1
|
Zhang Q, Liu H, Zhao X, Yang J, Tang W, Yang Y, Chang S, Cai B, Liu J, Zhu Y, Zhou B, Liu T. Genomic insights into Aspergillus tamarii TPD11: enhancing polyphyllin production and uncovering potential therapeutic applications. BMC Genomics 2024; 25:977. [PMID: 39425039 PMCID: PMC11488073 DOI: 10.1186/s12864-024-10776-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/04/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND The excavation and utilization of endophytic fungi from medicinal plants is highly important for the development of new drugs. The endophytic fungus Aspergillus tamarii TPD11, which was isolated and obtained by the authors in the previous stage, can produce a variety of polyphyllins with important potential applications in hemostasis, inflammation and antitumor activities; however, the genomic information of TPD11 is still unknown. RESULTS In this study, we sequenced and assembled the whole genome of the endophytic fungus A. tamarii TPD11, resolved the genome evolutionary relationships of 24 Aspergillus strains, and phylogenetic analysis of the genomes of 16 strains revealed the evolutionary differences between Aspergillus and Penicillium and the mechanisms of genome expansion and contraction. CAZy annotation analysis revealed that TPD11 obtains nutrients mainly by ingesting starch from the host plant. TPD11 has a biosynthesis-related gene cluster for the synthesis of squalestatin S1, and the silencing of this biosynthesis-related gene cluster might increase the content of polyphyllin. Annotation of 11 UDP-glycosyltransferase genes helps to further reveal the biosynthetic pathway of polyphyllin. In addition, secondary metabolism gene cluster and CAZy analyses confirmed the potential probiotic, insecticidal and antimicrobial activities of TPD11 on host plants. CONCLUSIONS This study reveals the intrinsic mechanism by which endophytic fungi increase the content of polyphyllin, which provides a basis for the synthetic synthesis of the natural product polyphyllin.
Collapse
Affiliation(s)
- Qing Zhang
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Hai Liu
- Yunnan Tobacco Company Kunming Branch Songming Branch, Songming, China
| | - Xiaojun Zhao
- Yunnan Tobacco Company Kunming Branch Songming Branch, Songming, China
| | - Jili Yang
- Yunnan Tobacco Company Kunming Branch Songming Branch, Songming, China
| | - Weidi Tang
- Yunnan Tobacco Company Kunming Branch Songming Branch, Songming, China
| | - Ying Yang
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Sheng Chang
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Bo Cai
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Juan Liu
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yaoshun Zhu
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Bo Zhou
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China.
| | - Tao Liu
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
2
|
Wang Y, Wang J, Zhu X, Wang W. Genome and transcriptome sequencing of Trichoderma harzianum T4, an important biocontrol fungus of Rhizoctonia solani, reveals genes related to mycoparasitism. Can J Microbiol 2024; 70:86-101. [PMID: 38314685 DOI: 10.1139/cjm-2023-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Trichoderma harzianum is a well-known biological control strain and a mycoparasite of Rhizoctonia solani. To explore the mechanisms of mycoparasitism, the genome and transcriptome of T. harzianum T4 were both assembled and analyzed in this study. The genome of T. harzianum T4 was assembled into 106 scaffolds, sized 41.25 Mb, and annotated with a total of 8118 predicted genes. We analyzed the transcriptome of T. harzianum T4 against R. solani in a dual culture in three culture periods: before contact (BC), during contact (C), and after contact (AC). Transcriptome sequencing identified 1092, 1222, and 2046 differentially expressed genes (DEGs), respectively. These DEGs, which are involved in pathogen recognition and signal transduction, hydrolase, transporters, antibiosis, and defense-related functional genes, are significantly upregulated in the mycoparasitism process. The results of genome and transcriptome analysis indicated that the mycoparasitism process of T. harzianum T4 was very complex. T. harzianum successfully recognizes and invades host cells and kills plant pathogens by regulating various DEGs at different culture periods. The relative expression levels of the 26 upregulated DEGs were confirmed by RT-qPCR to validate the reliability of the transcriptome data. The results provide insight into the molecular mechanisms underlying T. harzianum T4's mycoparasitic processes, and they provide a potential molecular target for the biological control mechanism of T. harzianum T4.
Collapse
Affiliation(s)
- Yaping Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaochong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Martín JF, Liras P. Targeting of Specialized Metabolites Biosynthetic Enzymes to Membranes and Vesicles by Posttranslational Palmitoylation: A Mechanism of Non-Conventional Traffic and Secretion of Fungal Metabolites. Int J Mol Sci 2024; 25:1224. [PMID: 38279221 PMCID: PMC10816013 DOI: 10.3390/ijms25021224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
In nature, the formation of specialized (secondary) metabolites is associated with the late stages of fungal development. Enzymes involved in the biosynthesis of secondary metabolites in fungi are located in distinct subcellular compartments including the cytosol, peroxisomes, endosomes, endoplasmic reticulum, different types of vesicles, the plasma membrane and the cell wall space. The enzymes traffic between these subcellular compartments and the secretion through the plasma membrane are still unclear in the biosynthetic processes of most of these metabolites. Recent reports indicate that some of these enzymes initially located in the cytosol are later modified by posttranslational acylation and these modifications may target them to membrane vesicle systems. Many posttranslational modifications play key roles in the enzymatic function of different proteins in the cell. These modifications are very important in the modulation of regulatory proteins, in targeting of proteins, intracellular traffic and metabolites secretion. Particularly interesting are the protein modifications by palmitoylation, prenylation and miristoylation. Palmitoylation is a thiol group-acylation (S-acylation) of proteins by palmitic acid (C16) that is attached to the SH group of a conserved cysteine in proteins. Palmitoylation serves to target acylated proteins to the cytosolic surface of cell membranes, e.g., to the smooth endoplasmic reticulum, whereas the so-called toxisomes are formed in trichothecene biosynthesis. Palmitoylation of the initial enzymes involved in the biosynthesis of melanin serves to target them to endosomes and later to the conidia, whereas other non-palmitoylated laccases are secreted directly by the conventional secretory pathway to the cell wall space where they perform the last step(s) of melanin biosynthesis. Six other enzymes involved in the biosynthesis of endocrosin, gliotoxin and fumitremorgin believed to be cytosolic are also targeted to vesicles, although it is unclear if they are palmitoylated. Bioinformatic analysis suggests that palmitoylation may be frequent in the modification and targeting of polyketide synthetases and non-ribosomal peptide synthetases. The endosomes may integrate other small vesicles with different cargo proteins, forming multivesicular bodies that finally fuse with the plasma membrane during secretion. Another important effect of palmitoylation is that it regulates calcium metabolism by posttranslational modification of the phosphatase calcineurin. Mutants defective in the Akr1 palmitoyl transferase in several fungi are affected in calcium transport and homeostasis, thus impacting on the biosynthesis of calcium-regulated specialized metabolites. The palmitoylation of secondary metabolites biosynthetic enzymes and their temporal distribution respond to the conidiation signaling mechanism. In summary, this posttranslational modification drives the spatial traffic of the biosynthetic enzymes between the subcellular organelles and the plasma membrane. This article reviews the molecular mechanism of palmitoylation and the known fungal palmitoyl transferases. This novel information opens new ways to improve the biosynthesis of the bioactive metabolites and to increase its secretion in fungi.
