1
|
Hoffmann A, Steffens U, Maček B, Franz-Wachtel M, Nieselt K, Harbig TA, Scherlach K, Hertweck C, Sahl HG, Bierbaum G. The unusual mode of action of the polyketide glycoside antibiotic cervimycin C. mSphere 2024; 9:e0076423. [PMID: 38722162 PMCID: PMC11237698 DOI: 10.1128/msphere.00764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/28/2024] [Indexed: 05/30/2024] Open
Abstract
Cervimycins A-D are bis-glycosylated polyketide antibiotics produced by Streptomyces tendae HKI 0179 with bactericidal activity against Gram-positive bacteria. In this study, cervimycin C (CmC) treatment caused a spaghetti-like phenotype in Bacillus subtilis 168, with elongated curved cells, which stayed joined after cell division, and exhibited a chromosome segregation defect, resulting in ghost cells without DNA. Electron microscopy of CmC-treated Staphylococcus aureus (3 × MIC) revealed swollen cells, misshapen septa, cell wall thickening, and a rough cell wall surface. Incorporation tests in B. subtilis indicated an effect on DNA biosynthesis at high cervimycin concentrations. Indeed, artificial downregulation of the DNA gyrase subunit B gene (gyrB) increased the activity of cervimycin in agar diffusion tests, and, in high concentrations (starting at 62.5 × MIC), the antibiotic inhibited S. aureus DNA gyrase supercoiling activity in vitro. To obtain a more global view on the mode of action of CmC, transcriptomics and proteomics of cervimycin treated versus untreated S. aureus cells were performed. Interestingly, 3 × MIC of cervimycin did not induce characteristic responses, which would indicate disturbance of the DNA gyrase activity in vivo. Instead, cervimycin induced the expression of the CtsR/HrcA heat shock operon and the expression of autolysins, exhibiting similarity to the ribosome-targeting antibiotic gentamicin. In summary, we identified the DNA gyrase as a target, but at low concentrations, electron microscopy and omics data revealed a more complex mode of action of cervimycin, which comprised induction of the heat shock response, indicating protein stress in the cell.IMPORTANCEAntibiotic resistance of Gram-positive bacteria is an emerging problem in modern medicine, and new antibiotics with novel modes of action are urgently needed. Secondary metabolites from Streptomyces species are an important source of antibiotics, like the cervimycin complex produced by Streptomyces tendae HKI 0179. The phenotypic response of Bacillus subtilis and Staphylococcus aureus toward cervimycin C indicated a chromosome segregation and septum formation defect. This effect was at first attributed to an interaction between cervimycin C and the DNA gyrase. However, omics data of cervimycin treated versus untreated S. aureus cells indicated a different mode of action, because the stress response did not include the SOS response but resembled the response toward antibiotics that induce mistranslation or premature chain termination and cause protein stress. In summary, these results point toward a possibly novel mechanism that generates protein stress in the cells and subsequently leads to defects in cell and chromosome segregation.
Collapse
Affiliation(s)
- Alina Hoffmann
- University Hospital Bonn, Institute of Medical Microbiology, Immunology and Parasitology, Bonn, Germany
| | - Ursula Steffens
- University Hospital Bonn, Institute of Medical Microbiology, Immunology and Parasitology, Bonn, Germany
| | - Boris Maček
- University of Tübingen, Proteome Center Tübingen, Tübingen, Germany
| | | | - Kay Nieselt
- University of Tübingen, Interfaculty Institute for Bioinformatics and Medical Informatics, Tübingen, Germany
| | - Theresa Anisja Harbig
- University of Tübingen, Interfaculty Institute for Bioinformatics and Medical Informatics, Tübingen, Germany
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Friedrich Schiller University Jena, Institute of Microbiology, Faculty of Biological Sciences, Jena, Germany
| | - Hans-Georg Sahl
- University of Bonn, Institute for Pharmaceutical Microbiology, Bonn, Germany
| | - Gabriele Bierbaum
- University Hospital Bonn, Institute of Medical Microbiology, Immunology and Parasitology, Bonn, Germany
| |
Collapse
|
2
|
Bailey J, Gallagher L, Manoil C. Genome-scale analysis of essential gene knockout mutants to identify an antibiotic target process. Antimicrob Agents Chemother 2023; 67:e0110223. [PMID: 37966228 PMCID: PMC10720506 DOI: 10.1128/aac.01102-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/22/2023] [Indexed: 11/16/2023] Open
Abstract
We describe a genome-scale approach to identify the essential biological process targeted by a new antibiotic. The procedure is based on the identification of essential genes whose inactivation sensitizes a Gram-negative bacterium (Acinetobacter baylyi) to a drug and employs recently developed transposon mutant screening and single-mutant validation procedures. The approach, based on measuring the rates of loss of newly generated knockout mutants in the presence of antibiotic, provides an alternative to traditional procedures for studying essential functions using conditional expression or activity alleles. As a proof of principle study, we evaluated whether mutations enhancing sensitivity to the β-lactam antibiotic meropenem corresponded to the known essential target process of the antibiotic (septal peptidoglycan synthesis). We found that indeed mutations inactivating most genes needed for peptidoglycan synthesis and cell division strongly sensitized cells to meropenem. Additional classes of sensitizing mutations in essential genes were also identified, including those that inactivated capsule synthesis, DNA replication, or envelope stress response regulation. The essential capsule synthesis mutants appeared to enhance meropenem sensitivity by depleting a precursor needed for both capsule and peptidoglycan synthesis. The replication mutants may sensitize cells by impairing division. Nonessential gene mutations sensitizing cells to meropenem were also identified in the screen and largely corresponded to functions subordinately associated with the essential target process, such as in peptidoglycan recycling. Overall, these results help validate a new approach to identify the essential process targeted by an antibiotic and define the larger functional network determining sensitivity to it.
Collapse
Affiliation(s)
- J. Bailey
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - L. Gallagher
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - C. Manoil
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Gupta R, Singh M, Pathania R. Chemical genetic approaches for the discovery of bacterial cell wall inhibitors. RSC Med Chem 2023; 14:2125-2154. [PMID: 37974958 PMCID: PMC10650376 DOI: 10.1039/d3md00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Antimicrobial resistance (AMR) in bacterial pathogens is a worldwide health issue. The innovation gap in discovering new antibiotics has remained a significant hurdle in combating the AMR problem. Currently, antibiotics target various vital components of the bacterial cell envelope, nucleic acid and protein biosynthesis machinery and metabolic pathways essential for bacterial survival. The critical role of the bacterial cell envelope in cell morphogenesis and integrity makes it an attractive drug target. While a significant number of in-clinic antibiotics target peptidoglycan biosynthesis, several components of the bacterial cell envelope have been overlooked. This review focuses on various antibacterial targets in the bacterial cell wall and the strategies employed to find their novel inhibitors. This review will further elaborate on combining forward and reverse chemical genetic approaches to discover antibacterials that target the bacterial cell envelope.
Collapse
Affiliation(s)
- Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Mangal Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| |
Collapse
|
4
|
Zhu Q, Lin Q, Jiang Y, Chen S, Tian J, Yang S, Li Y, Li M, Wang Y, Shen C, Meng S, Yang L, Feng Y, Qu J. Construction and application of the conditionally essential gene knockdown library in Klebsiella pneumoniae to screen potential antimicrobial targets and virulence genes via Mobile-CRISPRi-seq. Appl Environ Microbiol 2023; 89:e0095623. [PMID: 37815340 PMCID: PMC10617577 DOI: 10.1128/aem.00956-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/09/2023] [Indexed: 10/11/2023] Open
Abstract
Klebsiella pneumoniae is a ubiquitous human pathogen, and its clinical treatment faces two major challenges: multidrug resistance and the pathogenesis of hypervirulent K. pneumoniae. The discovery and study of conditionally essential (CE) genes that can function as potential antimicrobial targets has always been a research concern due to their restriction in the development of novel antibiotics. However, the lack of essential functional genomic data has hampered the study of the mechanisms of essential genes related to antimicrobial susceptibility. In this study, we developed a pooled CE genes mobile clustered regularly interspaced short palindromic repeat (CRISPR) interference screening method (Mobile-CRISPRi-seq) for K. pneumoniae to identify genes that play critical roles in antimicrobial fitness in vitro and host immunity in vivo. Targeting 870 predicted CE genes in K. pneumoniae, Mobile-CRISPRi-seq uncovered the depletion of tetrahydrofolate synthesis pathway genes folB and folP under trimethoprim pressure. Our screening also identified genes waaE and fldA related to polymyxin and β-lactam susceptibility by applying a screening strategy based on Mobile-CRISPRi-seq and comparative genomics. Furthermore, using a mouse infection model and Mobile-CRISPRi-seq, multiple virulence genes were identified, and among these genes, pal, yciS, and ribB were demonstrated to contribute to the pathogenesis of K. pneumoniae. This study provides a simple, rapid, and effective platform for screening potential antimicrobial targets and virulence genes in K. pneumoniae, and this broadly applicable system can be expanded for high-throughput functional gene study in multiple pathogenic bacteria, especially in gram-negative bacteria. IMPORTANCE The discovery and investigation of conditionally essential (CE) genes that can function as potential antimicrobial targets has always been a research concern because of the restriction of antimicrobial targets in the development of novel antibiotics. In this study, we developed a pooled CE gene-wide mobile clustered regularly interspaced short palindromic repeat (CRISPR) interference sequencing (Mobile-CRISPRi-seq) strategy in Klebsiella pneumoniae to identify genes that play critical roles in the fitness of antimicrobials in vitro and host immunity in vivo. The data suggest a robust tool to screen for loss-of-function phenotypes in a pooled gene knockdown library in K. pneumoniae, and Mobile-CRISPRi-seq may be expanded to multiple bacteria for screening and identification of genes with crucial roles in the fitness of antimicrobials and hosts.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Qiang Lin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Yushan Jiang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shuyan Chen
- Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Junxuan Tian
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Shijin Yang
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yuanchun Li
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Mengjun Li
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuelin Wang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Yang
- Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Youjun Feng
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
5
|
Bongaerts N, Edoo Z, Abukar AA, Song X, Sosa-Carrillo S, Haggenmueller S, Savigny J, Gontier S, Lindner AB, Wintermute EH. Low-cost anti-mycobacterial drug discovery using engineered E. coli. Nat Commun 2022; 13:3905. [PMID: 35798732 PMCID: PMC9262897 DOI: 10.1038/s41467-022-31570-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 06/23/2022] [Indexed: 12/29/2022] Open
Abstract
Whole-cell screening for Mycobacterium tuberculosis (Mtb) inhibitors is complicated by the pathogen's slow growth and biocontainment requirements. Here we present a synthetic biology framework for assaying Mtb drug targets in engineered E. coli. We construct Target Essential Surrogate E. coli (TESEC) in which an essential metabolic enzyme is deleted and replaced with an Mtb-derived functional analog, linking bacterial growth to the activity of the target enzyme. High throughput screening of a TESEC model for Mtb alanine racemase (Alr) revealed benazepril as a targeted inhibitor, a result validated in whole-cell Mtb. In vitro biochemical assays indicated a noncompetitive mechanism unlike that of clinical Alr inhibitors. We establish the scalability of TESEC for drug discovery by characterizing TESEC strains for four additional targets.
