1
|
Wang G. Trikafta rescues F508del-CFTR by tightening specific phosphorylation-dependent interdomain interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624197. [PMID: 39605627 PMCID: PMC11601583 DOI: 10.1101/2024.11.20.624197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Trikafta is well-known for correcting the thermal and gating defects caused by the most common cystic fibrosis mutation F508del in the human cystic fibrosis transmembrane conductance regulator even at physiological temperature. However, the exact pathway is still unclear. Here, the noncovalent interactions among two transmembrane domains (TMD 1 and TMD2), the regulatory (R) domain and two nucleotide binding domains (NBD1 and NBD2), along with the thermoring structures of NBD1, were analyzed around the active gating center. The results demonstrated that Trikafta binding to TMD1 and TMD2 rearranged their interactions with the R domain, releasing the C-terminal region from NBD1 for its tight ATP-dependent dimerization with NBD2, stabilizing NBD1. Taken together, although the deletion of F508 induces the primary thermal defect of NBD1 and then the gating defect at the TMD1-TMD2 interface, Trikafta rescued them in a reverse manner allosterically. Thus, the thermoring structure can be used to uncover the pathway of a drug to correct the thermal defect of health-related protein. Significance Trikafta modulators have been approved by the FDA to treat the most common cystic fibrosis- causing mutation F508del CFTR. However, the molecular action mechanisms of these modulators are still unknown. Following the identification of the gating center in CFTR, this study further revealed that the specific noncovalent interactions of the phosphorylated S813 site with cytoplasmic loops 1 and 4 and N-/C- terminal tails of TMD1 upon Trikafta-triggered tight TMD1- TMD2 interactions at the gating center play a pivotal role in rescuing the primary gating defect and then the thermal defect of F508del CFTR. Highlights Trikafta strengthened TMD1-TMD2 interactions at the gating center of ΔF508-CFTR Tight TMD1-TMD2 interactions allowed specific interactions of the R domain with the ICL1- ICL4 interface and the N-/C- terminal tails of TMD1 Subsequently, the C-terminal region was released from NBD1 for tight ATP-dependent NBD1-NBD2 dimerization, stabilizing NBD1 of ΔF508-CFTR.
Collapse
|
2
|
Cao L, Wu Y, Gong Y, Zhou Q. Small molecule modulators of cystic fibrosis transmembrane conductance regulator (CFTR): Structure, classification, and mechanisms. Eur J Med Chem 2024; 265:116120. [PMID: 38194776 DOI: 10.1016/j.ejmech.2023.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
The advent of small molecule modulators targeting the cystic fibrosis transmembrane conductance regulator (CFTR) has revolutionized the treatment of persons with cystic fibrosis (CF) (pwCF). Presently, these small molecule CFTR modulators have gained approval for usage in approximately 90 % of adult pwCF. Ongoing drug development endeavors are focused on optimizing the therapeutic benefits while mitigating potential adverse effects associated with this treatment approach. Based on their mode of interaction with CFTR, these drugs can be classified into two distinct categories: specific CFTR modulators and non-specific CFTR modulators. Specific CFTR modulators encompass potentiators and correctors, whereas non-specific CFTR modulators encompass activators, proteostasis modulators, stabilizers, reader-through agents, and amplifiers. Currently, four small molecule modulators, all classified as potentiators and correctors, have obtained marketing approval. Furthermore, numerous novel small molecule modulators, exhibiting diverse mechanisms of action, are currently undergoing development. This review aims to explore the classification, mechanisms of action, molecular structures, developmental processes, and interrelationships among small molecule CFTR modulators.
Collapse
Affiliation(s)
- Luyang Cao
- China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yong Wu
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China
| | - Yanchun Gong
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China.
| | - Qingfa Zhou
- China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
3
|
Ensinck MM, Carlon MS. One Size Does Not Fit All: The Past, Present and Future of Cystic Fibrosis Causal Therapies. Cells 2022; 11:cells11121868. [PMID: 35740997 PMCID: PMC9220995 DOI: 10.3390/cells11121868] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic disorder, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Over the last 30 years, tremendous progress has been made in understanding the molecular basis of CF and the development of treatments that target the underlying defects in CF. Currently, a highly effective CFTR modulator treatment (Kalydeco™/Trikafta™) is available for 90% of people with CF. In this review, we will give an extensive overview of past and ongoing efforts in the development of therapies targeting the molecular defects in CF. We will discuss strategies targeting the CFTR protein (i.e., CFTR modulators such as correctors and potentiators), its cellular environment (i.e., proteostasis modulation, stabilization at the plasma membrane), the CFTR mRNA (i.e., amplifiers, nonsense mediated mRNA decay suppressors, translational readthrough inducing drugs) or the CFTR gene (gene therapies). Finally, we will focus on how these efforts can be applied to the 15% of people with CF for whom no causal therapy is available yet.
Collapse
Affiliation(s)
- Marjolein M. Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Flanders, Belgium
- Correspondence:
| |
Collapse
|
4
|
Shishido H, Yoon JS, Skach WR. A small molecule high throughput screening platform to profile conformational properties of nascent, ribosome-bound proteins. Sci Rep 2022; 12:2509. [PMID: 35169219 PMCID: PMC8847357 DOI: 10.1038/s41598-022-06456-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Genetic mutations cause a wide spectrum of human disease by disrupting protein folding, both during and after synthesis. Transient de-novo folding intermediates therefore represent potential drug targets for pharmacological correction of protein folding disorders. Here we develop a FRET-based high-throughput screening (HTS) assay in 1,536-well format capable of identifying small molecules that interact with nascent polypeptides and correct genetic, cotranslational folding defects. Ribosome nascent chain complexes (RNCs) containing donor and acceptor fluorophores were isolated from cell free translation reactions, immobilized on Nickel-NTA/IDA beads, and imaged by high-content microscopy. Quantitative FRET measurements obtained from as little as 0.4 attomole of protein/bead enabled rapid assessment of conformational changes with a high degree of reproducibility. Using this assay, we performed a pilot screen of ~ 50,000 small molecules to identify compounds that interact with RNCs containing the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) harboring a disease-causing mutation (A455E). Screen results yielded 133 primary hits and 1 validated hit that normalized FRET values of the mutant nascent peptide. This system provides a scalable, tractable, structure-based discovery platform for screening small molecules that bind to or impact the folding of protein substrates that are not amenable to traditional biochemical analyses.
Collapse
Affiliation(s)
- Hideki Shishido
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA.,Generate Biomedicines, Inc., 26 Landsdowne St, Cambridge, MA, 02139, USA
| | - Jae Seok Yoon
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA
| | - William R Skach
- Cystic Fibrosis Foundation, 4550 Montgomery Ave., Suite 1100N, Bethesda, MD, 20814, USA.
| |
Collapse
|
5
|
Nietert MM, Vinhoven L, Auer F, Hafkemeyer S, Stanke F. Comprehensive Analysis of Chemical Structures That Have Been Tested as CFTR Activating Substances in a Publicly Available Database CandActCFTR. Front Pharmacol 2021; 12:689205. [PMID: 34955819 PMCID: PMC8692862 DOI: 10.3389/fphar.2021.689205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Cystic fibrosis (CF) is a genetic disease caused by mutations in CFTR, which encodes a chloride and bicarbonate transporter expressed in exocrine epithelia throughout the body. Recently, some therapeutics became available that directly target dysfunctional CFTR, yet research for more effective substances is ongoing. The database CandActCFTR aims to provide detailed and comprehensive information on candidate therapeutics for the activation of CFTR-mediated ion conductance aiding systems-biology approaches to identify substances that will synergistically activate CFTR-mediated ion conductance based on published data. Results: Until 10/2020, we derived data from 108 publications on 3,109 CFTR-relevant substances via the literature database PubMed and further 666 substances via ChEMBL; only 19 substances were shared between these sources. One hundred and forty-five molecules do not have a corresponding entry in PubChem or ChemSpider, which indicates that there currently is no single comprehensive database on chemical substances in the public domain. Apart from basic data on all compounds, we have visualized the chemical space derived from their chemical descriptors via a principal component analysis annotated for CFTR-relevant biological categories. Our online query tools enable the search for most similar compounds and provide the relevant annotations in a structured way. The integration of the KNIME software environment in the back-end facilitates a fast and user-friendly maintenance of the provided data sets and a quick extension with new functionalities, e.g., new analysis routines. CandActBase automatically integrates information from other online sources, such as synonyms from PubChem and provides links to other resources like ChEMBL or the source publications. Conclusion: CandActCFTR aims to establish a database model of candidate cystic fibrosis therapeutics for the activation of CFTR-mediated ion conductance to merge data from publicly available sources. Using CandActBase, our strategy to represent data from several internet resources in a merged and organized form can also be applied to other use cases. For substances tested as CFTR activating compounds, the search function allows users to check if a specific compound or a closely related substance was already tested in the CF field. The acquired information on tested substances will assist in the identification of the most promising candidates for future therapeutics.
