure-Activity Analysis of N-Type Calcium Channel Inhibitor SO-3. Biochemistry 2018; 57:6349-6355. [PMID: 30281282 DOI: 10.1021/acs.biochem.8b00803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As an ω-conopeptide originally discovered from Conus striatus, SO-3 contains 25 amino acid residues and three disulfide bridges. Our previous study has shown that this peptide possesses potent analgesic activity in rodent pain models (mouse and rat), and it specifically inhibits an N-type calcium ion channel (Cav2.2). In the study presented here, we investigated the key amino acid residues for their inhibitory activity against Cav2.2 expressed in HEK 293 cells and analgesic activity in mice. To improve the inhibitory activity of SO-3, we also evaluated the effects of some amino acid residues derived from the corresponding residues of ω-peptide MVIIA, CVID, or GVIA. Our data reveal that Lys6, Ile11, and Asn14 are the important functional amino acid residues for SO-3. The replacement of some amino acid residues of SO-3 in loop 1 with the corresponding residues of CVID and GVIA improved the inhibitory activity of SO-3. The binding mode of Cav2.2 with SO-3 amino acids in loop 1 and loop 2 may be somewhat different from that of MVIIA. This study expanded our knowledge of the structure-activity relationship of ω-peptides and provided a new strategy for improving the potency of Cav2.2 inhibitors.
Collapse
Affiliation(s)
- Minxing Dong
- Beijing Institute of Biotechnology , Beijing 100071 , China
| | - Fei Wang
- Beijing Institute of Biotechnology , Beijing 100071 , China
| | - Zhenzhen Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Shuo Yu
- Beijing Institute of Biotechnology , Beijing 100071 , China
| | - Juanjuan Wei
- Beijing Institute of Biotechnology , Beijing 100071 , China
| | - Qiaoling Wu
- Beijing Institute of Biotechnology , Beijing 100071 , China
| | - Zhuguo Liu
- Beijing Institute of Biotechnology , Beijing 100071 , China
| | - Yifei Tang
- Beijing Institute of Biotechnology , Beijing 100071 , China
| | - Jiuping Ding
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Qiuyun Dai
- Beijing Institute of Biotechnology , Beijing 100071 , China
| |
Collapse
|
11
|
Cardoso FC, Lewis RJ. Sodium channels and pain: from toxins to therapies. Br J Pharmacol 2018; 175:2138-2157. [PMID: 28749537 PMCID: PMC5980290 DOI: 10.1111/bph.13962] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium channels (NaV channels) are essential for the initiation and propagation of action potentials that critically influence our ability to respond to a diverse range of stimuli. Physiological and pharmacological studies have linked abnormal function of NaV channels to many human disorders, including chronic neuropathic pain. These findings, along with the description of the functional properties and expression pattern of NaV channel subtypes, are helping to uncover subtype specific roles in acute and chronic pain and revealing potential opportunities to target these with selective inhibitors. High-throughput screens and automated electrophysiology platforms have identified natural toxins as a promising group of molecules for the development of target-specific analgesics. In this review, the role of toxins in defining the contribution of NaV channels in acute and chronic pain states and their potential to be used as analgesic therapies are discussed. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Department of Chemistry and Structural Biology, Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Richard J Lewis
- Department of Chemistry and Structural Biology, Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
12
|
Tosti E, Boni R, Gallo A. µ-Conotoxins Modulating Sodium Currents in Pain Perception and Transmission: A Therapeutic Potential. Mar Drugs 2017; 15:E295. [PMID: 28937587 PMCID: PMC5666403 DOI: 10.3390/md15100295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 12/27/2022] Open
Abstract
The Conus genus includes around 500 species of marine mollusks with a peculiar production of venomous peptides known as conotoxins (CTX). Each species is able to produce up to 200 different biological active peptides. Common structure of CTX is the low number of amino acids stabilized by disulfide bridges and post-translational modifications that give rise to different isoforms. µ and µO-CTX are two isoforms that specifically target voltage-gated sodium channels. These, by inducing the entrance of sodium ions in the cell, modulate the neuronal excitability by depolarizing plasma membrane and propagating the action potential. Hyperexcitability and mutations of sodium channels are responsible for perception and transmission of inflammatory and neuropathic pain states. In this review, we describe the current knowledge of µ-CTX interacting with the different sodium channels subtypes, the mechanism of action and their potential therapeutic use as analgesic compounds in the clinical management of pain conditions.
Collapse
Affiliation(s)
- Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, 75100 Potenza, Italy.
| | - Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
13
|
Hua Y, Wang B, Zhao N, Lou W, Yang J. Synthesis and Functional Identification of Oligopeptides Derived from the α3/5-Conotoxins. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
|
15
|
Carstens BB, Swedberg J, Berecki G, Adams DJ, Craik DJ, Clark RJ. Effects of linker sequence modifications on the structure, stability, and biological activity of a cyclic α-conotoxin. Biopolymers 2016; 106:864-875. [DOI: 10.1002/bip.22848] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/28/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Bodil B. Carstens
- Institute for Molecular Bioscience, the University of Queensland; Brisbane Queensland 4072 Australia
- School of Biomedical Sciences; the University of Queensland; Brisbane Queensland 4072 Australia
| | - Joakim Swedberg
- Institute for Molecular Bioscience, the University of Queensland; Brisbane Queensland 4072 Australia
| | - Géza Berecki
- Health Innovations Research Institute, RMIT University; Melbourne Victoria 3083 Australia
| | - David J. Adams
- Health Innovations Research Institute, RMIT University; Melbourne Victoria 3083 Australia
| | - David J. Craik
- Institute for Molecular Bioscience, the University of Queensland; Brisbane Queensland 4072 Australia
| | - Richard J. Clark
- School of Biomedical Sciences; the University of Queensland; Brisbane Queensland 4072 Australia
| |
Collapse
|
16
|
Munasinghe NR, Christie MJ. Conotoxins That Could Provide Analgesia through Voltage Gated Sodium Channel Inhibition. Toxins (Basel) 2015; 7:5386-407. [PMID: 26690478 PMCID: PMC4690140 DOI: 10.3390/toxins7124890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/23/2015] [Accepted: 11/19/2015] [Indexed: 12/19/2022] Open
Abstract
Chronic pain creates a large socio-economic burden around the world. It is physically and mentally debilitating, and many sufferers are unresponsive to current therapeutics. Many drugs that provide pain relief have adverse side effects and addiction liabilities. Therefore, a great need has risen for alternative treatment strategies. One rich source of potential analgesic compounds that has emerged over the past few decades are conotoxins. These toxins are extremely diverse and display selective activity at ion channels. Voltage gated sodium (NaV) channels are one such group of ion channels that play a significant role in multiple pain pathways. This review will explore the literature around conotoxins that bind NaV channels and determine their analgesic potential.