Collapse
Affiliation(s)
- Juan F. Martín
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain;
| | | |
Collapse
|
4
|
Iacovelli R, He T, Allen JL, Hackl T, Haslinger K. Genome sequencing and molecular networking analysis of the wild fungus Anthostomella pinea reveal its ability to produce a diverse range of secondary metabolites. Fungal Biol Biotechnol 2024; 11:1. [PMID: 38172933 PMCID: PMC10763133 DOI: 10.1186/s40694-023-00170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Filamentous fungi are prolific producers of bioactive molecules and enzymes with important applications in industry. Yet, the vast majority of fungal species remain undiscovered or uncharacterized. Here we focus our attention to a wild fungal isolate that we identified as Anthostomella pinea. The fungus belongs to a complex polyphyletic genus in the family of Xylariaceae, which is known to comprise endophytic and pathogenic fungi that produce a plethora of interesting secondary metabolites. Despite that, Anthostomella is largely understudied and only two species have been fully sequenced and characterized at a genomic level. RESULTS In this work, we used long-read sequencing to obtain the complete 53.7 Mb genome sequence including the full mitochondrial DNA. We performed extensive structural and functional annotation of coding sequences, including genes encoding enzymes with potential applications in biotechnology. Among others, we found that the genome of A. pinea encodes 91 biosynthetic gene clusters, more than 600 CAZymes, and 164 P450s. Furthermore, untargeted metabolomics and molecular networking analysis of the cultivation extracts revealed a rich secondary metabolism, and in particular an abundance of sesquiterpenoids and sesquiterpene lactones. We also identified the polyketide antibiotic xanthoepocin, to which we attribute the anti-Gram-positive effect of the extracts that we observed in antibacterial plate assays. CONCLUSIONS Taken together, our results provide a first glimpse into the potential of Anthstomella pinea to provide new bioactive molecules and biocatalysts and will facilitate future research into these valuable metabolites.
Collapse
Affiliation(s)
- R Iacovelli
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - T He
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - J L Allen
- Department of Biology, Eastern Washington University, Cheney, WA, 99004, USA
| | - T Hackl
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - K Haslinger
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
5
|
Ming Q, Huang X, He Y, Qin L, Tang Y, Liu Y, Huang Y, Zhang H, Li P. Genome Mining and Screening for Secondary Metabolite Production in the Endophytic Fungus Dactylonectria alcacerensis CT-6. Microorganisms 2023; 11:microorganisms11040968. [PMID: 37110391 PMCID: PMC10142127 DOI: 10.3390/microorganisms11040968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Endophytic fungi are a treasure trove of natural products with great chemical diversity that is largely unexploited. As an alternative to the traditional bioactivity-guided screening approach, the genome-mining-based approach provides a new methodology for obtaining novel natural products from endophytes. In our study, the whole genome of an endophyte, Dactylonectria alcacerensis CT-6, was obtained for the first time. Genomic analysis indicated that D. alcacerensis CT-6 has one 61.8 Mb genome with a G+C content of 49.86%. Gene annotation was extensively carried out using various BLAST databases. Genome collinearity analysis revealed that D. alcacerensis CT-6 has high homology with three other strains of the Dactylonectria genus. AntiSMASH analysis displayed 45 secondary metabolite biosynthetic gene clusters (BGCs) in D. alcacerensis CT-6, and most of them were unknown and yet to be unveiled. Furthermore, only six known substances had been isolated from the fermented products of D. alcacerensis CT-6, suggesting that a great number of cryptic BGCs in D. alcacerensis CT-6 are silent and/or expressed at low levels under conventional conditions. Therefore, our study provides an important basis for further chemical study of D. alcacerensis CT-6 using the gene-mining strategy to awaken these cryptic BGCs for the production of bioactive secondary metabolites.