Collapse
Affiliation(s)
- Manuel Manfred Nietert
- Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany.,CIDAS Campus Institute Data Science, Georg-August-University, Göttingen, Germany
| | - Liza Vinhoven
- Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Auer
- Institute for Informatics, University of Augsburg, Augsburg, Germany
| | | | - Frauke Stanke
- German Center for Lung Research (DZL), Partner Site BREATH, Hannover, Germany.,Clinic for Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Singh R, Kaur N, Dhingra N, Kaur T. Protein misfolding, ER Stress and Chaperones: An approach to develop chaperone-based therapeutics for Alzheimer's Disease. Int J Neurosci 2021:1-21. [PMID: 34402740 DOI: 10.1080/00207454.2021.1968859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a heterogeneous neurodegenerative disorder with complex etiology that eventually leads to dementia. The main culprit of AD is the extracellular deposition of β-amyloid (Aβ) and intracellular neurofibrillary tangles. The protein conformational change and protein misfolding are the key events of AD pathophysiology, therefore endoplasmic reticulum (ER) stress is an apparent consequence. ER, stress-induced unfolded protein response (UPR) mediators (viz. PERK, IRE1, and ATF6) have been reported widely in the AD brain. Considering these factors, preventing proteins misfolding or aggregation of tau or amyloidogenic proteins appears to be the best approach to halt its pathogenesis. Therefore, therapies through chemical and pharmacological chaperones came to light as an alternative for the treatment of AD. Diverse studies have demonstrated 4-phenylbutyric acid (4-PBA) as a potential therapeutic agent in AD. The current review outlined the mechanism of protein misfolding, different etiological features behind the progression of AD, the significance of ER stress in AD, and the potential therapeutic role of different chaperones to counter AD. The study also highlights the gaps in current knowledge of the chaperones-based therapeutic approach and the possibility of developing chaperones as a potential therapeutic agent for AD treatment.
Collapse
Affiliation(s)
- Rimaljot Singh
- Department of Biophysics, Panjab University Chandigarh, India
| | - Navpreet Kaur
- Department of Biophysics, Panjab University Chandigarh, India
| | - Neelima Dhingra
- University Institute of Pharmaceutical Sciences, Panjab University Chandigarh, India
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University Chandigarh, India
| |
Collapse
|
7
|
Differential Effects of Oleuropein and Hydroxytyrosol on Aggregation and Stability of CFTR NBD1-ΔF508 Domain. JOURNAL OF RESPIRATION 2021. [DOI: 10.3390/jor1030019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cystic Fibrosis (CF) is caused by loss of function mutations in the Cystic Fibrosis transmembrane conductance regulator (CFTR). The folding and assembly of CFTR is inefficient. Deletion of F508 in the first nucleotide binding domain (NBD1-ΔF508) further disrupts protein stability leading to endoplasmic reticulum retention and proteasomal degradation. Stabilization and prevention of NBD1-ΔF508 aggregation is critical to rescuing the folding and function of the entire CFTR channel. We report that the phenolic compounds Oleuropein and Hydroxytryosol reduce aggregation of NBD1-ΔF508. The NBD1-ΔF508 aggregate size was smaller in the presence of Hydroxytryosol as determined by dynamic light scattering. Neither phenolic compound increased the thermal stability of NBD1-ΔF508 as measured by differential scanning fluorimetry. Interestingly, Hydroxytyrosol inhibited the stabilizing effect of the indole compound BIA, a known stabilizer, on NBD1-ΔF508. Molecular docking studies predicted that Oleuropein preferred to bind in the F1-type core ATP-binding subdomain in NBD1. In contrast, Hydroxytyrosol preferred to bind in the α4/α5/α6 helical bundle of the ABCα subdomain of NBD1 next to the putative binding site for BIA. This result suggests that Hydroxytyrosol interferes with BIA binding, thus providing an explanation for the antagonistic effect on NBD1 stability upon incubation with both compounds. To our knowledge, these studies are the first to explore the effects of these two phenolic compounds on the aggregation and stability of NBD1-ΔF508 domain of CFTR.
Collapse
|
8
|
Lopes-Pacheco M, Pedemonte N, Veit G. Discovery of CFTR modulators for the treatment of cystic fibrosis. Expert Opin Drug Discov 2021; 16:897-913. [PMID: 33823716 DOI: 10.1080/17460441.2021.1912732] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a life-threatening inherited disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel expressed at the apical membrane of secretory epithelia. CF leads to multiorgan dysfunction with progressive deterioration of lung function being the major cause of untimely death. Conventional CF therapies target only symptoms and consequences downstream of the primary genetic defect and the current life expectancy and quality of life of these individuals are still very limited. AREA COVERED CFTR modulator drugs are novel-specialized therapies that enhance or even restore functional expression of CFTR mutants and have been approved for clinical use for individuals with specific CF genotypes. This review summarizes classical approaches used for the pre-clinical development of CFTR correctors and potentiators as well as emerging strategies aiming to accelerate modulator development and expand theratyping efforts. EXPERT OPINION Highly effective CFTR modulator drugs are expected to deeply modify the disease course for the majority of individuals with CF. A multitude of experimental approaches have been established to accelerate the development of novel modulators. CF patient-derived specimens are valuable cell models to predict therapeutic effectiveness of existing (and novel) modulators in a precision medicine approach.
Collapse
Affiliation(s)
| | | | - Guido Veit
- Department of Physiology, McGill University, Montréal, Canada
| |
Collapse
|
9
|
Characterization of the mechanism of action of RDR01752, a novel corrector of F508del-CFTR. Biochem Pharmacol 2020; 180:114133. [DOI: 10.1016/j.bcp.2020.114133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022]
|
10
|
Lopes-Pacheco M. CFTR Modulators: The Changing Face of Cystic Fibrosis in the Era of Precision Medicine. Front Pharmacol 2020; 10:1662. [PMID: 32153386 PMCID: PMC7046560 DOI: 10.3389/fphar.2019.01662] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal inherited disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which result in impairment of CFTR mRNA and protein expression, function, stability or a combination of these. Although CF leads to multifaceted clinical manifestations, the respiratory disorder represents the major cause of morbidity and mortality of these patients. The life expectancy of CF patients has substantially lengthened due to early diagnosis and improvements in symptomatic therapeutic regimens. Quality of life remains nevertheless limited, as these individuals are subjected to considerable clinical, psychosocial and economic burdens. Since the discovery of the CFTR gene in 1989, tremendous efforts have been made to develop therapies acting more upstream on the pathogenesis cascade, thereby overcoming the underlying dysfunctions caused by CFTR mutations. In this line, the advances in cell-based high-throughput screenings have been facilitating the fast-tracking of CFTR modulators. These modulator drugs have the ability to enhance or even restore the functional expression of specific CF-causing mutations, and they have been classified into five main groups depending on their effects on CFTR mutations: potentiators, correctors, stabilizers, read-through agents, and amplifiers. To date, four CFTR modulators have reached the market, and these pharmaceutical therapies are transforming patients' lives with short- and long-term improvements in clinical outcomes. Such breakthroughs have paved the way for the development of novel CFTR modulators, which are currently under experimental and clinical investigations. Furthermore, recent insights into the CFTR structure will be useful for the rational design of next-generation modulator drugs. This review aims to provide a summary of recent developments in CFTR-directed therapeutics. Barriers and future directions are also discussed in order to optimize treatment adherence, identify feasible and sustainable solutions for equitable access to these therapies, and continue to expand the pipeline of novel modulators that may result in effective precision medicine for all individuals with CF.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
11
|
Amico G, Brandas C, Moran O, Baroni D. Unravelling the Regions of Mutant F508del-CFTR More Susceptible to the Action of Four Cystic Fibrosis Correctors. Int J Mol Sci 2019; 20:ijms20215463. [PMID: 31683989 PMCID: PMC6862496 DOI: 10.3390/ijms20215463] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease associated with the defective function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that causes obstructive disease and chronic bacterial infections in airway epithelia. The most prevalent CF-causing mutation, the deletion of phenylalanine at position 508 (F508del), leads to CFTR misfolding, trafficking defects and premature degradation. A number of correctors that are able to partially rescue F508del-CFTR processing defects have been identified. Clinical trials have demonstrated that, unfortunately, mono-therapy with the best correctors identified to date does not ameliorate lung function or sweat chloride concentration in homozygous F508del patients. Understanding the mechanisms exerted by currently available correctors to increase mutant F508del-CFTR expression is essential for the development of new CF-therapeutics. We investigated the activity of correctors on the mutant F508del and wild type (WT) CFTR to identify the protein domains whose expression is mostly affected by the action of correctors, and we investigated their mechanisms of action. We found that the four correctors under study, lumacaftor (VX809), the quinazoline derivative VX325, the bithiazole compound corr4a, and the new molecule tezacaftor (VX661), do not influence either the total expression or the maturation of the WT-CFTR transiently expressed in human embryonic kidney 293 (HEK293) cells. Contrarily, they significantly enhance the expression and the maturation of the full length F508del molecule. Three out of four correctors, VX809, VX661 and VX325, seem to specifically improve the expression and the maturation of the mutant CFTR N-half (M1N1, residues 1–633). By contrast, the CFTR C-half (M2N2, residues 837–1480) appears to be the region mainly affected by corr4a. VX809 was shown to stabilize both the WT- and F508del-CFTR N-half isoforms, while VX661 and VX325 demonstrated the ability to enhance the stability only of the mutant F508del polypeptide.