Collapse
Affiliation(s)
- Nadine Bongaerts
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- CRI, Paris, France
| | - Zainab Edoo
- Sorbonne Université, Université Paris Cité, Inserm, Centre de Recherche des Cordeliers (CRC), Paris, France
| | - Ayan A Abukar
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- CRI, Paris, France
| | - Xiaohu Song
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- CRI, Paris, France
| | - Sebastián Sosa-Carrillo
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- Institut Pasteur, Inria de Paris, Université Paris Cité, InBio, Paris, France
| | - Sarah Haggenmueller
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- CRI, Paris, France
| | - Juline Savigny
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- CRI, Paris, France
| | - Sophie Gontier
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- CRI, Paris, France
| | - Ariel B Lindner
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France.
- CRI, Paris, France.
| | - Edwin H Wintermute
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France.
- CRI, Paris, France.
| |
Collapse
|
6
|
Watanabe K, Sato M, Osada H. Recent advances in the chemo-biological characterization of decalin natural products and unraveling of the workings of Diels-Alderases. Fungal Biol Biotechnol 2022; 9:9. [PMID: 35488322 PMCID: PMC9055775 DOI: 10.1186/s40694-022-00139-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/15/2022] [Indexed: 11/19/2022] Open
Abstract
The Diels-Alder (DA) reaction refers to a [4 + 2] cycloaddition reaction that falls under the category of pericyclic reactions. It is a reaction that allows regio- and stereo-selective construction of two carbon-carbon bonds simultaneously in a concerted manner to generate a six-membered ring structure through a six-electron cyclic transition state. The DA reaction is one of the most widely applied reactions in organic synthesis, yet its role in biological systems has been debated intensely over the last four decades. A survey of secondary metabolites produced by microorganisms suggests strongly that many of the compounds possess features that are likely formed through DA reactions, and most of them are considered to be catalyzed by enzymes that are commonly referred to as Diels-Alderases (DAases). In recent years, especially over the past 10 years or so, we have seen an accumulation of a substantial body of work that substantiates the argument that DAases indeed exist and play a critical role in the biosynthesis of complex metabolites. This review will cover the DAases involved in the biosynthesis of decalin moieties, which are found in many of the medicinally important natural products, especially those produced by fungi. In particular, we will focus on a subset of secondary metabolites referred to as pyrrolidine-2-one-bearing decalin compounds and discuss the decalin ring stereochemistry and the biological activities of those compounds. We will also look into the genes and enzymes that drive the biosynthetic construction of those complex natural products, and highlight the recent progress made on the structural and mechanistic understanding of DAases, especially regarding how those enzymes exert stereochemical control over the [4 + 2] cycloaddition reactions they catalyze.
Collapse
Affiliation(s)
- Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Hiroyuki Osada
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako-shi, 351-0198, Japan.
| |
Collapse
|
7
|
Li Z, Jin K, Chen H, Zhang L, Zhang G, Jiang Y, Zou H, Wang W, Qi G, Qu X. A machine learning approach-based array sensor for rapidly predicting the mechanisms of action of antibacterial compounds. NANOSCALE 2022; 14:3087-3096. [PMID: 35167631 DOI: 10.1039/d1nr07452k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rapid and accurate identification of the mechanisms of action (MoAs) of antibacterial compounds remains a challenge for the development of antibacterial compounds. Computational inference methods for determining the MoAs of antibacterial compounds have been developed in recent years. In particular, approaches combining machine learning technology enable precisely recognizing the MoA of antibacterial compounds. However, these methods heavily rely on the big data resulting from multiplexed experiments. As such, these approaches tend to produce minimal throughput and are not comprehensive enough to be adapted to widespread industrial applications. Here, we present a machine learning approach based on a customized array sensor for directly identifying the MoAs of antibacterial compounds. The array sensor consists of different two-dimensional nanomaterial fluorescence quenchers with different fluorescence-labeled single-stranded DNAs (ssDNAs). By mapping the subtle difference of the physicochemical properties on the bacterial surface treated with different antibacterial compound stimuli, the array sensor ensures visualizing the recognition process. Moreover, the customized array sensor produces a high volume of the MoA database, overcoming the dependence on big data. We further use the array sensor to build a chemical-response unique "fingerprint" database of MoAs. By combining a neural network-based genetic algorithm (NNGA), we rapidly discriminate the MoAs of four antibiotics with an overall accuracy of 100%. Furthermore, a new screening antibacterial peptide has been discovered and evaluated by our approach for determining the MoA with high accuracy proven by other techniques.
Collapse
Affiliation(s)
- Zhijun Li
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Kun Jin
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Hong Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
- Jiujiang Research Institute of Xiamen University, Jiujiang 332000, China
| | - Liyuan Zhang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, c, MA 02138, USA.
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guitao Zhang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Yizhou Jiang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Haixia Zou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Wentao Wang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Guangpei Qi
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Xiangmeng Qu
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
8
|
Union is strength: target-based and whole-cell high throughput screens in antibacterial discovery. J Bacteriol 2021; 204:e0047721. [PMID: 34723646 DOI: 10.1128/jb.00477-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance is one of the greatest global health challenges today. For over three decades antibacterial discovery research and development has been focused on cell-based and target-based high throughput assays. Target-based screens use diagnostic enzymatic reactions to look for molecules that can bind directly and inhibit the target. Target-based screens are only applied to proteins that can be successfully expressed, purified and the activity of which can be effectively measured using a biochemical assay. Often times the molecules found in these in vitro screens are not active in cells due to poor permeability or efflux. On the other hand, cell-based screens use whole cells and look for growth inhibition. These screens give higher number of hits than target-based assays and can simultaneously test many targets of one process or pathway in their physiological context. Both strategies have pros and cons when used separately. In the past decade and a half our increasing knowledge of bacterial physiology has led to the development of innovative and sophisticated technologies to perform high throughput screening combining these two strategies and thus minimizing their disadvantages. In this review we discuss recent examples of high throughput approaches that used both target-based and whole-cell screening to find new antibacterials, the new insights they have provided and how this knowledge can be applied to other in vivo validated targets to develop new antimicrobials.
Collapse
|
9
|
da Cunha BR, Zoio P, Fonseca LP, Calado CRC. Technologies for High-Throughput Identification of Antibiotic Mechanism of Action. Antibiotics (Basel) 2021; 10:565. [PMID: 34065815 PMCID: PMC8151116 DOI: 10.3390/antibiotics10050565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 01/23/2023] Open
Abstract
There are two main strategies for antibiotic discovery: target-based and phenotypic screening. The latter has been much more successful in delivering first-in-class antibiotics, despite the major bottleneck of delayed Mechanism-of-Action (MOA) identification. Although finding new antimicrobial compounds is a very challenging task, identifying their MOA has proven equally challenging. MOA identification is important because it is a great facilitator of lead optimization and improves the chances of commercialization. Moreover, the ability to rapidly detect MOA could enable a shift from an activity-based discovery paradigm towards a mechanism-based approach. This would allow to probe the grey chemical matter, an underexplored source of structural novelty. In this study we review techniques with throughput suitable to screen large libraries and sufficient sensitivity to distinguish MOA. In particular, the techniques used in chemical genetics (e.g., based on overexpression and knockout/knockdown collections), promoter-reporter libraries, transcriptomics (e.g., using microarrays and RNA sequencing), proteomics (e.g., either gel-based or gel-free techniques), metabolomics (e.g., resourcing to nuclear magnetic resonance or mass spectrometry techniques), bacterial cytological profiling, and vibrational spectroscopy (e.g., Fourier-transform infrared or Raman scattering spectroscopy) were discussed. Ultimately, new and reinvigorated phenotypic assays bring renewed hope in the discovery of a new generation of antibiotics.