Collapse
Affiliation(s)
- Qianliang Ming
- Department of Pharmacognosy, College of Pharmacy, Army Medical University, Chongqing 400038, China
- Drug and Instrument Supervision and Inspection Station, 32339 Troops of the Chinese People's Liberation Army, Lhasa 850015, China
| | - Xiuning Huang
- Department of Pharmacognosy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yimo He
- Department of Pharmacognosy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Lingyue Qin
- Department of Pharmacognosy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yu Tang
- Department of Pharmacognosy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yanxia Liu
- Department of Pharmacognosy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yuting Huang
- Department of Pharmacognosy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Hongwei Zhang
- Drug and Instrument Supervision and Inspection Station, 32339 Troops of the Chinese People's Liberation Army, Lhasa 850015, China
| | - Peng Li
- Department of Pharmacognosy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| |
Collapse
|
6
|
De novo genome assembly and analysis of Zalaria sp. Him3, a novel fructooligosaccharides producing yeast. BMC Genom Data 2022; 23:78. [PMID: 36357835 PMCID: PMC9647967 DOI: 10.1186/s12863-022-01094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Background Zalaria sp. Him3 was reported as a novel fructooligosaccharides (FOS) producing yeast. However, Zalaria spp. have not been widely known and have been erroneously classified as a different black yeast, Aureobasidium pullulans. In this study, de novo genome assembly and analysis of Zalaria sp. Him3 was demonstrated to confirm the existence of a potential enzyme that facilitates FOS production and to compare with the genome of A. pullulans. Results The genome of Zalaria sp. Him3 was analyzed; the total read bases and total number of reads were 6.38 Gbp and 42,452,134 reads, respectively. The assembled genome sequence was calculated to be 22.38 Mbp, with 207 contigs, N50 of 885,387, L50 of 10, GC content of 53.8%, and 7,496 genes. g2419, g3120, and g3700 among the predicted genes were annotated as cellulase, xylanase, and β-fructofuranosidase (FFase), respectively. When the read sequences were mapped to A. pullulans EXF-150 genome as a reference, a small amount of reads (3.89%) corresponded to the reference genome. Phylogenetic tree analysis, which was based on the conserved sequence set consisting of 2,362 orthologs in the genome, indicated genetic differences between Zalaria sp. Him3 and Aureobasidium spp. Conclusion The differences between Zalaria and Aureobasidium spp. were evident at the genome level. g3700 identified in the Zalaria sp. Him3 likely does not encode a highly transfructosyl FFase because the motif sequences were unlike those in other FFases involved in FOS production. Therefore, strain Him3 may produce another FFase. Furthermore, several genes with promising functions were identified and might elicit further interest in Zalaria yeast. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01094-2.
Collapse
|
7
|
Xu F, Li X, Ren H, Zeng R, Wang Z, Hu H, Bao J, Que Y. The First Telomere-to-Telomere Chromosome-Level Genome Assembly of Stagonospora tainanensis Causing Sugarcane Leaf Blight. J Fungi (Basel) 2022; 8:1088. [PMID: 36294653 PMCID: PMC9605480 DOI: 10.3390/jof8101088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
The sexual morph Leptosphaeria taiwanensis Yen and Chi and its asexual morph Stagonospora tainanensis W. H. Hsieh is an important necrotrophic fungal phytopathogen, which causes sugarcane leaf blight, resulting in loss of cane tonnage and sucrose in susceptible sugarcane varieties. Decoding the genome and understanding of the basis of virulence is vitally important for devising effective disease control strategies. Here, we present a 38.25-Mb high-quality genome assembly of S. tainanensis strain StFZ01, denovo assembled with 10.19 Gb Nanopore sequencing long reads (~267×) and 3.82 Gb Illumina short reads (~100×). The genome assembly consists of 12 contigs with N50 of 2.86 Mb of which 5 belong to the telomere to telomere (T2T) chromosome. It contains 13.20% repeat sequences, 12,543 proteins, and 12,206 protein-coding genes with the BUSCO completeness 99.18% at fungi (n = 758) and 99.87% at ascomycota (n = 1706), indicating the high accuracy and completeness of our gene annotations. The virulence analysis in silico revealed the presence of 2379 PHIs, 599 CAZys, 248 membrane transport proteins, 191 cytochrome P450 enzymes, 609 putative secreted proteins, and 333 effectors in the StFZ01 genome. The genomic resources presented here will not only be helpful for development of specific molecular marker and diagnosis technique, population genetics, molecular taxonomy, and disease managements, it can also provide a significant precise genomic reference for investigating the ascomycetous genome, the necrotrophic lifestyle, and pathogenicity in the future.
Collapse
Affiliation(s)
- Fu Xu
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Xiuxiu Li
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Ren
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Rensen Zeng
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Zhoutao Wang
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Hongli Hu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiandong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Youxiong Que
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| |
Collapse
|
8
|
Chen HY, Lei JY, Li SL, Guo LQ, Lin JF, Wu GH, Lu J, Ye ZW. Progress in biological activities and biosynthesis of edible fungi terpenoids. Crit Rev Food Sci Nutr 2022; 63:7288-7310. [PMID: 35238261 DOI: 10.1080/10408398.2022.2045559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The edible fungi have both edible and medicinal functions, in which terpenoids are one of the most important active ingredients. Terpenoids possess a wide range of biological activities and show great potential in the pharmaceutical and healthcare industries. In this review, the diverse biological activities of edible fungi terpenoids were summarized with emphasis on the mechanism of anti-cancer and anti-inflammation. Subsequently, this review focuses on advances in knowledge and understanding of the biosynthesis of terpenoids in edible fungi, especially in the generation of sesquiterpenes, diterpenes, and triterpenes. This paper is aim to provide an overview of biological functions and biosynthesis developed for utilizing the terpenoids in edible fungi.