Collapse
Affiliation(s)
- Giulia Amico
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| | - Chiara Brandas
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| | - Debora Baroni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| |
Collapse
|
12
|
Spanò V, Montalbano A, Carbone A, Scudieri P, Galietta LJV, Barraja P. An overview on chemical structures as ΔF508-CFTR correctors. Eur J Med Chem 2019; 180:430-448. [PMID: 31326599 DOI: 10.1016/j.ejmech.2019.07.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
Abstract
Deletion of phenylalanine at position 508 (F508del) in the CFTR protein, is the most common mutation causing cystic fibrosis (CF). F508del causes misfolding and rapid degradation of CFTR protein a defect that can be targeted with pharmacological agents termed "correctors". Correctors belong to various chemical classes but are generally small molecules based on nitrogen sulfur or oxygen heterocycles. The mechanism of action of correctors is generally unknown but there is experimental evidence that some of them can directly act on mutant CFTR improving folding and stability. Here we overview the characteristics of the various F508del correctors described so far to obtain indications on key chemical structures and modifications that are required for mutant protein rescue.
Collapse
Affiliation(s)
- Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Anna Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Paolo Scudieri
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078, Pozzuoli, NA, Italy; Department of Translational Medical Sciences (DISMET), University of Naples, "Federico II", 80131, Naples, Italy
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
13
|
Hanrahan JW, Sato Y, Carlile GW, Jansen G, Young JC, Thomas DY. Cystic Fibrosis: Proteostatic correctors of CFTR trafficking and alternative therapeutic targets. Expert Opin Ther Targets 2019; 23:711-724. [PMID: 31169041 DOI: 10.1080/14728222.2019.1628948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Cystic fibrosis (CF) is the most frequent lethal orphan disease and is caused by mutations in the CFTR gene. The most frequent mutation F508del-CFTR affects multiple organs; infections and subsequent infections and complications in the lung lead to death. Areas covered: This review focuses on new targets and mechanisms that are attracting interest for the development of CF therapies. The F508del-CFTR protein is retained in the endoplasmic reticulum (ER) but has some function if it can traffic to the plasma membrane. Cell-based assays have been used to screen chemical libraries for small molecule correctors that restore its trafficking. Pharmacological chaperones are correctors that bind directly to the F508del-CFTR mutant and promote its folding and trafficking. Other correctors fall into a heterogeneous class of proteostasis modulators that act indirectly by altering cellular homeostasis. Expert opinion: Pharmacological chaperones have so far been the most successful correctors of F508del-CFTR trafficking, but their level of correction means that more than one corrector is required. Proteostasis modulators have low levels of correction but hold promise because some can correct several different CFTR mutations. Identification of their cellular targets and the potential for development may lead to new therapies for CF.
Collapse
Affiliation(s)
- John W Hanrahan
- a Department of Physiology , McGill University , Montréal , QC , Canada.,c Research Institute of the McGill University Health Centre , McGill University , Montréal , QC , Canada
| | - Yukiko Sato
- a Department of Physiology , McGill University , Montréal , QC , Canada.,b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada
| | - Graeme W Carlile
- b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada.,d Department of Biochemistry , McGill University , Montréal , QC , Canada
| | - Gregor Jansen
- d Department of Biochemistry , McGill University , Montréal , QC , Canada
| | - Jason C Young
- b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada.,d Department of Biochemistry , McGill University , Montréal , QC , Canada
| | - David Y Thomas
- b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada.,d Department of Biochemistry , McGill University , Montréal , QC , Canada.,e Department of Human Genetics , McGill University , Montréal , QC , Canada
| |
Collapse
|
14
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
15
|
Pranke I, Golec A, Hinzpeter A, Edelman A, Sermet-Gaudelus I. Emerging Therapeutic Approaches for Cystic Fibrosis. From Gene Editing to Personalized Medicine. Front Pharmacol 2019; 10:121. [PMID: 30873022 PMCID: PMC6400831 DOI: 10.3389/fphar.2019.00121] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
An improved understanding of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein structure and the consequences of CFTR gene mutations have allowed the development of novel therapies targeting specific defects underlying CF. Some strategies are mutation specific and have already reached clinical development; some strategies include a read-through of the specific premature termination codons (read-through therapies, nonsense mediated decay pathway inhibitors for Class I mutations); correction of CFTR folding and trafficking to the apical plasma membrane (correctors for Class II mutations); and an increase in the function of CFTR channel (potentiators therapy for Class III mutations and any mutant with a residual function located at the membrane). Other therapies that are in preclinical development are not mutation specific and include gene therapy to edit the genome and stem cell therapy to repair the airway tissue. These strategies that are directed at the basic CF defects are now revolutionizing the treatment for patients and should positively impact their survival rates.
Collapse
Affiliation(s)
- Iwona Pranke
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Anita Golec
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Alexandre Hinzpeter
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Aleksander Edelman
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Isabelle Sermet-Gaudelus
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France.,Centre de Référence Maladie Rare, Mucoviscidose et Maladies de CFTR, Paris, France.,Faculté de Médecine, Université Paris Descartes, Paris, France
| |
Collapse
|
16
|
Wang W, Guo DY, Tao YX. Therapeutic strategies for diseases caused by loss-of-function mutations in G protein-coupled receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 161:181-210. [DOI: 10.1016/bs.pmbts.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Wang C, Aleksandrov AA, Yang Z, Forouhar F, Proctor EA, Kota P, An J, Kaplan A, Khazanov N, Boël G, Stockwell BR, Senderowitz H, Dokholyan NV, Riordan JR, Brouillette CG, Hunt JF. Ligand binding to a remote site thermodynamically corrects the F508del mutation in the human cystic fibrosis transmembrane conductance regulator. J Biol Chem 2018; 293:17685-17704. [PMID: 29903914 PMCID: PMC6240863 DOI: 10.1074/jbc.ra117.000819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/31/2018] [Indexed: 01/07/2023] Open
Abstract
Many disease-causing mutations impair protein stability. Here, we explore a thermodynamic strategy to correct the disease-causing F508del mutation in the human cystic fibrosis transmembrane conductance regulator (hCFTR). F508del destabilizes nucleotide-binding domain 1 (hNBD1) in hCFTR relative to an aggregation-prone intermediate. We developed a fluorescence self-quenching assay for compounds that prevent aggregation of hNBD1 by stabilizing its native conformation. Unexpectedly, we found that dTTP and nucleotide analogs with exocyclic methyl groups bind to hNBD1 more strongly than ATP and preserve electrophysiological function of full-length F508del-hCFTR channels at temperatures up to 37 °C. Furthermore, nucleotides that increase open-channel probability, which reflects stabilization of an interdomain interface to hNBD1, thermally protect full-length F508del-hCFTR even when they do not stabilize isolated hNBD1. Therefore, stabilization of hNBD1 itself or of one of its interdomain interfaces by a small molecule indirectly offsets the destabilizing effect of the F508del mutation on full-length hCFTR. These results indicate that high-affinity binding of a small molecule to a remote site can correct a disease-causing mutation. We propose that the strategies described here should be applicable to identifying small molecules to help manage other human diseases caused by mutations that destabilize native protein conformation.