Collapse
Affiliation(s)
- Bernardo Ribeiro da Cunha
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (B.R.d.C.); (P.Z.); (L.P.F.)
| | - Paulo Zoio
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (B.R.d.C.); (P.Z.); (L.P.F.)
- CIMOSM—Centro de Investigação em Modelação e Optimização de Sistemas Multifuncionais, ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
| | - Luís P. Fonseca
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (B.R.d.C.); (P.Z.); (L.P.F.)
| | - Cecília R. C. Calado
- CIMOSM—Centro de Investigação em Modelação e Optimização de Sistemas Multifuncionais, ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
| |
Collapse
|
10
|
Farha MA, French S, Brown ED. Systems-Level Chemical Biology to Accelerate Antibiotic Drug Discovery. Acc Chem Res 2021; 54:1909-1920. [PMID: 33787225 DOI: 10.1021/acs.accounts.1c00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-resistant bacterial infections pose an imminent and growing threat to public health. The discovery and development of new antibiotics of novel chemical class and mode of action that are unsusceptible to existing resistance mechanisms is imperative for tackling this threat. Modern industrial drug discovery, however, has failed to provide new drugs of this description, as it is dependent largely on a reductionist genes-to-drugs research paradigm. We posit that the lack of success in new antibiotic drug discovery is due in part to a lack of understanding of the bacterial cell system as whole. A fundamental understanding of the architecture and function of bacterial systems has been elusive but is of critical importance to design strategies to tackle drug-resistant bacterial pathogens.Increasingly, systems-level approaches are rewriting our understanding of the cell, defining a dense network of redundant and interacting components that resist perturbations of all kinds, including by antibiotics. Understanding the network properties of bacterial cells requires integrative, systematic, and genome-scale approaches. These methods strive to understand how the phenotypic behavior of bacteria emerges from the many interactions of individual molecular components that constitute the system. With the ability to examine genomic, transcriptomic, proteomic, and metabolomic consequences of, for example, genetic or chemical perturbations, researchers are increasingly moving away from one-gene-at-a-time studies to consider the system-wide response of the cell. Such measurements are demonstrating promise as quantitative tools, powerful discovery engines, and robust hypothesis generators with great value to antibiotic drug discovery.In this Account, we describe our thinking and findings using systems-level studies aimed at understanding bacterial physiology broadly and in uncovering new antibacterial chemical matter of novel mechanism. We share our systems-level toolkit and detail recent technological developments that have enabled unprecedented acquisition of genome-wide interaction data. We focus on three types of interactions: gene-gene, chemical-gene, and chemical-chemical. We provide examples of their use in understanding cell networks and how these insights might be harnessed for new antibiotic discovery. By example, we show the application of these principles in mapping genetic networks that underpin phenotypes of interest, characterizing genes of unknown function, validating small-molecule screening platforms, uncovering novel chemical probes and antibacterial leads, and delineating the mode of action of antibacterial chemicals. We also discuss the importance of computation to these approaches and its probable dominance as a tool for systems approaches in the future. In all, we advocate for the use of systems-based approaches as discovery engines in antibacterial research, both as powerful tools and to stimulate innovation.
Collapse
Affiliation(s)
- Maya A. Farha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Shawn French
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Eric D. Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
11
|
Genilloud O. Natural products discovery and potential for new antibiotics. Curr Opin Microbiol 2019; 51:81-87. [PMID: 31739283 DOI: 10.1016/j.mib.2019.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/31/2019] [Indexed: 02/05/2023]
Abstract
Microbial natural products have been one of the most important sources for the discovery of potential new antibiotics. However, the decline in the number of new chemical scaffolds discovered and the rediscovery problem of old known molecules has become a limitation for discovery programs developed by an industry confronted by a lack of incentives and a broken economic model. In contrast, the emergence of multidrug resistance in key pathogens has continued to progress and this issue is compounded by a lack of new antibiotics in development to address most of the difficult to treat infections. Advances in genome mining have confirmed the richness of biosynthetic gene clusters (BGCs) in the majority of microbial sources, and this suggests that an untapped chemical diversity is waiting to be discovered. The development of new genome engineering and synthetic biology tools, and the implementation of comparative omic approaches is fostering the development of new integrated culture-based strategies and genomic-driven approaches aimed at delivering new chemical classes of antibiotics.
Collapse
Affiliation(s)
- Olga Genilloud
- Fundación MEDINA, Avda Conocimiento 34, 18016 Granada, Spain.
| |
Collapse
|
12
|
Large-scale chemical-genetics yields new M. tuberculosis inhibitor classes. Nature 2019; 571:72-78. [PMID: 31217586 DOI: 10.1038/s41586-019-1315-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/21/2019] [Indexed: 01/07/2023]
Abstract
New antibiotics are needed to combat rising levels of resistance, with new Mycobacterium tuberculosis (Mtb) drugs having the highest priority. However, conventional whole-cell and biochemical antibiotic screens have failed. Here we develop a strategy termed PROSPECT (primary screening of strains to prioritize expanded chemistry and targets), in which we screen compounds against pools of strains depleted of essential bacterial targets. We engineered strains that target 474 essential Mtb genes and screened pools of 100-150 strains against activity-enriched and unbiased compound libraries, probing more than 8.5 million chemical-genetic interactions. Primary screens identified over tenfold more hits than screening wild-type Mtb alone, with chemical-genetic interactions providing immediate, direct target insights. We identified over 40 compounds that target DNA gyrase, the cell wall, tryptophan, folate biosynthesis and RNA polymerase, as well as inhibitors that target EfpA. Chemical optimization yielded EfpA inhibitors with potent wild-type activity, thus demonstrating the ability of PROSPECT to yield inhibitors against targets that would have eluded conventional drug discovery.
Collapse
|
13
|
Uncovering complex molecular networks in host-pathogen interactions using systems biology. Emerg Top Life Sci 2019; 3:371-378. [PMID: 33523202 DOI: 10.1042/etls20180174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/12/2019] [Accepted: 04/25/2019] [Indexed: 12/26/2022]
Abstract
Interactions between pathogens and their hosts can induce complex changes in both host and pathogen states to privilege pathogen survival or host clearance of the pathogen. To determine the consequences of specific host-pathogen interactions, a variety of techniques in microbiology, cell biology, and immunology are available to researchers. Systems biology that enables unbiased measurements of transcriptomes, proteomes, and other biomolecules has become increasingly common in the study of host-pathogen interactions. These approaches can be used to generate novel hypotheses or to characterize the effects of particular perturbations across an entire biomolecular network. With proper experimental design and complementary data analysis tools, high-throughput omics techniques can provide novel insights into the mechanisms that underlie processes from phagocytosis to pathogen immune evasion. Here, we provide an overview of the suite of biochemical approaches for high-throughput analyses of host-pathogen interactions, analytical frameworks for understanding the resulting datasets, and a vision for the future of this exciting field.
Collapse
|
14
|
Peters CE, Lamsa A, Liu RB, Quach D, Sugie J, Brumage L, Pogliano J, Lopez-Garrido J, Pogliano K. Rapid Inhibition Profiling Identifies a Keystone Target in the Nucleotide Biosynthesis Pathway. ACS Chem Biol 2018; 13:3251-3258. [PMID: 30133247 DOI: 10.1021/acschembio.8b00273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Understanding the mechanism of action (MOA) of new antimicrobial agents is a critical step in drug discovery but is notoriously difficult for compounds that appear to inhibit multiple cellular pathways. We recently described image-based approaches [bacterial cytological profiling and rapid inducible profiling (RIP)] for identifying the cellular pathways targeted by antibiotics. Here we have applied these methods to examine the effects of proteolytically degrading enzymes involved in pyrimidine nucleotide biosynthesis, a pathway that produces intermediates for transcription, DNA replication, and cell envelope synthesis. We show that rapid removal of enzymes directly involved in deoxyribonucleotide synthesis blocks DNA replication. However, degradation of cytidylate kinase (CMK), which catalyzes reactions involved in the synthesis of both ribonucleotides and deoxyribonucleotides, blocks both DNA replication and wall teichoic acid biosynthesis, producing cytological effects identical to those created by simultaneously inhibiting both processes with the antibiotics ciprofloxacin and tunicamycin. Our results suggest that RIP can be used to identify and characterize potential keystone enzymes like CMK whose inhibition dramatically affects multiple pathways, thereby revealing important metabolic connections. Identifying and understanding the role of keystone targets might also help to determine the MOAs of drugs that appear to inhibit multiple targets.
Collapse
Affiliation(s)
- Christine E. Peters
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Anne Lamsa
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Roland B. Liu
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Diana Quach
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Joseph Sugie
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Lauren Brumage
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Javier Lopez-Garrido
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
15
|
Santiago M, Lee W, Fayad AA, Coe KA, Rajagopal M, Do T, Hennessen F, Srisuknimit V, Müller R, Meredith TC, Walker S. Genome-wide mutant profiling predicts the mechanism of a Lipid II binding antibiotic. Nat Chem Biol 2018; 14:601-608. [PMID: 29662210 PMCID: PMC5964011 DOI: 10.1038/s41589-018-0041-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
Identifying targets of antibacterial compounds remains a challenging step in antibiotic development. We have developed a two-pronged functional genomics approach to predict mechanism of action that uses mutant fitness data from antibiotic-treated transposon libraries containing both upregulation and inactivation mutants. We treated a Staphylococcus aureus transposon library containing 690,000 unique insertions with 32 antibiotics. Upregulation signatures, identified from directional biases in insertions, revealed known molecular targets and resistance mechanisms for the majority of these. Because single gene upregulation does not always confer resistance, we used a complementary machine learning approach to predict mechanism from inactivation mutant fitness profiles. This approach suggested the cell wall precursor Lipid II as the molecular target of the lysocins, a mechanism we have confirmed. We conclude that docking to membrane-anchored Lipid II precedes the selective bacteriolysis that distinguishes these lytic natural products, showing the utility of our approach for nominating antibiotic mechanism of action.