Collapse
Affiliation(s)
- Nehan R Munasinghe
- Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia.
| | - MacDonald J Christie
- Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
17
|
Akcan M, Clark RJ, Daly NL, Conibear AC, de Faoite A, Heghinian MD, Sahil T, Adams DJ, Marí F, Craik DJ. Transforming conotoxins into cyclotides: Backbone cyclization of P-superfamily conotoxins. Biopolymers 2015; 104:682-92. [DOI: 10.1002/bip.22699] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/17/2015] [Accepted: 07/04/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Muharrem Akcan
- Institute for Molecular Bioscience; The University of Queensland; Brisbane QLD 4072 Australia
| | - Richard J. Clark
- Institute for Molecular Bioscience; The University of Queensland; Brisbane QLD 4072 Australia
| | - Norelle L. Daly
- Institute for Molecular Bioscience; The University of Queensland; Brisbane QLD 4072 Australia
| | - Anne C. Conibear
- Institute for Molecular Bioscience; The University of Queensland; Brisbane QLD 4072 Australia
| | - Andrew de Faoite
- Health Innovations Research Institute; RMIT University; Bundoora VIC 3083 Australia
| | - Mari D. Heghinian
- Department of Chemistry and Biochemistry; Florida Atlantic University; FL 33431 USA
| | - Talwar Sahil
- Queensland Brain Institute; The University of Queensland; Brisbane QLD 4072 Australia
| | - David J. Adams
- Health Innovations Research Institute; RMIT University; Bundoora VIC 3083 Australia
| | - Frank Marí
- Department of Chemistry and Biochemistry; Florida Atlantic University; FL 33431 USA
| | - David J. Craik
- Institute for Molecular Bioscience; The University of Queensland; Brisbane QLD 4072 Australia
| |
Collapse
|
18
|
Structure and function of μ-conotoxins, peptide-based sodium channel blockers with analgesic activity. Future Med Chem 2015; 6:1677-98. [PMID: 25406007 DOI: 10.4155/fmc.14.107] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
μ-Conotoxins block voltage-gated sodium channels (VGSCs) and compete with tetrodotoxin for binding to the sodium conductance pore. Early efforts identified µ-conotoxins that preferentially blocked the skeletal muscle subtype (NaV1.4). However, the last decade witnessed a significant increase in the number of µ-conotoxins and the range of VGSC subtypes inhibited (NaV1.2, NaV1.3 or NaV1.7). Twenty µ-conotoxin sequences have been identified to date and structure-activity relationship studies of several of these identified key residues responsible for interactions with VGSC subtypes. Efforts to engineer-in subtype specificity are driven by in vivo analgesic and neuromuscular blocking activities. This review summarizes structural and pharmacological studies of µ-conotoxins, which show promise for development of selective blockers of NaV1.2, and perhaps also NaV1.1,1.3 or 1.7.
Collapse
|
19
|
Kumar PS, Kumar DS, Umamaheswari S. A perspective on toxicology of Conus venom peptides. ASIAN PAC J TROP MED 2015; 8:337-51. [PMID: 26003592 DOI: 10.1016/s1995-7645(14)60342-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The evolutionarily unique and ecologically diverse family Conidae presents fundamental opportunities for marine pharmacology research and drug discovery. The focus of this investigation is to summarize the worldwide distribution of Conus and their species diversity with special reference to the Indian coast. In addition, this study will contribute to understanding the structural properties of conotoxin and therapeutic application of Conus venom peptides. Cone snails can inject a mix of various conotoxins and these venoms are their major weapon for prey capture, and may also have other biological purposes, and some of these conotoxins fatal to humans. Conus venoms contain a remarkable diversity of pharmacologically active small peptides; their targets are an iron channel and receptors in the neuromuscular system. Interspecific divergence is pronounced in venom peptide genes, which is generally attributed to their species specific biotic interactions. There is a notable interspecific divergence observed in venom peptide genes, which can be justified as of biotic interactions that stipulate species peculiar habitat and ecology of cone snails. There are several conopeptides used in clinical trials and one peptide (Ziconotide) has received FDA approval for treatment of pain. This perspective provides a comprehensive overview of the distribution of cone shells and focus on the molecular approach in documenting their taxonomy and diversity with special reference to geographic distribution of Indian cone snails, structure and properties of conopeptide and their pharmacological targets and future directions.