Collapse
Affiliation(s)
- Chi Wang
- From the Departments of Biological Sciences and
| | - Andrei A. Aleksandrov
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Zhengrong Yang
- the Department of Chemistry, University of Alabama, Birmingham, Alabama 35294, and
| | | | - Elizabeth A. Proctor
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Pradeep Kota
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jianli An
- the Department of Chemistry, University of Alabama, Birmingham, Alabama 35294, and
| | - Anna Kaplan
- From the Departments of Biological Sciences and
| | - Netaly Khazanov
- the Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | | - Brent R. Stockwell
- From the Departments of Biological Sciences and ,Chemistry, Columbia University, New York, New York 10027
| | - Hanoch Senderowitz
- the Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Nikolay V. Dokholyan
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - John R. Riordan
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | - John F. Hunt
- From the Departments of Biological Sciences and , To whom correspondence should be addressed. Tel.:
212-854-5443; Fax:
212-865-8246; E-mail:
| |
Collapse
|
18
|
Tao YX, Conn PM. Pharmacoperones as Novel Therapeutics for Diverse Protein Conformational Diseases. Physiol Rev 2018; 98:697-725. [PMID: 29442594 DOI: 10.1152/physrev.00029.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
After synthesis, proteins are folded into their native conformations aided by molecular chaperones. Dysfunction in folding caused by genetic mutations in numerous genes causes protein conformational diseases. Membrane proteins are more prone to misfolding due to their more intricate folding than soluble proteins. Misfolded proteins are detected by the cellular quality control systems, especially in the endoplasmic reticulum, and proteins may be retained there for eventual degradation by the ubiquitin-proteasome system or through autophagy. Some misfolded proteins aggregate, leading to pathologies in numerous neurological diseases. In vitro, modulating mutant protein folding by altering molecular chaperone expression can ameliorate some misfolding. Some small molecules known as chemical chaperones also correct mutant protein misfolding in vitro and in vivo. However, due to their lack of specificity, their potential as therapeutics is limited. Another class of compounds, known as pharmacological chaperones (pharmacoperones), binds with high specificity to misfolded proteins, either as enzyme substrates or receptor ligands, leading to decreased folding energy barriers and correction of the misfolding. Because many of the misfolded proteins are misrouted but do not have defects in function per se, pharmacoperones have promising potential in advancing to the clinic as therapeutics, since correcting routing may ameliorate the underlying mechanism of disease. This review will comprehensively summarize this exciting area of research, surveying the literature from in vitro studies in cell lines to transgenic animal models and clinical trials in several protein misfolding diseases.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| | - P Michael Conn
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| |
Collapse
|
19
|
Chronic palmitic acid-induced lipotoxicity correlates with defective trafficking of ATP sensitive potassium channels in pancreatic β cells. J Nutr Biochem 2018; 59:37-48. [DOI: 10.1016/j.jnutbio.2018.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/13/2018] [Accepted: 05/10/2018] [Indexed: 01/09/2023]
|
20
|
Carlile GW, Yang Q, Matthes E, Liao J, Radinovic S, Miyamoto C, Robert R, Hanrahan JW, Thomas DY. A novel triple combination of pharmacological chaperones improves F508del-CFTR correction. Sci Rep 2018; 8:11404. [PMID: 30061653 PMCID: PMC6065411 DOI: 10.1038/s41598-018-29276-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/09/2018] [Indexed: 12/29/2022] Open
Abstract
Pharmacological chaperones (e.g. VX-809, lumacaftor) that bind directly to F508del-CFTR and correct its mislocalization are promising therapeutics for Cystic Fibrosis (CF). However to date, individual correctors provide only ~4% improvement in lung function measured as FEV1, suggesting that multiple drugs will be needed to achieve substantial clinical benefit. Here we examine if multiple sites for pharmacological chaperones exist and can be targeted to enhance the rescue of F508del-CFTR with the premise that additive or synergistic rescue by multiple pharmacological chaperones compared to single correctors indicates that they have different sites of action. First, we found that a combination of the pharmacological chaperones VX-809 and RDR1 provide additive correction of F508del-CFTR. Then using cellular thermal stability assays (CETSA) we demonstrated the possibility of a third pharmacologically important site using the novel pharmacological chaperone tool compound 4-methyl-N-[3-(morpholin-4-yl) quinoxalin-2-yl] benzenesulfonamide (MCG1516A). All three pharmacological chaperones appear to interact with the first nucleotide-binding domain (NBD1). The triple combination of MCG1516A, RDR1, and VX-809 restored CFTR function to >20% that of non-CF cells in well differentiated HBE cells and to much higher levels in other cell types. Thus the results suggest the presence of at least three distinct sites for pharmacological chaperones on F508del-CFTR NBD1, encouraging the development of triple corrector combinations.
Collapse
Affiliation(s)
- Graeme W Carlile
- Cystic Fibrosis Translational Research Center, Department of Biochemistry McGill University Montreal Quebec Canada, H3G 1Y6, Montreal, Quebec, Canada.
| | - Qi Yang
- Cystic Fibrosis Translational Research Center, Department of Biochemistry McGill University Montreal Quebec Canada, H3G 1Y6, Montreal, Quebec, Canada
| | - Elizabeth Matthes
- Cystic Fibrosis Translational Research Center, Department of Physiology McGill University Montreal Quebec Canada, H3G 1Y6, Montreal, Quebec, Canada
| | - Jie Liao
- Cystic Fibrosis Translational Research Center, Department of Physiology McGill University Montreal Quebec Canada, H3G 1Y6, Montreal, Quebec, Canada
| | - Stevo Radinovic
- Cystic Fibrosis Translational Research Center, Department of Biochemistry McGill University Montreal Quebec Canada, H3G 1Y6, Montreal, Quebec, Canada.,National Research Council, Biotechnology Research Institute, 6100 Royalmount Ave, H4P 2R2, Montreal, Quebec, Canada
| | - Carol Miyamoto
- Cystic Fibrosis Translational Research Center, Department of Biochemistry McGill University Montreal Quebec Canada, H3G 1Y6, Montreal, Quebec, Canada
| | - Renaud Robert
- Cystic Fibrosis Translational Research Center, Department of Physiology McGill University Montreal Quebec Canada, H3G 1Y6, Montreal, Quebec, Canada
| | - John W Hanrahan
- Cystic Fibrosis Translational Research Center, Department of Physiology McGill University Montreal Quebec Canada, H3G 1Y6, Montreal, Quebec, Canada
| | - David Y Thomas
- Cystic Fibrosis Translational Research Center, Department of Biochemistry McGill University Montreal Quebec Canada, H3G 1Y6, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Morita M, Matsumoto S, Sato A, Inoue K, Kostsin DG, Yamazaki K, Kawaguchi K, Shimozawa N, Kemp S, Wanders RJ, Kojima H, Okabe T, Imanaka T. Stability of the ABCD1 Protein with a Missense Mutation: A Novel Approach to Finding Therapeutic Compounds for X-Linked Adrenoleukodystrophy. JIMD Rep 2018; 44:23-31. [PMID: 29926352 DOI: 10.1007/8904_2018_118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/30/2018] [Accepted: 05/22/2018] [Indexed: 12/04/2022] Open
Abstract
Mutations in the ABCD1 gene that encodes peroxisomal ABCD1 protein cause X-linked adrenoleukodystrophy (X-ALD), a rare neurodegenerative disorder. More than 70% of the patient fibroblasts with this missense mutation display either a lack or reduction of the ABCD1 protein because of posttranslational degradation. In this study, we analyzed the stability of the missense mutant ABCD1 proteins (p.A616T, p.R617H, and p.R660W) in X-ALD fibroblasts and found that the mutant ABCD1 protein p.A616T has the capacity to recover its function by incubating at low temperature. In the case of such a mutation, chemical compounds that stabilize mutant ABCD1 proteins could be therapeutic candidates. Here, we prepared CHO cell lines stably expressing ABCD1 proteins with a missense mutation in fusion with green fluorescent protein (GFP) at the C-terminal. The stability of each mutant ABCD1-GFP in CHO cells was similar to the corresponding mutant ABCD1 protein in X-ALD fibroblasts. Furthermore, it is of interest that the GFP at the C-terminal was degraded together with the mutant ABCD1 protein. These findings prompted us to use CHO cells expressing mutant ABCD1-GFP for a screening of chemical compounds that can stabilize the mutant ABCD1 protein. We established a fluorescence-based assay method for the screening of chemical libraries in an effort to find compounds that stabilize mutant ABCD1 proteins. The work presented here provides a novel approach to finding therapeutic compounds for X-ALD patients with missense mutations.