Collapse
Affiliation(s)
- Marina Santiago
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Wonsik Lee
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Antoine Abou Fayad
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Kathryn A Coe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Mithila Rajagopal
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Truc Do
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Fabienne Hennessen
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Veerasak Srisuknimit
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Saarbrücken, Germany.
| | - Timothy C Meredith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA. .,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
16
|
Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of cytokinesis. Nature 2018; 554:528-532. [PMID: 29443967 PMCID: PMC5823765 DOI: 10.1038/nature25506] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
|
17
|
Abstract
Covering: 2006 to 2017Actinomycetes have been, for decades, one of the most important sources for the discovery of new antibiotics with an important number of drugs and analogs successfully introduced in the market and still used today in clinical practice. The intensive antibacterial discovery effort that generated the large number of highly potent broad-spectrum antibiotics, has seen a dramatic decline in the large pharma industry in the last two decades resulting in a lack of new classes of antibiotics with novel mechanisms of action reaching the clinic. Whereas the decline in the number of new chemical scaffolds and the rediscovery problem of old known molecules has become a hurdle for industrial natural products discovery programs, new actinomycetes compounds and leads have continued to be discovered and developed to the preclinical stages. Actinomycetes are still one of the most important sources of chemical diversity and a reservoir to mine for novel structures that is requiring the integration of diverse disciplines. These can range from novel strategies to isolate species previously not cultivated, innovative whole cell screening approaches and on-site analytical detection and dereplication tools for novel compounds, to in silico biosynthetic predictions from whole gene sequences and novel engineered heterologous expression, that have inspired the isolation of new NPs and shown their potential application in the discovery of novel antibiotics. This review will address the discovery of antibiotics from actinomycetes from two different perspectives including: (1) an update of the most important antibiotics that have only reached the clinical development in the recent years despite their early discovery, and (2) an overview of the most recent classes of antibiotics described from 2006 to 2017 in the framework of the different strategies employed to untap novel compounds previously overlooked with traditional approaches.
Collapse
Affiliation(s)
- Olga Genilloud
- Fundación MEDINA, Avda Conocimiento 34, 18016 Granada, Spain.
| |
Collapse
|
18
|
Schüller A, Matzner D, Lünse CE, Wittmann V, Schumacher C, Unsleber S, Brötz-Oesterhelt H, Mayer C, Bierbaum G, Mayer G. Activation of the glmS Ribozyme Confers Bacterial Growth Inhibition. Chembiochem 2017; 18:435-440. [PMID: 28012261 DOI: 10.1002/cbic.201600491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Indexed: 02/06/2023]
Abstract
The ever-growing number of pathogenic bacteria resistant to treatment with antibiotics call for the development of novel compounds with as-yet unexplored modes of action. Here, we demonstrate the in vivo antibacterial activity of carba-α-d-glucosamine (CGlcN). In this mode of action study, we provide evidence that CGlcN-mediated growth inhibition is due to glmS ribozyme activation, and we demonstrate that CGlcN hijacks an endogenous activation pathway, hence utilizing a prodrug mechanism. This is the first report describing antibacterial activity mediated by activating the self-cleaving properties of a ribozyme. Our results open the path towards a compound class with an entirely novel and distinct molecular mechanism.
Collapse
Affiliation(s)
- Anna Schüller
- University of Bonn, LIMES Institute, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Daniel Matzner
- University of Bonn, LIMES Institute, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Christina E Lünse
- University of Bonn, LIMES Institute, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany.,University of Leipzig, Institute for Biochemistry, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Valentin Wittmann
- University of Konstanz, Chemistry Department, Universitaetsstrasse 10, 78464, Konstanz, Germany
| | - Catherine Schumacher
- University of Düsseldorf, Institute for Pharmaceutical Biology, Universitätsstrasse 1, Bld. 26.23, Room 00.44, 40225, Düsseldorf, Germany
| | - Sandra Unsleber
- University of Tübingen, Interfaculty Institute for Microbiology and Infection Medicine, Department of Microbiology & Biotechnology, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- University of Tübingen, Interfaculty Institute for Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Christoph Mayer
- University of Tübingen, Interfaculty Institute for Microbiology and Infection Medicine, Department of Microbiology & Biotechnology, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Gabriele Bierbaum
- University of Bonn, Institute of Medical Microbiology, Immunology and Parasitology, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| | - Günter Mayer
- University of Bonn, LIMES Institute, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| |
Collapse
|
19
|
Competitive Growth Enhances Conditional Growth Mutant Sensitivity to Antibiotics and Exposes a Two-Component System as an Emerging Antibacterial Target in Burkholderia cenocepacia. Antimicrob Agents Chemother 2016; 61:AAC.00790-16. [PMID: 27799222 DOI: 10.1128/aac.00790-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023] Open
Abstract
Chemogenetic approaches to profile an antibiotic mode of action are based on detecting differential sensitivities of engineered bacterial strains in which the antibacterial target (usually encoded by an essential gene) or an associated process is regulated. We previously developed an essential-gene knockdown mutant library in the multidrug-resistant Burkholderia cenocepacia by transposon delivery of a rhamnose-inducible promoter. In this work, we used Illumina sequencing of multiplex-PCR-amplified transposon junctions to track individual mutants during pooled growth in the presence of antibiotics. We found that competition from nontarget mutants magnified the hypersensitivity of a clone underexpressing gyrB to novobiocin by 8-fold compared with hypersensitivity measured during clonal growth. Additional profiling of various antibiotics against a pilot library representing most categories of essential genes revealed a two-component system with unknown function, which, upon depletion of the response regulator, sensitized B. cenocepacia to novobiocin, ciprofloxacin, tetracycline, chloramphenicol, kanamycin, meropenem, and carbonyl cyanide 3-chlorophenylhydrazone, but not to colistin, hydrogen peroxide, and dimethyl sulfoxide. We named the gene cluster esaSR for enhanced sensitivity to antibiotics sensor and response regulator. Mutational analysis and efflux activity assays revealed that while esaS is not essential and is involved in antibiotic-induced efflux, esaR is an essential gene and regulates efflux independently of antibiotic-mediated induction. Furthermore, microscopic analysis of cells stained with propidium iodide provided evidence that depletion of EsaR has a profound effect on the integrity of cell membranes. In summary, we unraveled a previously uncharacterized two-component system that can be targeted to reduce antibiotic resistance in B. cenocepacia.
Collapse
|
20
|
Hardt P, Engels I, Rausch M, Gajdiss M, Ulm H, Sass P, Ohlsen K, Sahl HG, Bierbaum G, Schneider T, Grein F. The cell wall precursor lipid II acts as a molecular signal for the Ser/Thr kinase PknB of Staphylococcus aureus. Int J Med Microbiol 2016; 307:1-10. [PMID: 27989665 DOI: 10.1016/j.ijmm.2016.12.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/22/2016] [Accepted: 12/10/2016] [Indexed: 12/23/2022] Open
Abstract
The assembly of the bacterial cell wall requires synchronization of a multitude of biosynthetic machineries and regulatory networks. The eukaryotic-like serine/threonine kinase PknB has been implicated in coordinating cross-wall formation, autolysis and cell division in Staphylococcus aureus. However, the signal molecule sensed by this kinase remained elusive so far. Here, we provide compelling biochemical evidence that PknB interacts with the ultimate cell wall precursor lipid II, triggering kinase activity. Moreover, we observed crosstalk of PknB with the two component system WalKR and identified the early cell division protein FtsZ as another PknB phosphorylation substrate in S. aureus. In agreement with the implied role in regulation of cell envelope metabolism, we found PknB to preferentially localize to the septum of S. aureus and the PASTA domains to be crucial for recruitment to this site. The data provide a model for the contribution of PknB to control cell wall metabolism and cell division.
Collapse
Affiliation(s)
- Patrick Hardt
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| | - Ina Engels
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marvin Rausch
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Mike Gajdiss
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Hannah Ulm
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| | - Peter Sass
- Interfaculty Institute for Microbiology and Infection Medicine, Department for Microbial Bioactive Compounds, University of Tuebingen, Tuebingen, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Hans-Georg Sahl
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany; Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
21
|
Singh SB. Discovery and development of kibdelomycin, a new class of broad-spectrum antibiotics targeting the clinically proven bacterial type II topoisomerase. Bioorg Med Chem 2016; 24:6291-6297. [DOI: 10.1016/j.bmc.2016.04.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
|
22
|
Abstract
Genetic strategies have yet to come into their own as tools for antibiotic development. While holding a lot of initial promise, they have only recently started to bear fruit in the quest for new drug targets. An ever-increasing body of knowledge is showing that genetics can lead to significant improvements in the success and efficiency of drug discovery. Techniques such as high-frequency transposon mutagenesis and expression modulation have matured and have been applied successfully not only to the identification and characterization of new targets, but also to their validation as tractable weaknesses of bacteria. Past experience shows that choosing targets must not rely on gene essentiality alone, but rather needs to incorporate knowledge of the system as a whole. The ability to manipulate genes and their expression is key to ensuring that we understand the entire set of processes that are affected by drug treatment. Focusing on exacerbating these perturbations, together with the identification of new targets to which resistance has not yet occurred--both enabled by genetic approaches--may point us toward the successful development of new combination therapies engineered based on underlying biology.