Collapse
Affiliation(s)
- Hai-Ying Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jin-Yu Lei
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shu-Li Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li-Qiong Guo
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jun-Fang Lin
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Guang-Hong Wu
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jun Lu
- Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Zhi-Wei Ye
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Biosynthesis and regulation of terpenoids from basidiomycetes: exploration of new research. AMB Express 2021; 11:150. [PMID: 34779947 PMCID: PMC8594250 DOI: 10.1186/s13568-021-01304-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022] Open
Abstract
Basidiomycetes, also known as club fungi, consist of a specific group of fungi. Basidiomycetes produce a large number of secondary metabolites, of which sesquiterpenoids, diterpenoids and triterpenoids are the primary components. However, these terpenoids tend to be present in low amounts, which makes it difficult to meet application requirements. Terpenoid biosynthesis improves the quantity of these secondary metabolites. However, current understanding of the biosynthetic mechanism of terpenoids in basidiomycetes is insufficient. Therefore, this article reviews the latest research on the biosynthesis of terpenoids in basidiomycetes and summarizes the CYP450 involved in the biosynthesis of terpenoids in basidiomycetes. We also propose opportunities and challenges for chassis microbial heterologous production of terpenoids in basidiomycetes and provide a reference basis for the better development of basidiomycete engineering.
Collapse
|
10
|
Du X, Li H, Qi J, Chen C, Lu Y, Wang Y. Genome mining of secondary metabolites from a marine-derived Aspergillus terreus B12. Arch Microbiol 2021; 203:5621-5633. [PMID: 34459930 DOI: 10.1007/s00203-021-02548-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022]
Abstract
Owing to the prominent capabilities of bioconversion and biosynthesis, A. terreus has become attractive in biotechnical and pharmaceutical industry. In this work, an Aspergillus strain with potential antibacterial activities, was isolated from sponge in South China Sea. Based on the morphological and phylogenetic analysis, the strain was identified as A. terreus B12. Via the Illumina MiSeq sequencing platform, the complete genome was obtained, showing a genetic richness of biosynthetic gene clusters (BGCs), which might underpin the metabolic plasticity and adaptive resilience for the strain. Genome mining identified 67 BGCs, among which, 6 gene clusters could allocate to known BGCs (100% identity), corresponding to diverse metabolites like clavaric acid, dihydroisoflavipucine/isoflavipucine, dimethylcoprogen, alternariol, aspterric acid, and pyranonigrin E. Moreover, a range of compounds was isolated from B12 fermentation, e.g., terrein, butyrolactone I, terretonin A&E, acoapetaline B, and epi-aszonalenins A. Of note, acoapetaline B and epi-aszonalenins A, which had been respectively reported in plants and A. novofumigatus but with scarce information, was unexpectedly obtained from this species for the first time. The genomic and metabolic heterogeneity observed in strain B12, should be at least partially attributed to the genetic variability and biochemical diversity of A. terreus, which could be an interesting issue open to future efforts.
Collapse
Affiliation(s)
- Xinyang Du
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Huanhuan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiangfeng Qi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Chaoyi Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
11
|
Davolos D, Russo F, Canfora L, Malusà E, Tartanus M, Furmanczyk EM, Ceci A, Maggi O, Persiani AM. A Genomic and Transcriptomic Study on the DDT-Resistant Trichoderma hamatum FBL 587: First Genetic Data into Mycoremediation Strategies for DDT-Polluted Sites. Microorganisms 2021; 9:microorganisms9081680. [PMID: 34442757 PMCID: PMC8401308 DOI: 10.3390/microorganisms9081680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 01/09/2023] Open
Abstract
Trichoderma hamatum FBL 587 isolated from DDT-contaminated agricultural soils stands out as a remarkable strain with DDT-resistance and the ability to enhance DDT degradation process in soil. Here, whole genome sequencing and RNA-Seq studies for T. hamatum FBL 587 under exposure to DDT were performed. In the 38.9 Mb-genome of T. hamatum FBL 587, 10,944 protein-coding genes were predicted and annotated, including those of relevance to mycoremediation such as production of secondary metabolites and siderophores. The genome-scale transcriptional responses of T. hamatum FBL 587 to DDT exposure showed 1706 upregulated genes, some of which were putatively involved in the cellular translocation and degradation of DDT. With regards to DDT removal capacity, it was found upregulation of metabolizing enzymes such as P450s, and potentially of downstream DDT-transforming enzymes such as epoxide hydrolases, FAD-dependent monooxygenases, glycosyl- and glutathione-transferases. Based on transcriptional responses, the DDT degradation pathway could include transmembrane transporters of DDT, antioxidant enzymes for oxidative stress due to DDT exposure, as well as lipases and biosurfactants for the enhanced solubility of DDT. Our study provides the first genomic and transcriptomic data on T. hamatum FBL 587 under exposure to DDT, which are a base for a better understanding of mycoremediation strategies for DDT-polluted sites.
Collapse
Affiliation(s)
- Domenico Davolos
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DIT), INAIL, Research Area, Via R. Ferruzzi 38/40, 00143 Rome, Italy
- Correspondence: ; Tel.: +39-0654876328
| | - Fabiana Russo
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.R.); (A.C.); (O.M.); (A.M.P.)
| | - Loredana Canfora
- Council of Agricultural Research and Economics, Centre for Agriculture and Environment, Via Della Navicella 2/4, 00184 Rome, Italy;
| | - Eligio Malusà
- The National Institute of Horticultural Research, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (E.M.); (M.T.); (E.M.F.)
| | - Małgorzata Tartanus
- The National Institute of Horticultural Research, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (E.M.); (M.T.); (E.M.F.)
| | - Ewa Maria Furmanczyk
- The National Institute of Horticultural Research, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (E.M.); (M.T.); (E.M.F.)
| | - Andrea Ceci
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.R.); (A.C.); (O.M.); (A.M.P.)
| | - Oriana Maggi
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.R.); (A.C.); (O.M.); (A.M.P.)