Collapse
Affiliation(s)
- Masashi Morita
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Shun Matsumoto
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Airi Sato
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kengo Inoue
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Dzmitry G Kostsin
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Minsk, Belarus.,Establishment of Health "National Anti-Doping Laboratory", Lyasny, Belarus
| | - Kozue Yamazaki
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kosuke Kawaguchi
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Nobuyuki Shimozawa
- Division of Genomic Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Stephan Kemp
- Laboratory of Genetic Metabolic Diseases, Academic Centre, Amsterdam, The Netherlands
| | - Ronald J Wanders
- Laboratory of Genetic Metabolic Diseases, Academic Centre, Amsterdam, The Netherlands
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| | - Tsuneo Imanaka
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| |
Collapse
|
22
|
Speeding Up the Identification of Cystic Fibrosis Transmembrane Conductance Regulator-Targeted Drugs: An Approach Based on Bioinformatics Strategies and Surface Plasmon Resonance. Molecules 2018; 23:molecules23010120. [PMID: 29316712 PMCID: PMC6017603 DOI: 10.3390/molecules23010120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 01/09/2023] Open
Abstract
Cystic fibrosis (CF) is mainly caused by the deletion of Phe 508 (ΔF508) in the cystic fibrosis transmembrane conductance regulator (CFTR) protein that is thus withheld in the endoplasmic reticulum and rapidly degraded by the ubiquitin/proteasome system. New drugs able to rescue ΔF508-CFTR trafficking are eagerly awaited. An integrated bioinformatics and surface plasmon resonance (SPR) approach was here applied to investigate the rescue mechanism(s) of a series of CFTR-ligands including VX809, VX770 and some aminoarylthiazole derivatives (AAT). Computational studies tentatively identified a large binding pocket in the ΔF508-CFTR nucleotide binding domain-1 (NBD1) and predicted all the tested compounds to bind to three sub-regions of this main pocket. Noticeably, the known CFTR chaperone keratin-8 (K8) seems to interact with some residues located in one of these sub-pockets, potentially interfering with the binding of some ligands. SPR results corroborated all these computational findings. Moreover, for all the considered ligands, a statistically significant correlation was determined between their binding capability to ΔF508-NBD1 measured by SPR and the pockets availability measured by computational studies. Taken together, these results demonstrate a strong agreement between the in silico prediction and the SPR-generated binding data, suggesting a path to speed up the identification of new drugs for the treatment of cystic fibrosis.
Collapse
|
23
|
Liessi N, Cichero E, Pesce E, Arkel M, Salis A, Tomati V, Paccagnella M, Damonte G, Tasso B, Galietta LJ, Pedemonte N, Fossa P, Millo E. Synthesis and biological evaluation of novel thiazole- VX-809 hybrid derivatives as F508del correctors by QSAR-based filtering tools. Eur J Med Chem 2018; 144:179-200. [DOI: 10.1016/j.ejmech.2017.12.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 12/29/2022]
|
24
|
Hanrahan JW, Matthes E, Carlile G, Thomas DY. Corrector combination therapies for F508del-CFTR. Curr Opin Pharmacol 2017; 34:105-111. [PMID: 29080476 DOI: 10.1016/j.coph.2017.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/18/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
These are exciting times in the development of therapeutics for cystic fibrosis (CF). New correctors and potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR) are being developed in academic laboratories and pharmaceutical companies, and the field is just beginning to understand their mechanisms of action. Studies of CFTR modulators are also yielding insight into the general principles and strategies that can be used when developing pharmacological chaperones, a new class of drugs. Combining two or even three correctors with a potentiator is an especially promising approach which should lead to further improvements in efficacy and clinical benefit for patients.
Collapse
Affiliation(s)
- John W Hanrahan
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6, Canada; CF Translational Research Centre, McGill University, Canada; Research Institute of the McGill University Hospital Centre, Canada.
| | - Elizabeth Matthes
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6, Canada; CF Translational Research Centre, McGill University, Canada
| | - Graeme Carlile
- CF Translational Research Centre, McGill University, Canada; Department of Biochemistry, McGill University, Canada
| | - David Y Thomas
- CF Translational Research Centre, McGill University, Canada; Department of Biochemistry, McGill University, Canada
| |
Collapse
|
25
|
Affiliation(s)
- George M. Burslem
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| | - Craig M. Crews
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
26
|
PEGylated composite nanoparticles of PLGA and polyethylenimine for safe and efficient delivery of pDNA to lungs. Int J Pharm 2017; 524:382-396. [PMID: 28391040 DOI: 10.1016/j.ijpharm.2017.03.094] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/15/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022]
Abstract
Achieving stable, efficient and non-toxic pulmonary gene delivery is most challenging requirement for successful gene therapy to lung. Composite nanoparticles (NPs) of the poly(lactic-co-glycolic acid) (PLGA) and cationic polymer polyethyleneimine (PEI) is an efficient alternative to viral and liposomal vectors for the pulmonary delivery of pDNA. NPs with different weight ratios (0-12.5%w/w) of PLGA/PEI were prepared and characterized for size, morphology, surface charge, pDNA loading and in vitro release. The in vitro cell uptake and transfection studies in the CFBE41o-cell line revealed that NPs with 10% w/w PEI were more efficient but they exhibited significant cytotoxicity in MTT assays, challenging the safety of this formulation. Surface modifications of these composite NPs through PEGylation reduced toxicity and enhanced cellular uptake and pDNA expression. PEGylation improved diffusion of NPs through the mucus barrier and prevented uptake by pulmonary macrophages. Finally, PEGylated composite NPs were converted to DPI by lyophilization and combined with lactose carrier particles, which resulted in improved aerosolization properties and lung deposition, without affecting pDNA bioactivity. This study demonstrates that a multidisciplinary approach may enable the local delivery of pDNA to lung tissue for effective treatment of deadly lung diseases.
Collapse
|
27
|
Huang H, Wang W, Tao YX. Pharmacological chaperones for the misfolded melanocortin-4 receptor associated with human obesity. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2496-2507. [PMID: 28284973 DOI: 10.1016/j.bbadis.2017.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 01/01/2023]
Abstract
The melanocortin-4 receptor (MC4R) plays a vital role in regulating energy homeostasis. Mutations in the MC4R cause early-onset severe obesity. The majority of loss of function MC4R mutants are retained intracellularly, many of which are not terminally misfolded and can be stabilized and targeted to the plasma membrane by different chaperones. Some of the mutants might be functional once coaxed to the cell surface. Molecular chaperones and chemical chaperones correct the misfolding of some mutant MC4Rs. However, their therapeutic application is very limited due to their non-specific mechanism of action and, for chemical chaperone, high dosage needed to be effective. Several pharmacological chaperones have been identified for the MC4R and Ipsen 5i and Ipsen 17 are the most potent and efficacious. Here we provide a comprehensive review on how different approaches have been applied to rescue misfolded MC4R mutants. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
Affiliation(s)
- Hui Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Wei Wang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
28
|
Hegde RN, Subramanian A, Pothukuchi P, Parashuraman S, Luini A. Rare ER protein misfolding-mistrafficking disorders: Therapeutic developments. Tissue Cell 2017; 49:175-185. [PMID: 28222887 DOI: 10.1016/j.tice.2017.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 12/16/2022]
Abstract
The presence of a functional protein at the appropriate location in the cell is the result of the processes of transcription, translation, folding and trafficking to the correct destination. There are numerous diseases that are caused by protein misfolding, mainly due to mutations in the respective gene. The consequences of this misfolding may be that proteins effectively lose their function, either by being removed by the cellular quality control machinery or by accumulating at the incorrect intracellular or extracellular location. A number of mutations that lead to protein misfolding and affect trafficking to the final destination, e.g. Cystic fibrosis, Wilson's disease, and Progressive Familial Intrahepatic 1 cholestasis, result in proteins that retain partial function if their folding and trafficking is restored either by molecular or pharmacological means. In this review, we discuss several mutant proteins within this class of misfolding diseases and provide an update on the status of molecular and therapeutic developments and potential therapeutic strategies being developed to counter these diseases.