Collapse
Affiliation(s)
| | - Dhanabalan Senthil Kumar
- Department of Zoology, Kandaswami Kandar College, Paramathi Velur-638 182, Namakkal, Tamil Nadu, India
| | - Sundaresan Umamaheswari
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchurapalli, Tamil Nadu 620024, India
| |
Collapse
|
20
|
Ren Z, Wang L, Qin M, You Y, Pan W, Zhou L, Sun D, Xu A. Pharmacological characterization of conotoxin lt14a as a potent non-addictive analgesic. Toxicon 2015; 96:57-67. [PMID: 25617597 DOI: 10.1016/j.toxicon.2015.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/18/2023]
Abstract
Conotoxin lt14a is a small peptide consisting of 13 amino acids. It was originally identified from the cDNA of Conus litteratus in the South China Sea. Previous reports showed lt14a exhibited antinociceptive activity using a hot plate-induced pain mouse model and acted as an antagonist of neuronal nicotinic acetylcholine receptors. We confirmed that conotoxin lt14a administration resulted in antinociception activity using a mouse inflammatory pain model and a rat model of mechanically-induced pain. The mRNA expression of c-fos and NOS in the spinal cord of rats was suppressed by lt14a. Labeling of lt14a with an Alexa Fluor 488 ester showed that lt14a was bound to the surface of PC12 cells and that this binding was inhibited by pre-application of the nicotinic acetylcholine receptor (nAChR) antagonist tubocurarine chloride (TUB) and the nAChR blocker hexamethonium bromide (HB). These data confirm previous reports that showed lt14a binds to the surface of PC12 cells via nAChRs with patch clamp whole-cell recordings. Additional results showed that lt14a suppressed extracellular signal-regulated kinase (ERK1/2) phosphorylation in PC12 cells activated by Ach. Our results showed that lt14a did not induce drug dependence but rather suppressed morphine withdrawal symptoms. Our work suggests that lt14a is a novel antinociceptive agent that targets the nAChR receptor without inducing drug dependence.
Collapse
Affiliation(s)
- Zhenghua Ren
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Mengying Qin
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yuwen You
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Wuguang Pan
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Liang Zhou
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Dandan Sun
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China; Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing, 100029, People's Republic of China.
| |
Collapse
|
21
|
Akondi KB, Muttenthaler M, Dutertre S, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Discovery, synthesis, and structure-activity relationships of conotoxins. Chem Rev 2014; 114:5815-47. [PMID: 24720541 PMCID: PMC7610532 DOI: 10.1021/cr400401e] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Sébastien Dutertre
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
22
|
Chan-Seng D, Lutz JF. Primary Structure Control of Oligomers Based on Natural and Synthetic Building Blocks. ACS Macro Lett 2014; 3:291-294. [PMID: 35590523 DOI: 10.1021/mz5000575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Solid-phase synthesis was exploited for the preparation of oligomers constructed from natural and synthetic building blocks by combining the formation of amide bonds and copper-assisted alkyne-azide cycloaddition reactions extending the variety of oligomers with well-defined primary structures accessible through this technique and providing control over the spacing between amino acids.
Collapse
Affiliation(s)
- Delphine Chan-Seng
- Institut Charles Sadron, UPR22/CNRS, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - Jean-François Lutz
- Institut Charles Sadron, UPR22/CNRS, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
23
|
Incorporation of post-translational modified amino acids as an approach to increase both chemical and biological diversity of conotoxins and conopeptides. Amino Acids 2013; 46:125-51. [DOI: 10.1007/s00726-013-1606-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/17/2013] [Indexed: 02/06/2023]
|
24
|
Strategies for the development of conotoxins as new therapeutic leads. Mar Drugs 2013; 11:2293-313. [PMID: 23812174 PMCID: PMC3736424 DOI: 10.3390/md11072293] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 05/27/2013] [Accepted: 06/06/2013] [Indexed: 11/24/2022] Open
Abstract
Peptide toxins typically bind to their target ion channels or receptors with high potency and selectivity, making them attractive leads for therapeutic development. In some cases the native peptide as it is found in the venom from which it originates can be used directly, but in many instances it is desirable to truncate and/or stabilize the peptide to improve its therapeutic properties. A complementary strategy is to display the key residues that make up the pharmacophore of the peptide toxin on a non-peptidic scaffold, thereby creating a peptidomimetic. This review exemplifies these approaches with peptide toxins from marine organisms, with a particular focus on conotoxins.
Collapse
|
25
|
Kuang Z, Zhang MM, Gupta K, Gajewiak J, Gulyas J, Balaram P, Rivier JE, Olivera BM, Yoshikami D, Bulaj G, Norton RS. Mammalian neuronal sodium channel blocker μ-conotoxin BuIIIB has a structured N-terminus that influences potency. ACS Chem Biol 2013; 8:1344-51. [PMID: 23557677 DOI: 10.1021/cb300674x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among the μ-conotoxins that block vertebrate voltage-gated sodium channels (VGSCs), some have been shown to be potent analgesics following systemic administration in mice. We have determined the solution structure of a new representative of this family, μ-BuIIIB, and established its disulfide connectivities by direct mass spectrometric collision induced dissociation fragmentation of the peptide with disulfides intact. The major oxidative folding product adopts a 1-4/2-5/3-6 pattern with the following disulfide bridges: Cys5-Cys17, Cys6-Cys23, and Cys13-Cys24. The solution structure reveals that the unique N-terminal extension in μ-BuIIIB, which is also present in μ-BuIIIA and μ-BuIIIC but absent in other μ-conotoxins, forms part of a short α-helix encompassing Glu3 to Asn8. This helix is packed against the rest of the toxin and stabilized by the Cys5-Cys17 and Cys6-Cys23 disulfide bonds. As such, the side chain of Val1 is located close to the aromatic rings of Trp16 and His20, which are located on the canonical helix that displays several residues found to be essential for VGSC blockade in related μ-conotoxins. Mutations of residues 2 and 3 in the N-terminal extension enhanced the potency of μ-BuIIIB for NaV1.3. One analogue, [d-Ala2]BuIIIB, showed a 40-fold increase, making it the most potent peptide blocker of this channel characterized to date and thus a useful new tool with which to characterize this channel. On the basis of previous results for related μ-conotoxins, the dramatic effects of mutations at the N-terminus were unanticipated and suggest that further gains in potency might be achieved by additional modifications of this region.