Collapse
|
23
|
Exploitation of Fungal Biodiversity for Discovery of Novel Antibiotics. Curr Top Microbiol Immunol 2016; 398:303-338. [PMID: 27422786 DOI: 10.1007/82_2016_496] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fungi were among the first sources for antibiotics. The discovery and development of the penicillin-type and cephalosporin-type β-lactams and their synthetic versions were transformative in emergence of the modern pharmaceutical industry. They remain some of the most important antibiotics, even 70 years after their discovery. Meanwhile, thousands of fungal metabolites have been discovered, yet these metabolites have only contributed a few additional compounds that have entered clinical development. Substantial expansion in fungal biodiversity assessment along with the availability of modern "-OMICS" technology and revolutionary developments in fungal biotechnology have been made in the last 15 years subsequent to the exit of most of the big Pharma companies from the field of novel antibiotics discovery. Therefore, the timing seems opportune to revisit these fascinating chemically rich organisms as a reservoir of small-molecule templates for lead discovery. This review will describe ongoing interdisciplinary scenarios in which specialists in fungal biology collaborate with chemists, pharmacologists and biochemical and process engineers in order to reveal and make new antibiotics. The utility of a pre-selection process based on phylogenetic data and distribution of secondary metabolite encoding gene cluster will be highlighted. Examples of novel bioactive metabolites from fungi derived from special ecological groups and new phylogenetic lineages will also be discussed.
Collapse
|
24
|
Farha MA, Brown ED. Strategies for target identification of antimicrobial natural products. Nat Prod Rep 2016; 33:668-80. [DOI: 10.1039/c5np00127g] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite a pervasive decline in natural product research at many pharmaceutical companies over the last two decades, natural products have undeniably been a prolific and unsurpassed source for new lead antibacterial compounds.
Collapse
Affiliation(s)
- Maya A. Farha
- M.G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry and Biomedical Sciences
- McMaster University
- Hamilton
- Canada
| | - Eric D. Brown
- M.G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry and Biomedical Sciences
- McMaster University
- Hamilton
- Canada
| |
Collapse
|
25
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Application of bacterial cytological profiling to crude natural product extracts reveals the antibacterial arsenal of Bacillus subtilis. J Antibiot (Tokyo) 2015; 69:353-61. [PMID: 26648120 DOI: 10.1038/ja.2015.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/01/2015] [Indexed: 11/09/2022]
Abstract
Although most clinically used antibiotics are derived from natural products, identifying new antibacterial molecules from natural product extracts is difficult due to the complexity of these extracts and the limited tools to correlate biological activity with specific molecules. Here, we show that bacterial cytological profiling (BCP) provides a rapid method for mechanism of action determination on plates and in complex natural product extracts and for activity-guided purification. We prepared an extract from Bacillus subtilis 3610 that killed the Escherichia coli lptD mutant and used BCP to observe two types of bioactivities in the unfractionated extract: inhibition of translation and permeablization of the cytoplasmic membrane. We used BCP to guide purification of the molecules responsible for each activity, identifying the translation inhibitors bacillaene and bacillaene B (glycosylated bacillaene) and demonstrating that two molecules contribute to cell permeabilitization, the bacteriocin subtilosin and the cyclic peptide sporulation killing factor. Our results suggest that bacillaene mediates translational arrest, and show that bacillaene B has a minimum inhibitory concentration 10 × higher than unmodified bacillaene. Finally, we show that BCP can be used to screen strains on an agar plate without the need for extract preparation, greatly saving time and improving throughput. Thus, BCP simplifies the isolation of novel natural products, by identifying strains, crude extracts and fractions with interesting bioactivities even when multiple activities are present, allowing investigators to focus labor-intensive steps on those with desired activities.
Collapse
|
27
|
Balibar CJ, Roemer T. Yeast: a microbe with macro-implications to antimicrobial drug discovery. Brief Funct Genomics 2015; 15:147-54. [PMID: 26443612 DOI: 10.1093/bfgp/elv038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Paramount to any rational discovery of new antibiotics displaying novel mechanisms of action is a deep knowledge of the genetic basis of microbial growth, division and virulence. The bakers' yeast,Saccharomyces cerevisiae, illustrates the highest understanding of the genetic underpinnings of microbial life, and from this framework, a systems biology paradigm has evolved, begging to be emulated in antibacterial discovery. Here, we review landmark events in the history of yeast genomics that provide this new foundation for antibacterial drug discovery.
Collapse
|
28
|
Fedorenko V, Genilloud O, Horbal L, Marcone GL, Marinelli F, Paitan Y, Ron EZ. Antibacterial Discovery and Development: From Gene to Product and Back. BIOMED RESEARCH INTERNATIONAL 2015; 2015:591349. [PMID: 26339625 PMCID: PMC4538407 DOI: 10.1155/2015/591349] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/30/2014] [Accepted: 01/13/2015] [Indexed: 12/23/2022]
Abstract
Concern over the reports of antibiotic-resistant bacterial infections in hospitals and in the community has been publicized in the media, accompanied by comments on the risk that we may soon run out of antibiotics as a way to control infectious disease. Infections caused by Enterococcus faecium, Staphylococcus aureus, Klebsiella species, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, and other Enterobacteriaceae species represent a major public health burden. Despite the pharmaceutical sector's lack of interest in the topic in the last decade, microbial natural products continue to represent one of the most interesting sources for discovering and developing novel antibacterials. Research in microbial natural product screening and development is currently benefiting from progress that has been made in other related fields (microbial ecology, analytical chemistry, genomics, molecular biology, and synthetic biology). In this paper, we review how novel and classical approaches can be integrated in the current processes for microbial product screening, fermentation, and strain improvement.
Collapse
Affiliation(s)
- Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv 79005, Ukraine
| | - Olga Genilloud
- Fundación MEDINA, Health Sciences Technology Park, 18016 Granada, Spain
| | - Liliya Horbal
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv 79005, Ukraine
| | - Giorgia Letizia Marcone
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- The Protein Factory, Interuniversity Centre Politecnico di Milano, ICRM CNR Milano, and University of Insubria, 21100 Varese, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- The Protein Factory, Interuniversity Centre Politecnico di Milano, ICRM CNR Milano, and University of Insubria, 21100 Varese, Italy
| | - Yossi Paitan
- Clinical Microbiology Laboratory, Meir Medical Center, 44281 Kfar Saba, Israel
| | - Eliora Z. Ron
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 6997801 Tel Aviv, Israel
- Galilee Research Institute (MIGAL), 11016 Kiryat Shmona, Israel
| |
Collapse
|
29
|
Chiriac AI, Kloss F, Krämer J, Vuong C, Hertweck C, Sahl HG. Mode of action of closthioamide: the first member of the polythioamide class of bacterial DNA gyrase inhibitors. J Antimicrob Chemother 2015; 70:2576-88. [PMID: 26174721 DOI: 10.1093/jac/dkv161] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 05/23/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The spread of MDR bacteria represents a serious threat to human society and novel antibiotic drugs, preferably from new chemical classes, are urgently needed. Closthioamide was isolated from the strictly anaerobic bacterium Clostridium cellulolyticum and belongs to a new class of natural products, the polythioamides. Here, we investigated the antimicrobial activity and mechanism of action of closthioamide. METHODS For assessing the antimicrobial activity of closthioamide, MIC values and killing kinetics were determined. To identify its target pathway, whole-cell-based assays were used including analysis of macromolecular synthesis and recording the susceptibility profile of a library of clones with down-regulated potential target genes. Subsequently, the inhibitory effect of closthioamide on the activity of isolated target enzymes, e.g. DNA gyrase and topoisomerase IV, was evaluated. RESULTS Closthioamide had broad-spectrum activity against Gram-positive bacteria. Notably, closthioamide was very potent against MRSA and VRE strains. Closthioamide impaired DNA replication and inhibited DNA gyrase activity, in particular the ATPase function of gyrase and of topoisomerase IV, whereas there was little effect on the cleavage-rejoining function. Closthioamide also inhibited the relaxation activity of DNA gyrase, which does not require ATP hydrolysis, and thus may allosterically rather than directly interfere with the ATPase activity of gyrase. Cross-resistance to ciprofloxacin and novobiocin could not be detected in experimental mutants and clinical isolates. CONCLUSIONS Closthioamide, a member of an unprecedented class of antibiotics, is a potent inhibitor of bacterial DNA gyrase; however, its molecular mechanism differs from that of the quinolones and aminocoumarins.
Collapse
Affiliation(s)
- Alina Iulia Chiriac
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Florian Kloss
- Biomolecular Chemistry Department, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
| | - Jonas Krämer
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Cuong Vuong
- Department of Bacteriology, AiCuris GmbH & Co. KG, Wuppertal, Germany
| | - Christian Hertweck
- Biomolecular Chemistry Department, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
| | - Hans-Georg Sahl
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| |
Collapse
|
30
|
Abstract
The dramatic rise in microbial drug resistance in recent years has led to ongoing searches for novel drugs to add to the armory against infectious disease. Nevertheless, a paucity of new antibacterial drugs in discovery and development pipelines using traditional approaches has prompted a variety of unconventional and disruptive strategies for antibacterial drug discovery. Herein, we review recent nontraditional approaches that have been piloted for early drug discovery efforts. These unique methodologies open new avenues for finding the next generation of antimicrobials.