Collapse
Affiliation(s)
| | - Advait Subramanian
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | | | | | - Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy; Istituto di Ricovero e Cura a Carattere Scientifico SDN, Naples, Italy
| |
Collapse
|
29
|
Liang F, Shang H, Jordan NJ, Wong E, Mercadante D, Saltz J, Mahiou J, Bihler HJ, Mense M. High-Throughput Screening for Readthrough Modulators of CFTR PTC Mutations. SLAS Technol 2017; 22:315-324. [PMID: 28376702 DOI: 10.1177/2472630317692561] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cystic fibrosis (CF) is a hereditary disease caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). A large number of nearly 2000 reported mutations, including the premature termination codon (PTC) mutations, urgently require new and personalized medicines. We have developed cell-based assays for readthrough modulators of CFTR PTC mutations (or nonsense mutation suppressors), based on the trafficking and surface expression of CFTR. Approximately 85,000 compounds have been screened for two PTC mutations (Y122X and W1282X). The hit rates at the threshold of 50% greater than vehicle response are 2% and 1.4% for CFTR Y122X and CFTR W1282X, respectively. The overlap of the two hit sets at this stringent hit threshold is relatively small. Only ~28% of the hits from the W1282X screen were also hits in the Y122X screen. The overlap increases to ~50% if compounds are included that in the second screen achieve only a less stringent hit criterion, that is, horseradish peroxidase (HRP) activity greater than three standard deviations above the mean of the vehicle. Our data suggest that personalization may not need to address individual genotypes, but that patients with different CFTR PTC mutations could benefit from the same medicines.
Collapse
Affiliation(s)
- Feng Liang
- 1 CFFT Lab, Cystic Fibrosis Foundation Therapeutics, Lexington, MA, USA
| | - Haibo Shang
- 1 CFFT Lab, Cystic Fibrosis Foundation Therapeutics, Lexington, MA, USA
| | - Nikole J Jordan
- 1 CFFT Lab, Cystic Fibrosis Foundation Therapeutics, Lexington, MA, USA
| | - Eric Wong
- 1 CFFT Lab, Cystic Fibrosis Foundation Therapeutics, Lexington, MA, USA
| | - Dayna Mercadante
- 1 CFFT Lab, Cystic Fibrosis Foundation Therapeutics, Lexington, MA, USA
| | - Josef Saltz
- 1 CFFT Lab, Cystic Fibrosis Foundation Therapeutics, Lexington, MA, USA
| | - Jerome Mahiou
- 1 CFFT Lab, Cystic Fibrosis Foundation Therapeutics, Lexington, MA, USA
| | - Hermann J Bihler
- 1 CFFT Lab, Cystic Fibrosis Foundation Therapeutics, Lexington, MA, USA
| | - Martin Mense
- 1 CFFT Lab, Cystic Fibrosis Foundation Therapeutics, Lexington, MA, USA
| |
Collapse
|
30
|
Callebaut I, Hoffmann B, Lehn P, Mornon JP. Molecular modelling and molecular dynamics of CFTR. Cell Mol Life Sci 2017; 74:3-22. [PMID: 27717958 PMCID: PMC11107702 DOI: 10.1007/s00018-016-2385-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a member of the ATP-binding cassette (ABC) transporter superfamily that functions as an ATP-gated channel. Considerable progress has been made over the last years in the understanding of the molecular basis of the CFTR functions, as well as dysfunctions causing the common genetic disease cystic fibrosis (CF). This review provides a global overview of the theoretical studies that have been performed so far, especially molecular modelling and molecular dynamics (MD) simulations. A special emphasis is placed on the CFTR-specific evolution of an ABC transporter framework towards a channel function, as well as on the understanding of the effects of disease-causing mutations and their specific modulation. This in silico work should help structure-based drug discovery and design, with a view to develop CFTR-specific pharmacotherapeutic approaches for the treatment of CF in the context of precision medicine.
Collapse
Affiliation(s)
- Isabelle Callebaut
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France.
| | - Brice Hoffmann
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France
| | - Pierre Lehn
- INSERM U1078, SFR ScInBioS, Université de Bretagne Occidentale, Brest, France
| | - Jean-Paul Mornon
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France
| |
Collapse
|
31
|
Shin MH, Lim HS. Screening methods for identifying pharmacological chaperones. MOLECULAR BIOSYSTEMS 2017; 13:638-647. [DOI: 10.1039/c6mb00866f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights recent screening methods for identifying pharmacological chaperones, which are small-molecules capable of rescuing misfolded proteins.
Collapse
Affiliation(s)
- Min Hyeon Shin
- Departments of Chemistry and Advanced Material Science
- Pohang University of Science and Technology
- Pohang 37676
- South Korea
| | - Hyun-Suk Lim
- Departments of Chemistry and Advanced Material Science
- Pohang University of Science and Technology
- Pohang 37676
- South Korea
| |
Collapse
|
32
|
The cystic fibrosis transmembrane conductance regulator (CFTR) and its stability. Cell Mol Life Sci 2016; 74:23-38. [PMID: 27734094 PMCID: PMC5209436 DOI: 10.1007/s00018-016-2386-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is responsible for the disease cystic fibrosis (CF). It is a membrane protein belonging to the ABC transporter family functioning as a chloride/anion channel in epithelial cells around the body. There are over 1500 mutations that have been characterised as CF-causing; the most common of these, accounting for ~70 % of CF cases, is the deletion of a phenylalanine at position 508. This leads to instability of the nascent protein and the modified structure is recognised and then degraded by the ER quality control mechanism. However, even pharmacologically ‘rescued’ F508del CFTR displays instability at the cell’s surface, losing its channel function rapidly and it is rapidly removed from the plasma membrane for lysosomal degradation. This review will, therefore, explore the link between stability and structure/function relationships of membrane proteins and CFTR in particular and how approaches to study CFTR structure depend on its stability. We will also review the application of a fluorescence labelling method for the assessment of the thermostability and the tertiary structure of CFTR.
Collapse
|
33
|
Schmidt BZ, Haaf JB, Leal T, Noel S. Cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis: current perspectives. Clin Pharmacol 2016; 8:127-140. [PMID: 27703398 PMCID: PMC5036583 DOI: 10.2147/cpaa.s100759] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutations of the CFTR gene cause cystic fibrosis (CF), the most common recessive monogenic disease worldwide. These mutations alter the synthesis, processing, function, or half-life of CFTR, the main chloride channel expressed in the apical membrane of epithelial cells in the airway, intestine, pancreas, and reproductive tract. Lung disease is the most critical manifestation of CF. It is characterized by airway obstruction, infection, and inflammation that lead to fatal tissue destruction. In spite of great advances in early and multidisciplinary medical care, and in our understanding of the pathophysiology, CF is still considerably reducing the life expectancy of patients. This review highlights the current development in pharmacological modulators of CFTR, which aim at rescuing the expression and/or function of mutated CFTR. While only Kalydeco® and Orkambi® are currently available to patients, many other families of CFTR modulators are undergoing preclinical and clinical investigations. Drug repositioning and personalized medicine are particularly detailed in this review as they represent the most promising strategies for restoring CFTR function in CF.