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.R.); (A.C.); (O.M.); (A.M.P.)
| |
Collapse
|
12
|
Sun J, Xia Y, Ming D. Whole-Genome Sequencing and Bioinformatics Analysis of Apiotrichum mycotoxinivorans: Predicting Putative Zearalenone-Degradation Enzymes. Front Microbiol 2020; 11:1866. [PMID: 32849454 PMCID: PMC7416605 DOI: 10.3389/fmicb.2020.01866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Biological detoxification techniques have been developed by using microorganisms such as bacteria, yeast, and fungi to eliminate mycotoxin contamination. However, due to the lack of molecular details of related enzymes, the underlying mechanism of detoxification of many mycotoxins remain unclear. On the other hand, the next generation sequencing technology provides a large number of genomic data of microorganisms that can degrade mycotoxins, which makes it possible to use bioinformatics technology to study the molecular details of relevant enzymes. In this paper, we report the whole-genome sequencing of Apiotrichum mycotoxinivorans (Trichosporon mycotoxinivorans in old taxonomy) and the putative Baeyer-Villiger monooxygenases (BVMOs) and carboxylester hydrolases for zearalenone (ZEA) degradation through bioinformatic analysis. In particular, we developed a working pipeline for genome-scaled prediction of substrate-specific enzyme (GPSE, available at https://github.com/JinyuanSun/GPSE), which ultimately builds homologous structural and molecular docking models to demonstrate how the relevant degrading enzymes work. We expect that the enzyme-prediction woroflow process GPSE developed in this study might help accelerate the discovery of new detoxification enzymes.
Collapse
Affiliation(s)
- Jinyuan Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yan Xia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
13
|
De novo assembly and annotation of the Ganoderma australe genome. Genomics 2020; 112:930-933. [DOI: 10.1016/j.ygeno.2019.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 01/07/2023]
|
14
|
Zhang C, Zhang H, Zhang M, Lin C, Wang H, Yao J, Wei Q, Lu Y, Chen Z, Xing G, Cao X. OSBPL2 deficiency upregulate SQLE expression increasing intracellular cholesterol and cholesteryl ester by AMPK/SP1 and SREBF2 signalling pathway. Exp Cell Res 2019; 383:111512. [PMID: 31356817 DOI: 10.1016/j.yexcr.2019.111512] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Previous studies have shown that oxysterol binding protein like 2 (OSBPL2) knockdown is closely related to cholesterol metabolism. However, whether there is a direct relation between OSBPL2 and cholesterol synthesis is unknown. This study explored the mechanism of OSBPL2 deficiency in the upregulation of squalene epoxidase (SQLE) and the subsequent accumulation of intracellular cholesterol and cholesteryl ester. Here, we constructed an OSBPL2-deleted HeLa cell line using CRISPR/Cas9 technology, screened differentially expressed genes and examined the transcriptional regulation of SQLE using a dual-luciferase reporter gene. RNA-seq analysis showed that SQLE was upregulated significantly and the dual luciferase reporter gene assay revealed that two new functional transcription factor binding sites of Sp1 transcription factor (SP1) and sterol regulatory element-binding transcription factor 2 (SREBF2) in the SQLE promoter participated in the SQLE transcription and expression. In addition, we also observed that OSBPL2 deletion inhibited the AMPK signalling pathway and that the inhibition of AMPK signalling promoted SP1 and SREBF2 entry into the nuclear to upregulate SQLE expression. Therefore, these data support that OSBPL2 deficiency upregulates SQLE expression and increases the accumulation of cholesterol and cholesteryl ester by suppressing AMPK signalling, which provides new evidence of the connection between OSBPL2 and cholesterol synthesis.
Collapse
Affiliation(s)
- Cui Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hongdu Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Changsong Lin
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hongshun Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhibin Chen
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Kuhnert E, Li Y, Lan N, Yue Q, Chen L, Cox RJ, An Z, Yokoyama K, Bills GF. Enfumafungin synthase represents a novel lineage of fungal triterpene cyclases. Environ Microbiol 2018; 20:3325-3342. [PMID: 30051576 DOI: 10.1111/1462-2920.14333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 01/12/2023]
Abstract
Enfumafungin is a glycosylated fernene-type triterpenoid produced by the fungus Hormonema carpetanum. Its potent antifungal activity, mediated by its interaction with β-1,3-glucan synthase and the fungal cell wall, has led to its development into the semi-synthetic clinical candidate, ibrexafungerp (=SCY-078). We report on the preliminary identification of the enfumafungin biosynthetic gene cluster (BGC) based on genome sequencing, phylogenetic reconstruction, gene disruption, and cDNA sequencing studies. Enfumafungin synthase (efuA) consists of a terpene cyclase domain (TC) fused to a glycosyltransferase (GT) domain and thus represents a novel multifunctional enzyme. Moreover, the TC domain bears a phylogenetic relationship to bacterial squalene-hopene cyclases (SHC) and includes a typical DXDD motif within the active centre suggesting that efuA evolved from SHCs. Phylogenetic reconstruction of the GT domain indicated that this portion of the fusion gene originated from fungal sterol GTs. Eleven genes flanking efuA are putatively involved in the biosynthesis, regulation, transport and self-resistance of enfumafungin and include an acetyltransferase, three P450 monooxygenases, a dehydrogenase, a desaturase and a reductase. A hypothetical scheme for enfumafungin assembly is proposed in which the E-ring is oxidatively cleaved to yield the four-ring system of enfumafungin. EfuA represents the first member of a widespread lineage of fungal SHCs.