Collapse
Affiliation(s)
- Zhihe Kuang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade,
Parkville, Victoria, 3052, Australia
| | - Min-Min Zhang
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, United
States
| | - Kallol Gupta
- Molecular Biophysics
Unit, Indian Institute of Science, Bangalore,
560 012, India
| | - Joanna Gajewiak
- Department
of Medicinal Chemistry,
College of Pharmacy, University of Utah, Salt Lake City, Utah 84108, United States
| | - Jozsef Gulyas
- The Clayton
Foundation Laboratories
for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California
92037, United States
| | - Padmanabhan Balaram
- Molecular Biophysics
Unit, Indian Institute of Science, Bangalore,
560 012, India
| | - Jean E. Rivier
- The Clayton
Foundation Laboratories
for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California
92037, United States
| | - Baldomero M. Olivera
- Department
of Medicinal Chemistry,
College of Pharmacy, University of Utah, Salt Lake City, Utah 84108, United States
| | - Doju Yoshikami
- Department
of Medicinal Chemistry,
College of Pharmacy, University of Utah, Salt Lake City, Utah 84108, United States
| | - Grzegorz Bulaj
- Department
of Medicinal Chemistry,
College of Pharmacy, University of Utah, Salt Lake City, Utah 84108, United States
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| |
Collapse
|
26
|
Levine PM, Craven TW, Bonneau R, Kirshenbaum K. Chemoselective fragment condensation between peptide and peptidomimetic oligomers. Org Biomol Chem 2013; 11:4142-6. [DOI: 10.1039/c3ob40606g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Knapp O, McArthur JR, Adams DJ. Conotoxins targeting neuronal voltage-gated sodium channel subtypes: potential analgesics? Toxins (Basel) 2012. [PMID: 23202314 PMCID: PMC3509706 DOI: 10.3390/toxins4111236] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSC) are the primary mediators of electrical signal amplification and propagation in excitable cells. VGSC subtypes are diverse, with different biophysical and pharmacological properties, and varied tissue distribution. Altered VGSC expression and/or increased VGSC activity in sensory neurons is characteristic of inflammatory and neuropathic pain states. Therefore, VGSC modulators could be used in prospective analgesic compounds. VGSCs have specific binding sites for four conotoxin families: μ-, μO-, δ- and ί-conotoxins. Various studies have identified that the binding site of these peptide toxins is restricted to well-defined areas or domains. To date, only the μ- and μO-family exhibit analgesic properties in animal pain models. This review will focus on conotoxins from the μ- and μO-families that act on neuronal VGSCs. Examples of how these conotoxins target various pharmacologically important neuronal ion channels, as well as potential problems with the development of drugs from conotoxins, will be discussed.
Collapse
Affiliation(s)
- Oliver Knapp
- Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia.
| | | | | |
Collapse
|
28
|
Abstract
Conopeptides from the venoms of marine snails have attracted much interest as leads in drug design. Currently, one drug, Prialt(®), is on the market as a treatment for chronic neuropathic pain. Conopeptides target a range of ion channels, receptors and transporters, and are typically small, relatively stable peptides that are generally amenable to production using solid-phase peptide synthesis. With only a small fraction of the predicted diversity of conopeptides examined so far, these peptides represent an exciting and largely untapped resource for drug discovery. Recent efforts at chemically re-engineering conopeptides to improve their biopharmaceutical properties promise to accelerate the translation of these fascinating marine peptides to the clinic.
Collapse
|
29
|
Bingham JP, Andrews EA, Kiyabu SM, Cabalteja CC. Drugs from slugs. Part II--conopeptide bioengineering. Chem Biol Interact 2012; 200:92-113. [PMID: 23063744 DOI: 10.1016/j.cbi.2012.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/27/2012] [Accepted: 09/17/2012] [Indexed: 11/27/2022]
Abstract
The biological transformation of toxins as research probes, or as pharmaceutical drug leads, is an onerous and drawn out process. Issues regarding changes to pharmacological specificity, desired potency, and bioavailability are compounded naturally by their inherent toxicity. These often scuttle their progress as they move up the narrowing drug development pipeline. Yet one class of peptide toxins, from the genus Conus, has in many ways spearheaded the expansion of new peptide bioengineering techniques to aid peptide toxin pharmaceutical development. What has now emerged is the sequential bioengineering of new research probes and drug leads that owe their lineage to these highly potent and isoform specific peptides. Here we discuss the progressive bioengineering steps that many conopeptides have transitioned through, and specifically illustrate some of the biochemical approaches that have been established to maximize their biological research potential and pharmaceutical worth.
Collapse
Affiliation(s)
- Jon-Paul Bingham
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA.
| | | | | | | |
Collapse
|
30
|
Lengyel GA, Horne WS. Design Strategies for the Sequence-Based Mimicry of Side-Chain Display in Protein β-Sheets by α/β-Peptides. J Am Chem Soc 2012; 134:15906-13. [DOI: 10.1021/ja306311r] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- George A. Lengyel
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - W. Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
31
|
Selective purification of recombinant neuroactive peptides using the flagellar type III secretion system. mBio 2012; 3:mBio.00115-12. [PMID: 22647788 PMCID: PMC3372961 DOI: 10.1128/mbio.00115-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The structure, assembly, and function of the bacterial flagellum involves about 60 different proteins, many of which are selectively secreted via a specific type III secretion system (T3SS) (J. Frye et al., J. Bacteriol. 188:2233–2243, 2006). The T3SS is reported to secrete proteins at rates of up to 10,000 amino acid residues per second. In this work, we showed that the flagellar T3SS of Salmonella enterica serovar Typhimurium could be manipulated to export recombinant nonflagellar proteins through the flagellum and into the surrounding medium. We translationally fused various neuroactive peptides and proteins from snails, spiders, snakes, sea anemone, and bacteria to the flagellar secretion substrate FlgM. We found that all tested peptides of various sizes were secreted via the bacterial flagellar T3SS. We subsequently purified the recombinant μ-conotoxin SIIIA (rSIIIA) from Conus striatus by affinity chromatography and confirmed that T3SS-derived rSIIIA inhibited mammalian voltage-gated sodium channel NaV1.2 comparably to chemically synthesized SIIIA. Manipulation of the flagellar secretion system bypasses the problems of inclusion body formation and cellular degradation that occur during conventional recombinant protein expression. This work serves as a proof of principle for the use of engineered bacterial cells for rapid purification of recombinant neuroactive peptides and proteins by exploiting secretion via the well-characterized flagellar type III secretion system.