Collapse
Affiliation(s)
- Maya A Farha
- M.G. DeGroote Institute for Infectious Disease Research, and Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario, Canada
| | - Eric D Brown
- M.G. DeGroote Institute for Infectious Disease Research, and Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario, Canada
| |
Collapse
|
31
|
Abstract
Very few chemically novel agents have been approved for antibacterial chemotherapies during the last 50 yr. Yet new antibacterial drugs are needed to reduce the impact on global health of an increasing number of drug-resistant infections, including highly drug-resistant forms of tuberculosis. This review discusses how genetic approaches can be used to study the mechanism of action of whole-cell screening hits and facilitate target-driven strategies for antimicrobial drug development.
Collapse
Affiliation(s)
- Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
32
|
Small-molecule inhibitors of Staphylococcus aureus RnpA-mediated RNA turnover and tRNA processing. Antimicrob Agents Chemother 2015; 59:2016-28. [PMID: 25605356 DOI: 10.1128/aac.04352-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New agents are urgently needed for the therapeutic treatment of Staphylococcus aureus infections. In that regard, S. aureus RNase RnpA may represent a promising novel dual-function antimicrobial target that participates in two essential cellular processes, RNA degradation and tRNA maturation. Accordingly, we previously used a high-throughput screen to identify small-molecule inhibitors of the RNA-degrading activity of the enzyme and showed that the RnpA inhibitor RNPA1000 is an attractive antimicrobial development candidate. In this study, we used a series of in vitro and cellular assays to characterize a second RnpA inhibitor, RNPA2000, which was identified in our initial screening campaign and is structurally distinct from RNPA1000. In doing so, it was found that S. aureus RnpA does indeed participate in 5'-precursor tRNA processing, as was previously hypothesized. Further, we show that RNPA2000 is a bactericidal agent that inhibits both RnpA-associated RNA degradation and tRNA maturation activities both in vitro and within S. aureus. The compound appears to display specificity for RnpA, as it did not significantly affect the in vitro activities of unrelated bacterial or eukaryotic ribonucleases and did not display measurable human cytotoxicity. Finally, we show that RNPA2000 exhibits antimicrobial activity and inhibits tRNA processing in efflux-deficient Gram-negative pathogens. Taken together, these data support the targeting of RnpA for antimicrobial development purposes, establish that small-molecule inhibitors of both of the functions of the enzyme can be identified, and lend evidence that RnpA inhibitors may have broad-spectrum antimicrobial activities.
Collapse
|
33
|
A Shigella flexneri virulence plasmid encoded factor controls production of outer membrane vesicles. G3-GENES GENOMES GENETICS 2014; 4:2493-503. [PMID: 25378474 PMCID: PMC4267944 DOI: 10.1534/g3.114.014381] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Shigella spp. use a repertoire of virulence plasmid-encoded factors to cause shigellosis. These include components of a Type III Secretion Apparatus (T3SA) that is required for invasion of epithelial cells and many genes of unknown function. We constructed an array of 99 deletion mutants comprising all genes encoded by the virulence plasmid (excluding those known to be required for plasmid maintenance) of Shigella flexneri. We screened these mutants for their ability to bind the dye Congo red: an indicator of T3SA function. This screen focused our attention on an operon encoding genes that modify the cell envelope including virK, a gene of partially characterized function. We discovered that virK is required for controlled release of proteins to the culture supernatant. Mutations in virK result in a temperature-dependent overproduction of outer membrane vesicles (OMVs). The periplasmic chaperone/protease DegP, a known regulator of OMV production in Escherichia coli (encoded by a chromosomal gene), was found to similarly control OMV production in S. flexneri. Both virK and degP show genetic interactions with mxiD, a structural component of the T3SA. Our results are consistent with a model in which VirK and DegP relieve the periplasmic stress that accompanies assembly of the T3SA.
Collapse
|
34
|
Genilloud O. The re-emerging role of microbial natural products in antibiotic discovery. Antonie Van Leeuwenhoek 2014; 106:173-88. [PMID: 24923558 DOI: 10.1007/s10482-014-0204-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/23/2014] [Indexed: 11/28/2022]
Abstract
New classes of antibacterial compounds are urgently needed to respond to the high frequency of occurrence of resistances to all major classes of known antibiotics. Microbial natural products have been for decades one of the most successful sources of drugs to treat infectious diseases but today, the emerging unmet clinical need poses completely new challenges to the discovery of novel candidates with the desired properties to be developed as antibiotics. While natural products discovery programs have been gradually abandoned by the big pharma, smaller biotechnology companies and research organizations are taking over the lead in the discovery of novel antibacterials. Recent years have seen new approaches and technologies being developed and integrated in a multidisciplinary effort to further exploit microbial resources and their biosynthetic potential as an untapped source of novel molecules. New strategies to isolate novel species thought to be uncultivable, and synthetic biology approaches ranging from genome mining of microbial strains for cryptic biosynthetic pathways to their heterologous expression have been emerging in combination with high throughput sequencing platforms, integrated bioinformatic analysis, and on-site analytical detection and dereplication tools for novel compounds. These different innovative approaches are defining a completely new framework that is setting the bases for the future discovery of novel chemical scaffolds that should foster a renewed interest in the identification of novel classes of natural product antibiotics from the microbial world.
Collapse
Affiliation(s)
- Olga Genilloud
- Fundación MEDINA, Avda Conocimiento 3, Parque Tecnológico Ciencias de la Salud, 18016, Granada, Spain,
| |
Collapse
|
35
|
Isolation, structure elucidation and antibacterial activity of a new tetramic acid, ascosetin. J Antibiot (Tokyo) 2014; 67:527-31. [PMID: 24690911 DOI: 10.1038/ja.2014.33] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 02/17/2014] [Accepted: 02/26/2014] [Indexed: 11/08/2022]
Abstract
The ever-increasing bacterial resistance to clinical antibiotics is making many drugs ineffective and creating significant treatment gaps. This can be only circumvented by the discovery of antibiotics with new mechanisms of action. We report here the identification of a new tetramic acid, ascosetin, from an Ascomycete using the Staphylococcus aureus fitness test screening method. The structure was elucidated by spectroscopic methods including 2D NMR and HRMS. Relative stereochemistry was determined by ROESY and absolute configuration was deduced by comparative CD spectroscopy. Ascosetin inhibited bacterial growth with 2-16 μg ml(-1) MIC values against Gram-positive strains including methicillin-resistant S. aureus. It also inhibited the growth of Haemophilus influenzae with a MIC value of 8 μg ml(-1). It inhibited DNA, RNA, protein and lipid synthesis with similar IC50 values, suggesting a lack of specificity; however, it produced neither bacterial membrane nor red blood cell lysis. It showed selectivity for bacterial growth inhibition compared with fungal but not mammalian cells. The isolation, structure and biological activity of ascosetin have been detailed here.
Collapse
|
36
|
Ondeyka J, Buevich AV, Williamson RT, Zink DL, Polishook JD, Occi J, Vicente F, Basilio A, Bills GF, Donald RGK, Phillips JW, Goetz MA, Singh SB. Isolation, structure elucidation, and biological activity of altersolanol P using Staphylococcus aureus fitness test based genome-wide screening. JOURNAL OF NATURAL PRODUCTS 2014; 77:497-502. [PMID: 24428261 DOI: 10.1021/np400759f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bacteria continue to evade existing antibiotics by acquiring resistance by various mechanisms, leading to loss of antibiotic effectiveness. To avoid an epidemic from infections of incurable drug-resistant bacteria, new antibiotics with new modes of action are desperately needed. Using a genome-wide mechanism of action-guided whole cell screening approach based on antisense Staphylococcus aureus fitness test technology, we report herein the discovery of altersolanol P (1), a new tetrahydroanthraquinone from an unknown fungus from the Hypocreales isolated from forest litter collected in Puerto Rico. The structure was elucidated by high-resolution mass spectrometry and 2D NMR spectroscopy. Relative stereochemistry was established by NOESY correlations, and absolute configuration was deduced by the application of MPA ester-based methodology. Observed (1)H and (13)C NMR shifts were well aligned with the corresponding chemical shifts predicted by DFT calculations. Altersolanol P exhibited Gram-positive antibacterial activity (MIC range 1-8 μg/mL) and inhibited the growth of Gram-negative Haemophilus influenzae (MIC 2 μg/mL). The isolation, structure elucidation, and antibacterial activity of altersolanol P are described.