Collapse
Affiliation(s)
- Eric Kuhnert
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Leibniz University Hannover, Institute for Organic Chemistry and BMWZ, Hannover, Germany
| | - Yan Li
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Lan
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Qun Yue
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Chen
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Russell J Cox
- Leibniz University Hannover, Institute for Organic Chemistry and BMWZ, Hannover, Germany
| | - Zhiqiang An
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kenichi Yokoyama
- Duke University School of Medicine, Department of Biochemistry, Durham, NC, USA
| | - Gerald F Bills
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
16
|
Cirmena G, Franceschelli P, Isnaldi E, Ferrando L, De Mariano M, Ballestrero A, Zoppoli G. Squalene epoxidase as a promising metabolic target in cancer treatment. Cancer Lett 2018; 425:13-20. [PMID: 29596888 DOI: 10.1016/j.canlet.2018.03.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
Oncogenic alteration of the cholesterol synthesis pathway is a recognized mechanism of metabolic adaptation. In the present review, we focus on squalene epoxidase (SE), one of the two rate-limiting enzymes in cholesterol synthesis, retracing its history since its discovery as an antimycotic target to its description as an emerging metabolic oncogene by amplification with clinical relevance in cancer. We review the published literature assessing the association between SE over-expression and poor prognosis in this disease. We assess the works demonstrating how SE promotes tumor cell proliferation and migration, and displaying evidence of cancer cell demise in presence of human SE inhibitors in in vitro and in vivo models. Taken together, robust scientific evidence has by now accumulated pointing out SE as a promising novel therapeutic target in cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Alberto Ballestrero
- Department of Internal Medicine, University of Genoa, Italy; Ospedale Policlinico San Martino, Genoa, Italy.
| | - Gabriele Zoppoli
- Department of Internal Medicine, University of Genoa, Italy; Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
17
|
Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, Jeon J. A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 2017; 4:6. [PMID: 28955474 PMCID: PMC5615635 DOI: 10.1186/s40694-017-0035-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/18/2017] [Indexed: 11/10/2022] Open
Abstract
The implementation of Agrobacterium tumefaciens as a transformation tool revolutionized approaches to discover and understand gene functions in a large number of fungal species. A. tumefaciens mediated transformation (AtMT) is one of the most transformative technologies for research on fungi developed in the last 20 years, a development arguably only surpassed by the impact of genomics. AtMT has been widely applied in forward genetics, whereby generation of strain libraries using random T-DNA insertional mutagenesis, combined with phenotypic screening, has enabled the genetic basis of many processes to be elucidated. Alternatively, AtMT has been fundamental for reverse genetics, where mutant isolates are generated with targeted gene deletions or disruptions, enabling gene functional roles to be determined. When combined with concomitant advances in genomics, both forward and reverse approaches using AtMT have enabled complex fungal phenotypes to be dissected at the molecular and genetic level. Additionally, in several cases AtMT has paved the way for the development of new species to act as models for specific areas of fungal biology, particularly in plant pathogenic ascomycetes and in a number of basidiomycete species. Despite its impact, the implementation of AtMT has been uneven in the fungi. This review provides insight into the dynamics of expansion of new research tools into a large research community and across multiple organisms. As such, AtMT in the fungi, beyond the demonstrated and continuing power for gene discovery and as a facile transformation tool, provides a model to understand how other technologies that are just being pioneered, e.g. CRISPR/Cas, may play roles in fungi and other eukaryotic species.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Andy M. Bailey
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Timothy C. Cairns
- Department of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, Germany
| | - Candace E. Elliott
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Gary D. Foster
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | - Junhyun Jeon
- College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
18
|
Zhang DH, Jiang LX, Li N, Yu X, Zhao P, Li T, Xu JW. Overexpression of the Squalene Epoxidase Gene Alone and in Combination with the 3-Hydroxy-3-methylglutaryl Coenzyme A Gene Increases Ganoderic Acid Production in Ganoderma lingzhi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4683-4690. [PMID: 28530827 DOI: 10.1021/acs.jafc.7b00629] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The squalene epoxidase (SE) gene from the biosynthetic pathway of ganoderic acid (GA) was cloned and overexpressed in Ganoderma lingzhi. The strain that overexpressed the SE produced approximately 2 times more GA molecules than the wild-type (WT) strain. Moreover, SE overexpression upregulated lanosterol synthase gene expression in the biosynthetic pathway. These results indicated that SE stimulates GA accumulation. Then, the SE and 3-hydroxy-3-methylglutaryl coenzyme A (HMGR) genes were simultaneously overexpressed in G. lingzhi. Compared with the individual overexpression of SE or HMGR, the combined overexpression of the two genes further enhanced individual GA production. The overexpressing strain produced maximum GA-T, GA-S, GA-Mk, and GA-Me contents of 90.4 ± 7.5, 35.9 ± 5.4, 6.2 ± 0.5, and 61.8 ± 5.8 μg/100 mg dry weight, respectively. These values were 5.9, 4.5, 2.4, and 5.8 times higher than those produced by the WT strain. This is the first example of the successful manipulation of multiple biosynthetic genes to improve GA content in G. lingzhi.
Collapse
Affiliation(s)
- De-Huai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming, 650500, China
| | - Lu-Xi Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming, 650500, China
| | - Na Li
- Faculty of Science, Kunming University of Science and Technology , Kunming, 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming, 650500, China
| | - Peng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming, 650500, China
| | - Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming, 650500, China
| | - Jun-Wei Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming, 650500, China
| |
Collapse
|
19
|
Making Use of Genomic Information to Explore the Biotechnological Potential of Medicinal Mushrooms. MEDICINAL AND AROMATIC PLANTS OF THE WORLD 2017. [DOI: 10.1007/978-981-10-5978-0_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii. Proc Natl Acad Sci U S A 2016; 113:E7619-E7628. [PMID: 27821754 DOI: 10.1073/pnas.1604828113] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The consumption of sweeteners, natural as well as synthetic sugars, is implicated in an array of modern-day health problems. Therefore, natural nonsugar sweeteners are of increasing interest. We identify here the biosynthetic pathway of the sweet triterpenoid glycoside mogroside V, which has a sweetening strength of 250 times that of sucrose and is derived from mature fruit of luo-han-guo (Siraitia grosvenorii, monk fruit). A whole-genome sequencing of Siraitia, leading to a preliminary draft of the genome, was combined with an extensive transcriptomic analysis of developing fruit. A functional expression survey of nearly 200 candidate genes identified the members of the five enzyme families responsible for the synthesis of mogroside V: squalene epoxidases, triterpenoid synthases, epoxide hydrolases, cytochrome P450s, and UDP-glucosyltransferases. Protein modeling and docking studies corroborated the experimentally proven functional enzyme activities and indicated the order of the metabolic steps in the pathway. A comparison of the genomic organization and expression patterns of these Siraitia genes with the orthologs of other Cucurbitaceae implicates a strikingly coordinated expression of the pathway in the evolution of this species-specific and valuable metabolic pathway. The genomic organization of the pathway genes, syntenously preserved among the Cucurbitaceae, indicates, on the other hand, that gene clustering cannot account for this novel secondary metabolic pathway.