Collapse
|
32
|
Reinert ZE, Musselman ED, Elcock AH, Horne WS. A PEG-Based Oligomer as a Backbone Replacement for Surface-Exposed Loops in a Protein Tertiary Structure. Chembiochem 2012; 13:1107-11. [DOI: 10.1002/cbic.201200200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Indexed: 12/20/2022]
|
33
|
Robertson CR, Pruess TH, Grussendorf E, White HS, Bulaj G. Generating orally active galanin analogues with analgesic activities. ChemMedChem 2012; 7:903-9. [PMID: 22374865 DOI: 10.1002/cmdc.201100574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/25/2012] [Indexed: 12/13/2022]
Abstract
The endogenous neuropeptide galanin has anticonvulsant and analgesic properties mediated by galanin receptors expressed in the central and peripheral nervous systems. Our previous work showed that by combining truncation of the galanin peptide with N- and C-terminal modifications afforded analogues that suppress seizures or pain upon intraperitoneal (i.p.) administration. To generate orally active galanin analogues, the previously reported lead compound Gal-B2 (NAX 5055) was redesigned by 1) central truncation, (2) introduction of D-amino acids, and 3) addition of backbone spacers. Analogue D-Gal(7-Ahp)-B2, containing 7-aminoheptanoic acid as a backbone spacer and an oligo-D-lysine motif at the C terminus, exhibits anticonvulsant and analgesic activity post-i.p. administration. Oral administration of D-Gal(7-Ahp)-B2 demonstrates analgesic activity with decreases in both acute and inflammatory pain in the mouse formalin model of pain at doses as low as 8 mg kg(-1) .
Collapse
Affiliation(s)
- Charles R Robertson
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84108, USA.
| | | | | | | | | |
Collapse
|
34
|
Halai R, Callaghan B, Daly NL, Clark RJ, Adams DJ, Craik DJ. Effects of Cyclization on Stability, Structure, and Activity of α-Conotoxin RgIA at the α9α10 Nicotinic Acetylcholine Receptor and GABAB Receptor. J Med Chem 2011; 54:6984-92. [DOI: 10.1021/jm201060r] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Brid Callaghan
- Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia
| | | | | | - David J. Adams
- Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia
| | | |
Collapse
|
35
|
Steiner AM, Bulaj G. Optimization of oxidative folding methods for cysteine-rich peptides: a study of conotoxins containing three disulfide bridges. J Pept Sci 2011; 17:1-7. [PMID: 20814907 DOI: 10.1002/psc.1283] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The oxidative folding of small, cysteine-rich peptides to selectively achieve the native disulfide bond connectivities is critical for discovery and structure-function studies of many bioactive peptides. As the propensity to acquire the native conformation greatly depends on the peptide sequence, numerous empirical oxidation methods are employed. The context-dependent optimization of these methods has thus far precluded a generalized oxidative folding protocol, in particular for peptides containing more than two disulfides. Herein, we compare the efficacy of optimized solution-phase and polymer-supported oxidation methods using three disulfide-bridged conotoxins, namely µ-SIIIA, µ-KIIIA and ω-GVIA. The use of diselenide bridges as proxies for disulfide bridges is also evaluated. We propose the ClearOx-assisted oxidation of selenopeptides as a fairly generalized oxidative folding protocol.
Collapse
Affiliation(s)
- Andrew M Steiner
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84108, USA
| | | |
Collapse
|
36
|
Leipold E, Markgraf R, Miloslavina A, Kijas M, Schirmeyer J, Imhof D, Heinemann SH. Molecular determinants for the subtype specificity of μ-conotoxin SIIIA targeting neuronal voltage-gated sodium channels. Neuropharmacology 2011; 61:105-11. [PMID: 21419143 DOI: 10.1016/j.neuropharm.2011.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 03/09/2011] [Indexed: 11/29/2022]
Abstract
Voltage-gated sodium channels (Na(V) channels) play a pivotal role in neuronal excitability; they are specifically targeted by μ-conotoxins from the venom of marine cone snails. These peptide toxins bind to the outer vestibule of the channel pore thereby blocking ion conduction through Na(V) channels. μ-Conotoxin SIIIA from Conus striatus was shown to be a potent inhibitor of neuronal sodium channels and to display analgesic effects in mice, albeit the molecular targets are not unambiguously known. We therefore studied recombinant Na(V) channels expressed in mammalian cells using the whole-cell patch-clamp method. Synthetic μSIIIA slowly and partially blocked rat Na(V)1.4 channels with an apparent IC(50) of 0.56 ± 0.29 μM; the block was not complete, leaving at high concentration a residual current component of about 10% with a correspondingly reduced single-channel conductance. At 10 μM, μSIIIA potently blocked rat Na(V)1.2, rat and human Na(V)1.4, and mouse Na(V)1.6 channels; human Na(V)1.7 channels were only inhibited by 58.1 ± 4.9%, whereas human Na(V)1.5 as well as rat and human Na(V)1.8 were insensitive. Employing domain chimeras between rNa(V)1.4 and hNa(V)1.5, we located the determinants for μSIIIA specificity in the first half of the channel protein with a major contribution of domain-2 and a minor contribution of domain-1. The latter was largely accounted for by the alteration in the TTX-binding site (Tyr401 in rNa(V)1.4, Cys for Na(V)1.5, and Ser for Na(V)1.8). Introduction of domain-2 pore loops of all tested channel isoforms into rNa(V)1.4 conferred the μSIIIA phenotype of the respective donor channels highlighting the importance of the domain-2 pore loop as the major determinant for μSIIIA's subtype specificity. Single-site substitutions identified residue Ala728 in rNa(V)1.4 as crucial for its high sensitivity toward μSIIIA. Likewise, Asn889 at the homologous position in hNa(V)1.7 is responsible for the channel's reduced μSIIIA sensitivity. These results will pave the way for the rational design of selective Na(V)-channel antagonists for research and medical applications.