Collapse
Affiliation(s)
- John Ondeyka
- Merck Research Laboratories , Rahway, New Jersey 07065 and Kenilworth, New Jersey 07033, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Silva I, Real LJ, Ward MS, Xu HH. A disk-diffusion-based target identification platform for antibacterials (TIPA): an inducible assay for profiling MOAs of antibacterial compounds. Appl Microbiol Biotechnol 2014; 98:5551-66. [PMID: 24622888 DOI: 10.1007/s00253-014-5623-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
Abstract
One of the challenges in antibiotic lead discovery is the difficulty and time-consuming task of determining the mechanism of action (MOA) of antibacterial compounds. In this report, we describe the development and validation of a facile and inexpensive assay system utilizing disk diffusion of inhibitors on solid agar medium embedded with mixed pools of a comprehensive collection of Escherichia coli clones each containing a plasmid-borne inducible essential gene from E. coli. From individual clones, pilot small-scale (48 or 50 clones) assays, to full-scale target identification platform for antibacterials (TIPA) system, involving a variety of assay formats (liquid vs solid media, individual vs mix clones), we demonstrate that elevated resistance phenotypes of relevant cell clones were highly specific. In particular, the TIPA system was able to reveal cellular targets of several known antibacterial inhibitors: cerulenin, diazaborine, indolmycin, phosphomycin, and triclosan. Complementary to several existing MOA profiling schemes, the TIPA system offers a simple and low-cost method for elucidating the target proteins of antibacterial inhibitors, thus will facilitate discovery and development of novel antibacterial compounds to combat multidrug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Isba Silva
- Department of Biological Sciences, California State University, Los Angeles, 5151 State University Dr., Los Angeles, CA, 90032, USA
| | | | | | | |
Collapse
|
38
|
Abstract
The increasing emergence of antimicrobial multiresistant bacteria is of great concern to public health. While these bacteria are becoming an ever more prominent cause of nosocomial and community-acquired infections worldwide, the antibiotic discovery pipeline has been stalled in the last few years with very few efforts in the research and development of novel antibacterial therapies. Some of the root causes that have hampered current antibiotic drug development are the lack of understanding of the mode of action (MOA) of novel antibiotic molecules and the poor characterization of the bacterial physiological response to antibiotics that ultimately causes resistance. Here, we review how bacterial genetic tools can be applied at the genomic level with the goal of profiling resistance to antibiotics and elucidating antibiotic MOAs. Specifically, we highlight how chemical genomic detection of the MOA of novel antibiotic molecules and antibiotic profiling by next-generation sequencing are leveraging basic antibiotic research to unprecedented levels with great opportunities for knowledge translation.
Collapse
Affiliation(s)
- Silvia T Cardona
- a Department of Microbiology , University of Manitoba , Winnipeg , Canada and.,b Department of Medical Microbiology & Infectious Disease , University of Manitoba , Winnipeg , Canada
| | - Carrie Selin
- a Department of Microbiology , University of Manitoba , Winnipeg , Canada and
| | - April S Gislason
- a Department of Microbiology , University of Manitoba , Winnipeg , Canada and
| |
Collapse
|
39
|
Rao C V S, De Waelheyns E, Economou A, Anné J. Antibiotic targeting of the bacterial secretory pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1762-83. [PMID: 24534745 DOI: 10.1016/j.bbamcr.2014.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/27/2014] [Accepted: 02/06/2014] [Indexed: 02/06/2023]
Abstract
Finding new, effective antibiotics is a challenging research area driven by novel approaches required to tackle unconventional targets. In this review we focus on the bacterial protein secretion pathway as a target for eliminating or disarming pathogens. We discuss the latest developments in targeting the Sec-pathway for novel antibiotics focusing on two key components: SecA, the ATP-driven motor protein responsible for driving preproteins across the cytoplasmic membrane and the Type I signal peptidase that is responsible for the removal of the signal peptide allowing the release of the mature protein from the membrane. We take a bird's-eye view of other potential targets in the Sec-pathway as well as other Sec-dependent or Sec-independent protein secretion pathways as targets for the development of novel antibiotics. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Smitha Rao C V
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, O&N1, 6th floor, Herestraat 49, P.O. Box 1037, B-3000 Leuven, Belgium.
| | - Evelien De Waelheyns
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, O&N1, 6th floor, Herestraat 49, P.O. Box 1037, B-3000 Leuven, Belgium.
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, O&N1, 6th floor, Herestraat 49, P.O. Box 1037, B-3000 Leuven, Belgium; Institute of Molecular Biology and Biotechnology, FORTH, University of Crete, P.O. Box 1385, GR-711 10 Iraklio, Crete, Greece; Department of Biology, University of Crete, P.O. Box 1385, GR-71110 Iraklio, Crete, Greece.
| | - Jozef Anné
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, O&N1, 6th floor, Herestraat 49, P.O. Box 1037, B-3000 Leuven, Belgium.
| |
Collapse
|
40
|
Kibdelomycin is a potent and selective agent against toxigenic Clostridium difficile. Antimicrob Agents Chemother 2014; 58:2387-92. [PMID: 24514098 DOI: 10.1128/aac.00021-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clostridium difficile is the causative agent of C. difficile-associated diarrhea (CDAD), with increased risk in elderly populations. Kibdelomycin, a novel natural-product inhibitor of type II topoisomerase enzymes, was evaluated for activity against C. difficile and gastrointestinal anaerobic organisms. Toxigenic C. difficile isolates (n=168) from U.S. hospitals and anaerobic Gram-positive and Gram-negative organisms (n=598) from Chicago-area hospitals were tested. Kibdelomycin showed potent activity against toxigenic C. difficile (MIC90=0.25 μg/ml) and most Gram-positive aerobic organisms but had little activity against Bacteroides species (MIC50>32 μg/ml; n=270). Potent anti-C. difficile activity was also observed in the hamster model of C. difficile colitis. Dosing at 1.6 mg/kg (twice-daily oral dose) resulted in protection from a lethal infection and a 2-log reduction in C. difficile cecal counts. A 6.25-mg/kg twice-daily oral dose completely eliminated detectable C. difficile counts in cecal contents. A single 6.25-mg/kg oral dose showed that cecal contents were exposed to the drug at >2 μM (eightfold higher than the MIC), with no significant plasma exposure. These findings support further exploration of kibdelomycin for development of an anti-C. difficile agent.
Collapse
|
41
|
Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O. Antibiotic resistance-the need for global solutions. THE LANCET. INFECTIOUS DISEASES 2013; 13:1057-98. [PMID: 24252483 DOI: 10.1016/s1473-3099(13)70318-9] [Citation(s) in RCA: 2661] [Impact Index Per Article: 221.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences affect everybody in the world. Similarities with climate change are evident. Many efforts have been made to describe the many different facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to effective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed.
Collapse
Affiliation(s)
- Ramanan Laxminarayan
- Center for Disease Dynamics, Economics and Policy, Washington, DC, USA; Princeton University, Princeton NJ, USA; Public Health Foundation of India, New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mann PA, Müller A, Xiao L, Pereira PM, Yang C, Ho Lee S, Wang H, Trzeciak J, Schneeweis J, dos Santos MM, Murgolo N, She X, Gill C, Balibar CJ, Labroli M, Su J, Flattery A, Sherborne B, Maier R, Tan CM, Black T, Önder K, Kargman S, Monsma FJ, Pinho MG, Schneider T, Roemer T. Murgocil is a highly bioactive staphylococcal-specific inhibitor of the peptidoglycan glycosyltransferase enzyme MurG. ACS Chem Biol 2013; 8:2442-51. [PMID: 23957438 DOI: 10.1021/cb400487f] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Modern medicine is founded on the discovery of penicillin and subsequent small molecules that inhibit bacterial peptidoglycan (PG) and cell wall synthesis. However, the discovery of new chemically and mechanistically distinct classes of PG inhibitors has become exceedingly rare, prompting speculation that intracellular enzymes involved in PG precursor synthesis are not 'druggable' targets. Here, we describe a β-lactam potentiation screen to identify small molecules that augment the activity of β-lactams against methicillin-resistant Staphylococcus aureus (MRSA) and mechanistically characterize a compound resulting from this screen, which we have named murgocil. We provide extensive genetic, biochemical, and structural modeling data demonstrating both in vitro and in whole cells that murgocil specifically inhibits the intracellular membrane-associated glycosyltransferase, MurG, which synthesizes the lipid II PG substrate that penicillin binding proteins (PBPs) polymerize and cross-link into the cell wall. Further, we demonstrate that the chemical synergy and cidality achieved between murgocil and the β-lactam imipenem is mediated through MurG dependent localization of PBP2 to the division septum. Collectively, these data validate our approach to rationally identify new target-specific bioactive β-lactam potentiation agents and demonstrate that murgocil now serves as a highly selective and potent chemical probe to assist our understanding of PG biosynthesis and cell wall biogenesis across Staphylococcal species.