Collapse
Affiliation(s)
- Béla Z Schmidt
- Stem Cell Biology and Embryology, Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven
| | - Jérémy B Haaf
- Louvain Center for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Teresinha Leal
- Louvain Center for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Sabrina Noel
- Louvain Center for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
34
|
Lopes-Pacheco M. CFTR Modulators: Shedding Light on Precision Medicine for Cystic Fibrosis. Front Pharmacol 2016; 7:275. [PMID: 27656143 PMCID: PMC5011145 DOI: 10.3389/fphar.2016.00275] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is the most common life-threatening monogenic disease afflicting Caucasian people. It affects the respiratory, gastrointestinal, glandular and reproductive systems. The major cause of morbidity and mortality in CF is the respiratory disorder caused by a vicious cycle of obstruction of the airways, inflammation and infection that leads to epithelial damage, tissue remodeling and end-stage lung disease. Over the past decades, life expectancy of CF patients has increased due to early diagnosis and improved treatments; however, these patients still present limited quality of life. Many attempts have been made to rescue CF transmembrane conductance regulator (CFTR) expression, function and stability, thereby overcoming the molecular basis of CF. Gene and protein variances caused by CFTR mutants lead to different CF phenotypes, which then require different treatments to quell the patients' debilitating symptoms. In order to seek better approaches to treat CF patients and maximize therapeutic effects, CFTR mutants have been stratified into six groups (although several of these mutations present pleiotropic defects). The research with CFTR modulators (read-through agents, correctors, potentiators, stabilizers and amplifiers) has achieved remarkable progress, and these drugs are translating into pharmaceuticals and personalized treatments for CF patients. This review summarizes the main molecular and clinical features of CF, emphasizes the latest clinical trials using CFTR modulators, sheds light on the molecular mechanisms underlying these new and emerging treatments, and discusses the major breakthroughs and challenges to treating all CF patients.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Timson DJ. The molecular basis of galactosemia — Past, present and future. Gene 2016; 589:133-41. [DOI: 10.1016/j.gene.2015.06.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022]
|
36
|
Convertino M, Das J, Dokholyan NV. Pharmacological Chaperones: Design and Development of New Therapeutic Strategies for the Treatment of Conformational Diseases. ACS Chem Biol 2016; 11:1471-89. [PMID: 27097127 DOI: 10.1021/acschembio.6b00195] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Errors in protein folding may result in premature clearance of structurally aberrant proteins, or in the accumulation of toxic misfolded species or protein aggregates. These pathological events lead to a large range of conditions known as conformational diseases. Several research groups have presented possible therapeutic solutions for their treatment by developing novel compounds, known as pharmacological chaperones. These cell-permeable molecules selectively provide a molecular scaffold around which misfolded proteins can recover their native folding and, thus, their biological activities. Here, we review therapeutic strategies, clinical potentials, and cost-benefit impacts of several classes of pharmacological chaperones for the treatment of a series of conformational diseases.
Collapse
Affiliation(s)
- Marino Convertino
- Department of Biochemistry
and Biophysics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Jhuma Das
- Department of Biochemistry
and Biophysics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Nikolay V. Dokholyan
- Department of Biochemistry
and Biophysics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
37
|
Dhooghe B, Haaf JB, Noel S, Leal T. Strategies in early clinical development for the treatment of basic defects of cystic fibrosis. Expert Opin Investig Drugs 2016; 25:423-36. [PMID: 26878157 DOI: 10.1517/13543784.2016.1154041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Twenty-six years after the identification of the gene responsible for cystic fibrosis (CF), controversies still surround the pathogenesis of the disease that continues to burden and shorten lives. Therefore, finding effective therapeutic strategies that target the basic defect of CF is crucially needed. AREAS COVERED This review offers a comprehensive survey of fundamental therapies in early stages of development for the treatment of CF. The first part describes recent strategies targeting the basic defect either at the gene or at the transcript level. The second part summarizes a panel of novel strategies targeting protein repair. The third part reports strategies targeting non-CFTR channels. EXPERT OPINION Recent major breakthroughs in CF therapy have been made, raising hope to find a cure for CF. Apart from Vertex corrector and potentiator molecules (lumacaftor, ivacaftor, VX-661) and from ataluren, used to correct nonsense mutations, most compounds being currently tested are in very early (I-II) phases of development and definitive clinical results are keenly expected. Among the broad list of molecules and strategies being tested, the QR-010 compound and inhibitors of phosphodiesterase type 5 (sildenafil, vardenafil) could reveal a strong potentiality as therapeutic candidates to cure CF.
Collapse
Affiliation(s)
- Barbara Dhooghe
- a Louvain centre for Toxicology and Applied Pharmacology , Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Jérémy Boris Haaf
- a Louvain centre for Toxicology and Applied Pharmacology , Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Sabrina Noel
- a Louvain centre for Toxicology and Applied Pharmacology , Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Teresinha Leal
- a Louvain centre for Toxicology and Applied Pharmacology , Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| |
Collapse
|
38
|
Tang C, Lew S, He D. Using a second-order differential model to fit data without baselines in protein isothermal chemical denaturation. Protein Sci 2016; 25:898-904. [PMID: 26757366 DOI: 10.1002/pro.2878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 11/06/2022]
Abstract
In vitro protein stability studies are commonly conducted via thermal or chemical denaturation/renaturation of protein. Conventional data analyses on the protein unfolding/(re)folding require well-defined pre- and post-transition baselines to evaluate Gibbs free-energy change associated with the protein unfolding/(re)folding. This evaluation becomes problematic when there is insufficient data for determining the pre- or post-transition baselines. In this study, fitting on such partial data obtained in protein chemical denaturation is established by introducing second-order differential (SOD) analysis to overcome the limitations that the conventional fitting method has. By reducing numbers of the baseline-related fitting parameters, the SOD analysis can successfully fit incomplete chemical denaturation data sets with high agreement to the conventional evaluation on the equivalent completed data, where the conventional fitting fails in analyzing them. This SOD fitting for the abbreviated isothermal chemical denaturation further fulfills data analysis methods on the insufficient data sets conducted in the two prevalent protein stability studies.
Collapse
Affiliation(s)
- Chuanning Tang
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Scott Lew
- Neotein Therapeutics, New York, New York, 10706, USA
| | - Dacheng He
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
39
|
Hegde RN, Parashuraman S, Iorio F, Ciciriello F, Capuani F, Carissimo A, Carrella D, Belcastro V, Subramanian A, Bounti L, Persico M, Carlile G, Galietta L, Thomas DY, Di Bernardo D, Luini A. Unravelling druggable signalling networks that control F508del-CFTR proteostasis. eLife 2015; 4. [PMID: 26701908 PMCID: PMC4749566 DOI: 10.7554/elife.10365] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/26/2015] [Indexed: 01/17/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in CF transmembrane conductance regulator (CFTR). The most frequent mutation (F508del-CFTR) results in altered proteostasis, that is, in the misfolding and intracellular degradation of the protein. The F508del-CFTR proteostasis machinery and its homeostatic regulation are well studied, while the question whether ‘classical’ signalling pathways and phosphorylation cascades might control proteostasis remains barely explored. Here, we have unravelled signalling cascades acting selectively on the F508del-CFTR folding-trafficking defects by analysing the mechanisms of action of F508del-CFTR proteostasis regulator drugs through an approach based on transcriptional profiling followed by deconvolution of their gene signatures. Targeting multiple components of these signalling pathways resulted in potent and specific correction of F508del-CFTR proteostasis and in synergy with pharmacochaperones. These results provide new insights into the physiology of cellular proteostasis and a rational basis for developing effective pharmacological correctors of the F508del-CFTR defect. DOI:http://dx.doi.org/10.7554/eLife.10365.001 Cystic fibrosis is a genetic disease that commonly affects people of European descent. The condition is caused by mutations in the gene encoding a protein called “cystic fibrosis transmembrane conductance regulator” (or CFTR for short). CFTR forms a channel in the membrane of cells in the lungs that help transport salt across the membrane. Mutated versions of the protein are not as efficient at transporting salts, and eventually this damages the lung tissue. As the damage progresses, individuals become very vulnerable to bacterial infections that further damage the lungs and may eventually lead to death. One of the reasons CFTR mutations are harmful is that they cause the protein to fold up incorrectly and remain trapped inside the cell. Cells have quality control systems that recognize and destroy poorly folded proteins, and so only a few of the mutated CFTR proteins ever make it to the membrane to move salts. New therapies have been developed that improve folding of the protein and/or help the CFTR proteins that make it to the membrane work better. But more and better treatment options are needed. Hegde, Parashuraman et al. have now tested drugs that control how proteins fold and move to the membrane to see how they affect gene expression in cells with the most common cystic fibrosis-causing mutation. These drugs are known to improve the activity of the CFTR mutant, but do so too weakly to be of clinical interest. The experiments revealed that the expression of a few hundred genes was changed in response the drugs. Many of these genes were involved in major signalling pathways that control how CFTR is folded and trafficked within cells. Next, Hegde, Parashuraman et al. tested drugs that inhibit these signalling pathways to see if they improve salt handling in the mutated cells. The experiments demonstrated that these inhibitor drugs efficiently block the breakdown of misfolded CFTR, or boost the likelihood of CFTR making it to the membrane, helping improve salt trafficking in the cells. The inhibitors produced even better results when used in combination with a known CFTR-protecting drug. The results suggest that identifying and targeting signalling pathways involved in the folding, trafficking, and breakdown of CFTR may prove a promising way to treat cystic fibrosis. DOI:http://dx.doi.org/10.7554/eLife.10365.002