Collapse
Affiliation(s)
- Enrico Leipold
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University of Jena & University Hospital Jena, Hans-Knoell-Str. 2, D-07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Green BR, Smith M, White KL, White HS, Bulaj G. Analgesic neuropeptide W suppresses seizures in the brain revealed by rational repositioning and peptide engineering. ACS Chem Neurosci 2011; 2:51-6. [PMID: 22826747 DOI: 10.1021/cn1000974] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 11/15/2010] [Indexed: 01/08/2023] Open
Abstract
Anticonvulsant neuropeptides play an important role in controlling neuronal excitability that leads to pain or seizures. Based on overlapping inhibitory mechanisms, many anticonvulsant compounds have been found to exhibit both analgesic and antiepileptic activities. An analgesic neuropeptide W (NPW) targets recently deorphanized G-protein coupled receptors. Here, we tested the hypothesis that the analgesic activity of NPW may lead to the discovery of its antiepileptic properties. Indeed, direct administration of NPW into the brain potently reduced seizures in mice. To confirm this discovery, we rationally designed, synthesized, and characterized NPW analogues that exhibited anticonvulsant activities following systemic administration. Our results suggest that the combination of neuropeptide repositioning and engineering NPW analogues that penetrate the blood-brain barrier could provide new drug leads, not only for the treatment of epilepsy and pain but also for studying effects of this peptide on regulating feeding and energy metabolism coupled to leptin levels in the brain.
Collapse
|
38
|
Isoform-selective voltage-gated Na+ channel modulators as next-generation analgesics. Future Med Chem 2010; 2:775-90. [DOI: 10.4155/fmc.10.26] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For many patients the current therapies for controlling chronic pain are inadequate. This has driven the search for analgesics with improved efficacy and side effect profiles. Some anticonvulsants have voltage-gated Na+ channels (VGSCs) as their molecular targets and are used to treat pain, but the efficacy seen is marginal and the drugs are generally poorly tolerated. The clinically used VGSC-modulating analgesics show no isoform selectivity, which probably limits their use. Thus, focus has fallen on VGSCs expressed selectively by primary afferent neurons and the search for isoform-selective drugs. In this review, we describe developments in our understanding of the biology of VGSCs, screening technologies and the pharmacological properties of VGSC modulators with promise as analgesics. Also highlighted are the challenges associated with targeting isoform-selective VGSCs.
Collapse
|
39
|
Norton RS. Mu-conotoxins as leads in the development of new analgesics. Molecules 2010; 15:2825-44. [PMID: 20428082 PMCID: PMC6257286 DOI: 10.3390/molecules15042825] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/06/2010] [Accepted: 04/12/2010] [Indexed: 02/02/2023] Open
Abstract
Voltage-gated sodium channels (VGSCs) contain a specific binding site for a family of cone shell toxins known as mu-conotoxins. As some VGSCs are involved in pain perception and mu-conotoxins are able to block these channels, mu-conotoxins show considerable potential as analgesics. Recent studies have advanced our understanding of the three-dimensional structures and structure-function relationships of the mu-conotoxins, including their interaction with VGSCs. Truncated peptide analogues of the native toxins have been created in which secondary structure elements are stabilized by non-native linkers such as lactam bridges. Ultimately, it would be desirable to capture the favourable analgesic properties of the native toxins, in particular their potency and channel sub-type selectivity, in non-peptide mimetics. Such mimetics would constitute lead compounds in the development of new therapeutics for the treatment of pain.
Collapse
Affiliation(s)
- Raymond S Norton
- Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.
| |
Collapse
|
40
|
Bingham JP, Mitsunaga E, Bergeron ZL. Drugs from slugs--past, present and future perspectives of omega-conotoxin research. Chem Biol Interact 2010; 183:1-18. [PMID: 19800874 DOI: 10.1016/j.cbi.2009.09.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/03/2009] [Accepted: 09/24/2009] [Indexed: 12/18/2022]
Abstract
Peptides from the venom of carnivorous cone shells have provided six decades of intense research, which has led to the discovery and development of novel analgesic peptide therapeutics. Our understanding of this unique natural marine resource is however somewhat limited. Given the past pharmacological record, future investigations into the toxinology of these highly venomous tropical marine snails will undoubtedly yield other highly selective ion channel inhibitors and modulators. With over a thousand conotoxin-derived sequences identified to date, those identified as ion channel inhibitors represent only a small fraction of the total. Here we discuss our present understanding of conotoxins, focusing on the omega-conotoxin peptide family, and illustrate how such a seemingly simple snail has yielded a highly effective clinical drug.
Collapse
Affiliation(s)
- Jon-Paul Bingham
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
41
|
Lee HK, Smith MD, Smith BJ, Grussendorf J, Xu L, Gillies RJ, White HS, Bulaj G. Anticonvulsant Met-enkephalin analogues containing backbone spacers reveal alternative non-opioid signaling in the brain. ACS Chem Biol 2009; 4:659-71. [PMID: 19634861 DOI: 10.1021/cb900045c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Prosthesis of non-critical parts of a polypeptide backbone is an attractive strategy to simplify bioactive peptides. This approach was applied to an opioid neuropeptide, Met-enkephalin, in which two adjacent Gly2-Gly3 residues were replaced with a series of non-peptidic backbone spacers varying in length and/or physicochemical properties. The backbone spacers did not affect the overall structural properties of the analogues, but they did dramatically reduce their affinities and agonist activities toward delta- and mu-opioid receptors. Molecular modeling suggested that the decrease of the affinity of Met-enkephalin to delta-opioid receptor could be accounted for by the loss of a single hydrogen bond. Remarkably, the analogues containing the most isostere spacers retained potent antinociceptive and anticonvulsant properties that were comparable to that of the endogenous peptide. This unexpected high in vivo potency could not be accounted for by an increase in metabolic stability. Moreover, the antiepileptic activity could not be reversed by opioid receptor antagonists. In summary, the results obtained with the analogues containing backbone spacers suggest a novel mechanism for seizure control in the brain that involves alternative non-opioid signaling.