Collapse
|
21
|
Xiao H, Zhong JJ. Production of Useful Terpenoids by Higher-Fungus Cell Factory and Synthetic Biology Approaches. Trends Biotechnol 2016; 34:242-255. [DOI: 10.1016/j.tibtech.2015.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/01/2015] [Accepted: 12/15/2015] [Indexed: 01/11/2023]
|
22
|
Cell Factories of Higher Fungi for Useful Metabolite Production. BIOREACTOR ENGINEERING RESEARCH AND INDUSTRIAL APPLICATIONS I 2015; 155:199-235. [DOI: 10.1007/10_2015_335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
LEE YURAN, KIM KIMO, JEON BYEONGHWA, CHOI SUNGA. The hexane fraction of Naematoloma sublateritium extract suppresses the TNF-α-induced metastatic potential of MDA-MB-231 breast cancer cells through modulation of the JNK and p38 pathways. Int J Oncol 2014; 45:1284-92. [DOI: 10.3892/ijo.2014.2526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/11/2014] [Indexed: 11/06/2022] Open
|
24
|
Schmidt-Dannert C. Biosynthesis of terpenoid natural products in fungi. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 148:19-61. [PMID: 25414054 DOI: 10.1007/10_2014_283] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tens of thousands of terpenoid natural products have been isolated from plants and microbial sources. Higher fungi (Ascomycota and Basidiomycota) are known to produce an array of well-known terpenoid natural products, including mycotoxins, antibiotics, antitumor compounds, and phytohormones. Except for a few well-studied fungal biosynthetic pathways, the majority of genes and biosynthetic pathways responsible for the biosynthesis of a small number of these secondary metabolites have only been discovered and characterized in the past 5-10 years. This chapter provides a comprehensive overview of the current knowledge on fungal terpenoid biosynthesis from biochemical, genetic, and genomic viewpoints. Enzymes involved in synthesizing, transferring, and cyclizing the prenyl chains that form the hydrocarbon scaffolds of fungal terpenoid natural products are systematically discussed. Genomic information and functional evidence suggest differences between the terpenome of the two major fungal phyla--the Ascomycota and Basidiomycota--which will be illustrated for each group of terpenoid natural products.
Collapse
Affiliation(s)
- Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minneapolis, MN, 55108, USA,
| |
Collapse
|
25
|
Kakkar D, Tiwari AK, Singh H, Mishra AK. Past and Present Scenario of Imaging Infection and Inflammation: A Nuclear Medicine Perspective. Mol Imaging 2012. [DOI: 10.2310/7290.2011.00051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nuclear medicine techniques provide potential non-invasive tools for imaging infections and inflammations in the body in a precise way. These techniques are further exploited by the use of radiopharmaceuticals in conjunction with imaging tests such as scintigraphy and positron emission tomography. Improved agents for targeting infection exploit the specific accumulation of radiolabeled compounds to understand the pathophysiologic changes involved in the inflammatory process and correlate them with other chronic illnesses. In the recent past, a wide variety of radiopharmaceuticals have been developed, broadly classified as specific radiopharmaceuticals and nonspecific radiopharmaceuticals. New developments in positron emission (leveraging 18F and 18fluorodeoxyglucose) and heterocyclic/peptide chemistry and radiochemistry are resulting in unique agents with high specific activity. Various approaches to visualizing infection and inflammation are presented in this review, in an integral manner, that give a clear view of the existing radiopharmaceuticals in clinical practice and those under development.
Collapse
Affiliation(s)
- Dipti Kakkar
- From the Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, and the Centre for Biomedical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Anjani K. Tiwari
- From the Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, and the Centre for Biomedical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Harpal Singh
- From the Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, and the Centre for Biomedical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Anil K. Mishra
- From the Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, and the Centre for Biomedical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, India
| |
Collapse
|
26
|
Frandsen RJN. A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods 2011; 87:247-62. [DOI: 10.1016/j.mimet.2011.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/09/2011] [Accepted: 09/09/2011] [Indexed: 01/31/2023]
|
27
|
Belter A, Skupinska M, Giel-Pietraszuk M, Grabarkiewicz T, Rychlewski L, Barciszewski J. Squalene monooxygenase – a target for hypercholesterolemic therapy. Biol Chem 2011; 392:1053-75. [DOI: 10.1515/bc.2011.195] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Squalene monooxygenase catalyzes the epoxidation of C-C double bond of squalene to yield 2,3-oxidosqualene, the key step of sterol biosynthesis pathways in eukaryotes. Sterols are essential compounds of these organisms and squalene epoxidation is an important regulatory point in their synthesis. Squalene monooxygenase downregulation in vertebrates and fungi decreases synthesis of cholesterol and ergosterol, respectively, which makes squalene monooxygenase a potent and attractive target of hypercholesterolemia and antifungal therapies. Currently some fungal squalene monooxygenase inhibitors (terbinafine, naftifine, butenafine) are in clinical use, whereas mammalian enzymes’ inhibitors are still under investigation. Research on new squalene monooxygenase inhibitors is important due to the prevalence of hypercholesterolemia and the lack of both sufficient and safe remedies. In this paper we (i) review data on activity and the structure of squalene monooxygenase, (ii) present its inhibitors, (iii) compare current strategies of lowering cholesterol level in blood with some of the most promising strategies, (iv) underline advantages of squalene monooxygenase as a target for hypercholesterolemia therapy, and (v) discuss safety concerns about hypercholesterolemia therapy based on inhibition of cellular cholesterol biosynthesis and potential usage of squalene monooxygenase inhibitors in clinical practice. After many years of use of statins there is some clinical evidence for their adverse effects and only partial effectiveness. Currently they are drugs of choice but are used with many restrictions, especially in case of children, elderly patients and women of childbearing potential. Certainly, for the next few years, statins will continue to be a suitable tool for cost-effective cardiovascular prevention; however research on new hypolipidemic drugs is highly desirable. We suggest that squalene monooxygenase inhibitors could become the hypocholesterolemic agents of the future.