Collapse
Affiliation(s)
- Paul A. Mann
- Infectious
Disease Research, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Anna Müller
- Institute
of Medical Microbiology, Immunology and Parasitology—Pharmaceutical
Microbiology Section, University of Bonn, Bonn, Germany
| | - Li Xiao
- Computational
Chemistry, Global Structure Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Pedro M. Pereira
- Laboratory
of Bacterial Cell Biology, Instituto de Tecnologia Química
e Biológica, Universidade Nova de Lisboa, Avenida da República, 2781-901 Oeiras, Portugal
| | - Christine Yang
- Medicinal
Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Sang Ho Lee
- Infectious
Disease Research, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Hao Wang
- Infectious
Disease Research, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Joanna Trzeciak
- Infectious
Disease Research, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Jonathan Schneeweis
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Margarida Moreira dos Santos
- Laboratory
of Bacterial Cell Biology, Instituto de Tecnologia Química
e Biológica, Universidade Nova de Lisboa, Avenida da República, 2781-901 Oeiras, Portugal
| | - Nicholas Murgolo
- Research
Solutions, Bioinformatics, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Xinwei She
- Informatics
IT, Merck Inc., Boston, Massachusetts 02110, United States
| | - Charles Gill
- In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Carl J. Balibar
- Infectious
Disease Research, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Marc Labroli
- Medicinal
Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Jing Su
- Medicinal
Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Amy Flattery
- In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Brad Sherborne
- Computational
Chemistry, Global Structure Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Richard Maier
- Procomcure Biotech GmbH, Krems a.d. Donau, Austria
- Division of Molecular
Dermatology, Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Christopher M. Tan
- Infectious
Disease Research, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Todd Black
- Infectious
Disease Research, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Kamil Önder
- Procomcure Biotech GmbH, Krems a.d. Donau, Austria
- Division of Molecular
Dermatology, Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Stacia Kargman
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Frederick J Monsma
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Mariana G. Pinho
- Laboratory
of Bacterial Cell Biology, Instituto de Tecnologia Química
e Biológica, Universidade Nova de Lisboa, Avenida da República, 2781-901 Oeiras, Portugal
| | - Tanja Schneider
- Institute
of Medical Microbiology, Immunology and Parasitology—Pharmaceutical
Microbiology Section, University of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site
Bonn-Cologne, Bonn, Germany
| | - Terry Roemer
- Infectious
Disease Research, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
43
|
Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules. Proc Natl Acad Sci U S A 2013; 110:16169-74. [PMID: 24046367 DOI: 10.1073/pnas.1311066110] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying the mechanism of action for antibacterial compounds is essential for understanding how bacteria interact with one another and with other cell types and for antibiotic discovery efforts, but determining a compound's mechanism of action remains a serious challenge that limits both basic research and antibacterial discovery programs. Here, we show that bacterial cytological profiling (BCP) is a rapid and powerful approach for identifying the cellular pathway affected by antibacterial molecules. BCP can distinguish between inhibitors that affect different cellular pathways as well as different targets within the same pathway. We use BCP to demonstrate that spirohexenolide A, a spirotetronate that is active against methicillin-resistant Staphylococcus aureus, rapidly collapses the proton motive force. BCP offers a simple, one-step assay that can be broadly applied, solving the longstanding problem of how to rapidly determine the cellular target of thousands of compounds.
Collapse
|
44
|
Lünse CE, Schüller A, Mayer G. The promise of riboswitches as potential antibacterial drug targets. Int J Med Microbiol 2013; 304:79-92. [PMID: 24140145 DOI: 10.1016/j.ijmm.2013.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Riboswitches represent promising novel RNA structures for developing compounds that artificially regulate gene expression and, thus, bacterial growth. The past years have seen increasing efforts to identify metabolite-analogues which act on riboswitches and which reveal antibacterial activity. Here, we summarize the current inventory of riboswitch-targeting compounds, their characteristics and antibacterial potential.
Collapse
Affiliation(s)
- Christina E Lünse
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Anna Schüller
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Günter Mayer
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany.
| |
Collapse
|
45
|
Singh SB, Young K, Miesel L. Screening strategies for discovery of antibacterial natural products. Expert Rev Anti Infect Ther 2013; 9:589-613. [PMID: 21819327 DOI: 10.1586/eri.11.81] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Microbial-derived natural products have been a traditional source of antibiotics and antibiotic leads and continue to be effective sources of antibiotics today. The most important of these discoveries were made about 50 years ago. Chemical modifications of natural products discovered during those years continue to produce new clinical agents but their value is now, unfortunately, fading away owing to the exhaustion of opportunities of chemical modifications. The discovery of new natural antibiotics is directly linked to new screening technologies, particularly technologies that can help to eliminate the rediscovery of known antibiotics. In this article, we have reviewed the screening technologies from recent literature as well as originating from authors laboratories that were used for the screening of natural products. The article covers the entire spectrum of screening strategies, including classical empiric whole-cell assays to more sophisticated antisense based hypersensitive Staphylococcus aureus Fitness Test assays designed to screen all targets simultaneously. These technologies have led to the discovery of a series of natural product antibiotics, which have been summarized, including the discovery of platensimycin, platencin, nocathiacins, philipimycin, cyclothialidine and muryamycins. It is quite clear that natural products provide a tremendous opportunity to discover new antibiotics when combined with new hyper-sensitive whole-cell technologies.
Collapse
Affiliation(s)
- Sheo B Singh
- Merck Research Laboratories, Rahway, NJ 07065, USA.
| | | | | |
Collapse
|
46
|
Walsh CT, Wencewicz TA. Prospects for new antibiotics: a molecule-centered perspective. J Antibiot (Tokyo) 2013; 67:7-22. [DOI: 10.1038/ja.2013.49] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/22/2013] [Accepted: 05/01/2013] [Indexed: 12/12/2022]
|
47
|
Systems-level antimicrobial drug and drug synergy discovery. Nat Chem Biol 2013; 9:222-31. [PMID: 23508188 DOI: 10.1038/nchembio.1205] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/07/2013] [Indexed: 01/01/2023]
Abstract
Here, we review the 'target-centric' genomic strategy to antimicrobial discovery and share our perspective on identification, validation and prioritization of potential antimicrobial drug targets in the context of emerging chemical biology, genomics and phenotypic screening strategies. We propose that coupling the dual processes of antimicrobial small-molecule screening and target identification in a whole-cell context is essential to empirically annotate 'druggable' targets and advance early stage antimicrobial discovery. We also advocate a systems-level approach to annotating synthetic-lethal genetic interactions comprehensively within yeast and bacteria models. The resulting genetic interaction networks provide a landscape to rationally predict and exploit drug synergy between cognate inhibitors. We posit that synergistic combination agents provide an important and largely unexploited strategy to 'repurpose' existing chemical space and simultaneously address issues of potency, spectrum, toxicity and drug resistance in early stages of antimicrobial drug discovery.
Collapse
|
48
|
Brochado AR, Typas A. High-throughput approaches to understanding gene function and mapping network architecture in bacteria. Curr Opin Microbiol 2013; 16:199-206. [DOI: 10.1016/j.mib.2013.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 11/24/2022]
|
49
|
Downregulation of yidC in Escherichia coli by antisense RNA expression results in sensitization to antibacterial essential oils eugenol and carvacrol. PLoS One 2013; 8:e57370. [PMID: 23469191 PMCID: PMC3587592 DOI: 10.1371/journal.pone.0057370] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
Background The rising drug resistance in pathogenic bacteria and inefficiency of current antibiotics to meet clinical requirements has augmented the need to establish new and innovative approaches for antibacterial drug discovery involving identification of novel antibacterial targets and inhibitors. Being obligatory for bacterial growth, essential gene products are considered vital as drug targets. The bacterial protein YidC is highly conserved among pathogens and is essential for membrane protein insertion due to which it holds immense potential as a promising target for antibacterial therapy. Methods/Principal Findings The aim of this study was to explore the feasibility and efficacy of expressed antisense-mediated gene silencing for specific downregulation of yidC in Escherichia coli. We induced RNA silencing of yidC which resulted in impaired growth of the host cells. This was followed by a search for antibacterial compounds sensitizing the YidC depleted cells as they may act as inhibitors of the essential protein or its products. The present findings affirm that reduction of YidC synthesis results in bacterial growth retardation, which warrants the use of this enzyme as a viable target in search of novel antibacterial agents. Moreover, yidC antisense expression in E. coli resulted in sensitization to antibacterial essential oils eugenol and carvacrol. Fractional Inhibitory Concentration Indices (FICIs) point towards high level of synergy between yidC silencing and eugenol/carvacrol treatment. Finally, as there are no known YidC inhibitors, the RNA silencing approach applied in this study put forward rapid means to screen novel potential YidC inhibitors. Conclusions/Significance The present results suggest that YidC is a promising candidate target for screening antibacterial agents. High level of synergy reported here between yidC silencing and eugenol/carvacrol treatment is indicative of a potential antibacterial therapy. This is the first report indicating that the essential gene yidC is a therapeutic target of the antibacterial essential oils eugenol and carvacrol in E. coli.
Collapse
|
50
|
Barker CA, Allison SE, Zlitni S, Nguyen ND, Das R, Melacini G, Capretta AA, Brown ED. Degradation of MAC13243 and studies of the interaction of resulting thiourea compounds with the lipoprotein targeting chaperone LolA. Bioorg Med Chem Lett 2013; 23:2426-31. [PMID: 23473681 DOI: 10.1016/j.bmcl.2013.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/29/2013] [Accepted: 02/01/2013] [Indexed: 11/28/2022]
Abstract
The discovery of novel small molecules that function as antibacterial agents or cellular probes of biology is hindered by our limited understanding of bacterial physiology and our ability to assign mechanism of action. We previously employed a chemical genomic strategy to identify a novel small molecule, MAC13243, as a likely inhibitor of the bacterial lipoprotein targeting chaperone, LolA. Here, we report on the degradation of MAC13243 into the active species, S-(4-chlorobenzyl)isothiourea. Analogs of this compound (e.g., A22) have previously been characterized as inhibitors of the bacterial actin-like protein, MreB. Herein, we demonstrate that the antibacterial activity of MAC13243 and the thiourea compounds are similar; these activities are suppressed or sensitized in response to increases or decreases of LolA copy number, respectively. We provide STD NMR data which confirms a physical interaction between LolA and the thiourea degradation product of MAC13243, with a Kd of ~150 μM. Taken together, we conclude that the thiourea series of compounds share a similar cellular mechanism that includes interaction with LolA in addition to the well-characterized target MreB.
Collapse
Affiliation(s)
- Courtney A Barker
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 2K1
| | | | | | | | | | | | | | | |
Collapse
|