Collapse
Affiliation(s)
| | - Misty D. Smith
- Department of Pharmacology and Toxicology, The University of Utah, 421 Wakara Way, Suite 360, Salt Lake City, Utah 84108
| | - Brian J. Smith
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Joel Grussendorf
- Department of Pharmacology and Toxicology, The University of Utah, 421 Wakara Way, Suite 360, Salt Lake City, Utah 84108
| | - Liping Xu
- Department of Radiology
- Department of Biochemistry and Molecular Biophysics, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona 85724
| | - Robert J. Gillies
- Department of Radiology
- Department of Biochemistry and Molecular Biophysics, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona 85724
| | - H. Steve White
- Department of Pharmacology and Toxicology, The University of Utah, 421 Wakara Way, Suite 360, Salt Lake City, Utah 84108
| | | |
Collapse
|
42
|
Khoo KK, Feng ZP, Smith BJ, Zhang MM, Yoshikami D, Olivera BM, Bulaj G, Norton RS. Structure of the analgesic mu-conotoxin KIIIA and effects on the structure and function of disulfide deletion. Biochemistry 2009; 48:1210-9. [PMID: 19170536 DOI: 10.1021/bi801998a] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mu-conotoxin mu-KIIIA, from Conus kinoshitai, blocks mammalian neuronal voltage-gated sodium channels (VGSCs) and is a potent analgesic following systemic administration in mice. We have determined its solution structure using NMR spectroscopy. Key residues identified previously as being important for activity against VGSCs (Lys7, Trp8, Arg10, Asp11, His12, and Arg14) all reside on an alpha-helix with the exception of Arg14. To further probe structure-activity relationships of this toxin against VGSC subtypes, we have characterized the analogue mu-KIIIA[C1A,C9A], in which the Cys residues involved in one of the three disulfides in mu-KIIIA were replaced with Ala. Its structure is quite similar to that of mu-KIIIA, indicating that the Cys1-Cys9 disulfide bond could be removed without any significant distortion of the alpha-helix bearing the key residues. Consistent with this, mu-KIIIA[C1A,C9A] retained activity against VGSCs, with its rank order of potency being essentially the same as that of mu-KIIIA, namely, Na(V)1.2 > Na(V)1.4 > Na(V)1.7 >or= Na(V)1.1 > Na(V)1.3 > Na(V)1.5. Kinetics of block were obtained for Na(V)1.2, Na(V)1.4, and Na(V)1.7, and in each case, both k(on) and k(off) values of mu-KIIIA[C1A,C9A] were larger than those of mu-KIIIA. Our results show that the key residues for VGSC binding lie mostly on an alpha-helix and that the first disulfide bond can be removed without significantly affecting the structure of this helix, although the modification accelerates the on and off rates of the peptide against all tested VGSC subtypes. These findings lay the groundwork for the design of minimized peptides and helical mimetics as novel analgesics.
Collapse
Affiliation(s)
- Keith K Khoo
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Han TS, Zhang MM, Walewska A, Gruszczynski P, Robertson CR, Cheatham TE, Yoshikami D, Olivera BM, Bulaj G. Structurally minimized mu-conotoxin analogues as sodium channel blockers: implications for designing conopeptide-based therapeutics. ChemMedChem 2009; 4:406-14. [PMID: 19107760 DOI: 10.1002/cmdc.200800292] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disulfide bridges that stabilize the native conformation of conotoxins pose a challenge in the synthesis of smaller conotoxin analogues. Herein we describe the synthesis of a minimized analogue of the analgesic mu-conotoxin KIIIA that blocks two sodium channel subtypes, the neuronal Na(V)1.2 and skeletal muscle Na(V)1.4. Three disulfide-deficient analogues of KIIIA were initially synthesized in which the native disulfide bridge formed between either C1-C9, C2-C15, or C4-C16 was removed. Deletion of the first bridge only slightly affected the peptide's bioactivity. To further minimize this analogue, the N-terminal residue was removed and two nonessential serine residues were replaced by a single 5-amino-3-oxapentanoic acid residue. The resulting "polytide" analogue retained the ability to block sodium channels and to produce analgesia. Until now, the peptidomimetic approach applied to conotoxins has progressed only modestly at best; thus, the disulfide-deficient analogues containing backbone spacers provide an alternative advance toward the development of conopeptide-based therapeutics.
Collapse
Affiliation(s)
- Tiffany S Han
- Department of Biology, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Robinson JA. Design of Protein-Protein Interaction Inhibitors Based on Protein Epitope Mimetics. Chembiochem 2009; 10:971-3. [DOI: 10.1002/cbic.200900055] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Walewska A, Zhang MM, Skalicky J, Yoshikami D, Olivera B, Bulaj G. Integrated Oxidative Folding of Cysteine/Selenocysteine Containing Peptides: Improving Chemical Synthesis of Conotoxins. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200806085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
Walewska A, Zhang MM, Skalicky JJ, Yoshikami D, Olivera BM, Bulaj G. Integrated oxidative folding of cysteine/selenocysteine containing peptides: improving chemical synthesis of conotoxins. Angew Chem Int Ed Engl 2009; 48:2221-4. [PMID: 19206132 PMCID: PMC2919336 DOI: 10.1002/anie.200806085] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Building bridges: The use of diselenide and selectively ((15)N/(13)C)-labeled disulfide bridges is combined to give improvements in oxidative folding and disulfide mapping. Conotoxin analogues, each with a pair of selenocysteines (Sec) and labeled cysteines (see scheme, red), exhibited significantly improved folding and the labeled cysteines allow correctly folded species to be rapidly identified by NMR spectroscopy.