Collapse
|
28
|
Belter A, Skupinska M, Giel-Pietraszuk M, Grabarkiewicz T, Rychlewski L, Barciszewski J. Squalene monooxygenase - a target for hypercholesterolemic therapy. Biol Chem 2011. [PMID: 22050222 DOI: 10.1515/bc-2011-195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Squalene monooxygenase catalyzes the epoxidation of C-C double bond of squalene to yield 2,3-oxidosqualene, the key step of sterol biosynthesis pathways in eukaryotes. Sterols are essential compounds of these organisms and squalene epoxidation is an important regulatory point in their synthesis. Squalene monooxygenase downregulation in vertebrates and fungi decreases synthesis of cholesterol and ergosterol, respectively, which makes squalene monooxygenase a potent and attractive target of hypercholesterolemia and antifungal therapies. Currently some fungal squalene monooxygenase inhibitors (terbinafine, naftifine, butenafine) are in clinical use, whereas mammalian enzymes' inhibitors are still under investigation. Research on new squalene monooxygenase inhibitors is important due to the prevalence of hypercholesterolemia and the lack of both sufficient and safe remedies. In this paper we (i) review data on activity and the structure of squalene monooxygenase, (ii) present its inhibitors, (iii) compare current strategies of lowering cholesterol level in blood with some of the most promising strategies, (iv) underline advantages of squalene monooxygenase as a target for hypercholesterolemia therapy, and (v) discuss safety concerns about hypercholesterolemia therapy based on inhibition of cellular cholesterol biosynthesis and potential usage of squalene monooxygenase inhibitors in clinical practice. After many years of use of statins there is some clinical evidence for their adverse effects and only partial effectiveness. Currently they are drugs of choice but are used with many restrictions, especially in case of children, elderly patients and women of childbearing potential. Certainly, for the next few years, statins will continue to be a suitable tool for cost-effective cardiovascular prevention; however research on new hypolipidemic drugs is highly desirable. We suggest that squalene monooxygenase inhibitors could become the hypocholesterolemic agents of the future.
Collapse
Affiliation(s)
- Agnieszka Belter
- Institute of Bioorganic Chemistry, Polish Academy of Science, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | | | | | | | |
Collapse
|
29
|
Godio RP, Martín JF. Modified oxidosqualene cyclases in the formation of bioactive secondary metabolites: Biosynthesis of the antitumor clavaric acid. Fungal Genet Biol 2009; 46:232-42. [DOI: 10.1016/j.fgb.2008.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
|
30
|
Characterization of the atromentin biosynthesis genes and enzymes in the homobasidiomycete Tapinella panuoides. Fungal Genet Biol 2008; 45:1487-96. [DOI: 10.1016/j.fgb.2008.08.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/06/2008] [Accepted: 08/27/2008] [Indexed: 11/24/2022]
|
31
|
Kosalková K, García-Estrada C, Ullán RV, Godio RP, Feltrer R, Teijeira F, Mauriz E, Martín JF. The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 2008; 91:214-25. [PMID: 18952140 DOI: 10.1016/j.biochi.2008.09.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
The biosynthesis of the beta-lactam antibiotic penicillin is an excellent model for the study of secondary metabolites produced by filamentous fungi due to the good background knowledge on the biochemistry and molecular genetics of the beta-lactam producing microorganisms. The three genes (pcbAB, pcbC, penDE) encoding enzymes of the penicillin pathway in Penicillium chrysogenum are clustered, but no penicillin pathway-specific regulators have been found in the genome region that contains the penicillin gene cluster. The biosynthesis of this beta-lactam is controlled by global regulators of secondary metabolism rather than by a pathway-specific regulator. In this work we have identified the gene encoding the secondary metabolism global regulator LaeA in P. chrysogenum (PcLaeA), a nuclear protein with a methyltransferase domain. The PclaeA gene is present as a single copy in the genome of low and high-penicillin producing strains and is not located in the 56.8-kb amplified region occurring in high-penicillin producing strains. Overexpression of the PclaeA gene gave rise to a 25% increase in penicillin production. PclaeA knock-down mutants exhibited drastically reduced levels of penicillin gene expression and antibiotic production and showed pigmentation and sporulation defects, but the levels of roquefortine C produced and the expression of the dmaW involved in roquefortine biosynthesis remained similar to those observed in the wild-type parental strain. The lack of effect on the synthesis of roquefortine is probably related to the chromatin arrangement in the low expression roquefortine promoters as compared to the bidirectional pbcAB-pcbC promoter region involved in penicillin biosynthesis. These results evidence that PcLaeA not only controls some secondary metabolism gene clusters, but also asexual differentiation in P. chrysogenum.
Collapse
|