Collapse
Affiliation(s)
- Aleksandra Walewska
- Department of Biology, University of Utah, Salt Lake City, Utah 84108, USA. Faculty of Chemistry, University of Gdansk, Gdansk 80-952, Poland
| | - Min-Min Zhang
- Department of Biology, University of Utah, Salt Lake City, Utah 84108, USA
| | - Jack J. Skalicky
- Department of Biochemistry University of Utah Salt Lake City, Utah 84108, USA
| | - Doju Yoshikami
- Department of Biology, University of Utah, Salt Lake City, Utah 84108, USA
| | | | - Grzegorz Bulaj
- Department of Medicinal Chemistry, University of Utah, 421 Wakara Way, Suite 360, Salt Lake City, Utah 84108, USA, Fax: (+) 1-801-581-7087, www.pharmacy.utah.edu/medChem/faculty/Bulaj/
| |
Collapse
|
47
|
Walewska A, Skalicky JJ, Davis DR, Zhang MM, Lopez-Vera E, Watkins M, Han TS, Yoshikami D, Olivera BM, Bulaj G. NMR-based mapping of disulfide bridges in cysteine-rich peptides: application to the mu-conotoxin SxIIIA. J Am Chem Soc 2008; 130:14280-6. [PMID: 18831583 PMCID: PMC2665793 DOI: 10.1021/ja804303p] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Disulfide-rich peptides represent a megadiverse group of natural products with very promising therapeutic potential. To accelerate their functional characterization, high-throughput chemical synthesis and folding methods are required, including efficient mapping of multiple disulfide bridges. Here, we describe a novel approach for such mapping and apply it to a three-disulfide-bridged conotoxin, mu-SxIIIA (from the venom of Conus striolatus), whose discovery is also reported here for the first time. Mu-SxIIIA was chemically synthesized with three cysteine residues labeled 100% with (15)N/(13)C, while the remaining three cysteine residues were incorporated using a mixture of 70%/30% unlabeled/labeled Fmoc-protected residues. After oxidative folding, the major product was analyzed by NMR spectroscopy. Sequence-specific resonance assignments for the isotope-enriched Cys residues were determined with 2D versions of standard triple-resonance ((1)H, (13)C, (15)N) NMR experiments and 2D [(13)C, (1)H] HSQC. Disulfide patterns were directly determined with cross-disulfide NOEs confirming that the oxidation product had the disulfide connectivities characteristic of mu-conotoxins. Mu-SxIIIA was found to be a potent blocker of the sodium channel subtype Na(V)1.4 (IC50 = 7 nM). These results suggest that differential incorporation of isotope-labeled cysteine residues is an efficient strategy to map disulfides and should facilitate the discovery and structure-function studies of many bioactive peptides.
Collapse
Affiliation(s)
- Aleksandra Walewska
- Department of Biology, University of Utah, Salt Lake City, Utah, 84112, USA
- Faculty of Chemistry, University of Gdansk, 80-952 Gdansk, Poland
| | - Jack J. Skalicky
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Darrell R. Davis
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Min-Min Zhang
- Department of Biology, University of Utah, Salt Lake City, Utah, 84112, USA
| | | | - Maren Watkins
- Department of Pathology, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Tiffany S. Han
- Department of Biology, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Doju Yoshikami
- Department of Biology, University of Utah, Salt Lake City, Utah, 84112, USA
| | | | - Grzegorz Bulaj
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
48
|
Yao S, Zhang MM, Yoshikami D, Azam L, Olivera BM, Bulaj G, Norton RS. Structure, dynamics, and selectivity of the sodium channel blocker mu-conotoxin SIIIA. Biochemistry 2008; 47:10940-9. [PMID: 18798648 DOI: 10.1021/bi801010u] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
mu-SIIIA, a novel mu-conotoxin from Conus striatus, appeared to be a selective blocker of tetrodotoxin-resistant sodium channels in frog preparations. It also exhibited potent analgesic activity in mice, although its selectivity profile against mammalian sodium channels remains unknown. We have determined the structure of mu-SIIIA in aqueous solution and characterized its backbone dynamics by NMR and its functional properties electrophysiologically. Consistent with the absence of hydroxyprolines, mu-SIIIA adopts a single conformation with all peptide bonds in the trans conformation. The C-terminal region contains a well-defined helix encompassing residues 11-16, while residues 3-5 in the N-terminal region form a helix-like turn resembling 3 10-helix. The Trp12 and His16 side chains are close together, as in the related conotoxin mu-SmIIIA, but Asn2 is more distant. Dynamics measurements show that the N-terminus and Ser9 have larger-magnitude motions on the subnanosecond time scale, while the C-terminus is more rigid. Cys4, Trp12, and Cys13 undergo significant conformational exchange on microsecond to millisecond time scales. mu-SIIIA is a potent, nearly irreversible blocker of Na V1.2 but also blocks Na V1.4 and Na V1.6 with submicromolar potency. The selectivity profile of mu-SIIIA, including poor activity against the cardiac sodium channel, Na V1.5, is similar to that of the closely related mu-KIIIA, suggesting that the C-terminal regions of both are critical for blocking neuronal Na V1.2. The structural and functional characterization described in this paper of an analgesic mu-conotoxin that targets neuronal subtypes of mammalian sodium channels provides a basis for the design of novel analogues with an improved selectivity profile.
Collapse
Affiliation(s)
- Shenggen Yao
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Bulaj G. Integrating the discovery pipeline for novel compounds targeting ion channels. Curr Opin Chem Biol 2008; 12:441-7. [PMID: 18678277 DOI: 10.1016/j.cbpa.2008.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/02/2008] [Accepted: 07/08/2008] [Indexed: 12/27/2022]
Abstract
Many ion channels are attractive therapeutic targets for the treatment of neurological or cardiovascular diseases; there is a continuous need for selective channel antagonists and/or agonists. Recently, several technologies have been developed that make exploration of the enormous diversity of venom-derived peptidic toxins more feasible. Integration of exogenomics with synthetic methods such as diselenide or fluorous bridges, backbone spacers, and N-to-C cyclization provides an emerging technology that promises to accelerate discovery and development of natural products based compounds. These drug-discovery efforts are complemented by novel approaches to modulate the activities of ion channels and receptors. Taken together, these technologies will advance our knowledge and understanding of ion channels and will accelerate their expansion as targets for first-in-class therapeutics.
Collapse
Affiliation(s)
- Grzegorz Bulaj
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 421 Wakara Way, Suite 360, Salt Lake City, UT 84108, USA.
| |
Collapse
|
50
|
Clark RJ, Daly NL, Halai R, Nevin ST, Adams DJ, Craik DJ. The three-dimensional structure of the analgesic α-conotoxin, RgIA. FEBS Lett 2008; 582:597-602. [DOI: 10.1016/j.febslet.2008.01.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
|