Collapse
Affiliation(s)
- Ramanath Narayana Hegde
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Seetharaman Parashuraman
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Francesco Iorio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Fabiana Ciciriello
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Biology and Biotechnology Department "Charles Darwin", Sapienza University, Rome, Italy.,Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montréal, Canada
| | | | | | - Diego Carrella
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Advait Subramanian
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Laura Bounti
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Maria Persico
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Graeme Carlile
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montréal, Canada
| | - Luis Galietta
- U.O.C. Genetica Medica, Institute of Giannina Gaslini, Genova, Italy
| | - David Y Thomas
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montréal, Canada
| | - Diego Di Bernardo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico SDN, Naples, Italy
| |
Collapse
|
40
|
Nieddu E, Pollarolo B, Mazzei MT, Anzaldi M, Schenone S, Pedemonte N, Galietta LJV, Mazzei M. Phenylhydrazones as Correctors of a Mutant Cystic Fibrosis Transmembrane Conductance Regulator. Arch Pharm (Weinheim) 2015; 349:112-23. [DOI: 10.1002/ardp.201500352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Erika Nieddu
- Department of Pharmacy; University of Genova; Genova Italy
| | | | | | - Maria Anzaldi
- Department of Pharmacy; University of Genova; Genova Italy
| | | | | | | | - Mauro Mazzei
- Department of Pharmacy; University of Genova; Genova Italy
| |
Collapse
|
41
|
The search for a common structural moiety among selected pharmacological correctors of the mutant CFTR chloride channel. Future Med Chem 2015; 6:1857-68. [PMID: 25495980 DOI: 10.4155/fmc.14.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The F508del mutation impairs the trafficking of CFTR from endoplasmic reticulum to plasma membrane and is responsible of a severe form of cystic fibrosis. Trafficking can be improved by small organic molecules called 'correctors'. MATERIALS & METHODS By different synthetic ways, we prepared 4-chloroanisole and 2-(4-chloroanisol-2-yl)aminothiazole derivatives. Such compounds were ineffective as correctors but we could find a sign of activity in an intermediate. In the meantime, we found a common pharmacophoric moiety present in four known correctors. RESULTS Following this structural indication, we synthesized a small set of new molecules endowed with a significant, even if not great, F508del-CFTR rescue activity. CONCLUSION The cited structural feature seems interesting in the search of new correctors. To corroborate this observation, later on we found a new pyrazine derivative (Novartis) endowed with a potent activity as corrector and having the cited common design.
Collapse
|
42
|
Synthesis and structure–activity relationship of aminoarylthiazole derivatives as correctors of the chloride transport defect in cystic fibrosis. Eur J Med Chem 2015; 99:14-35. [DOI: 10.1016/j.ejmech.2015.05.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 01/21/2023]
|
43
|
Huynh K, Partch CL. Analysis of protein stability and ligand interactions by thermal shift assay. ACTA ACUST UNITED AC 2015; 79:28.9.1-28.9.14. [PMID: 25640896 DOI: 10.1002/0471140864.ps2809s79] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Purification of recombinant proteins for biochemical assays and structural studies is time-consuming and presents inherent difficulties that depend on the optimization of protein stability. The use of dyes to monitor thermal denaturation of proteins with sensitive fluorescence detection enables rapid and inexpensive determination of protein stability using real-time PCR instruments. By screening a wide range of solution conditions and additives in a 96-well format, the thermal shift assay easily identifies conditions that significantly enhance the stability of recombinant proteins. The same approach can be used as an initial low-cost screen to discover new protein-ligand interactions by capitalizing on increases in protein stability that typically occur upon ligand binding. This unit presents a methodological workflow for small-scale, high-throughput thermal denaturation of recombinant proteins in the presence of SYPRO Orange dye.
Collapse
Affiliation(s)
- Kathy Huynh
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California
| |
Collapse
|
44
|
The safety dance: biophysics of membrane protein folding and misfolding in a cellular context. Q Rev Biophys 2014; 48:1-34. [PMID: 25420508 DOI: 10.1017/s0033583514000110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most biological processes require the production and degradation of proteins, a task that weighs heavily on the cell. Mutations that compromise the conformational stability of proteins place both specific and general burdens on cellular protein homeostasis (proteostasis) in ways that contribute to numerous diseases. Efforts to elucidate the chain of molecular events responsible for diseases of protein folding address one of the foremost challenges in biomedical science. However, relatively little is known about the processes by which mutations prompt the misfolding of α-helical membrane proteins, which rely on an intricate network of cellular machinery to acquire and maintain their functional structures within cellular membranes. In this review, we summarize the current understanding of the physical principles that guide membrane protein biogenesis and folding in the context of mammalian cells. Additionally, we explore how pathogenic mutations that influence biogenesis may differ from those that disrupt folding and assembly, as well as how this may relate to disease mechanisms and therapeutic intervention. These perspectives indicate an imperative for the use of information from structural, cellular, and biochemical studies of membrane proteins in the design of novel therapeutics and in personalized medicine.
Collapse
|
45
|
Large-scale mutational analysis of Kv11.1 reveals molecular insights into type 2 long QT syndrome. Nat Commun 2014; 5:5535. [PMID: 25417810 PMCID: PMC4243539 DOI: 10.1038/ncomms6535] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 10/09/2014] [Indexed: 12/23/2022] Open
Abstract
It has been suggested that deficient protein trafficking to the cell membrane is the dominant mechanism associated with type 2 Long QT syndrome (LQT2) caused by Kv11.1 potassium channel missense mutations, and that for many mutations the trafficking defect can be corrected pharmacologically. However, this inference was based on expression of a small number of Kv11.1 mutations. We performed a comprehensive analysis of 167 LQT2-linked missense mutations in four Kv11.1 structural domains and found that deficient protein trafficking is the dominant mechanism for all domains except for the distal carboxy-terminus. Also, most pore mutations--in contrast to intracellular domain mutations--were found to have severe dominant-negative effects when co-expressed with wild-type subunits. Finally, pharmacological correction of the trafficking defect in homomeric mutant channels was possible for mutations within all structural domains. However, pharmacological correction is dramatically improved for pore mutants when co-expressed with wild-type subunits to form heteromeric channels.
Collapse
|
46
|
Muntau AC, Leandro J, Staudigl M, Mayer F, Gersting SW. Innovative strategies to treat protein misfolding in inborn errors of metabolism: pharmacological chaperones and proteostasis regulators. J Inherit Metab Dis 2014; 37:505-23. [PMID: 24687294 DOI: 10.1007/s10545-014-9701-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
Abstract
To attain functionality, proteins must fold into their three-dimensional native state. The intracellular balance between protein synthesis, folding, and degradation is constantly challenged by genetic or environmental stress factors. In the last ten years, protein misfolding induced by missense mutations was demonstrated to be the seminal molecular mechanism in a constantly growing number of inborn errors of metabolism. In these cases, loss of protein function results from early degradation of missense-induced misfolded proteins. Increasing knowledge on the proteostasis network and the protein quality control system with distinct mechanisms in different compartments of the cell paved the way for the development of new treatment strategies for conformational diseases using small molecules. These comprise proteostasis regulators that enhance the capacity of the proteostasis network and pharmacological chaperones that specifically bind and rescue misfolded proteins by conformational stabilization. They can be used either alone or in combination, the latter to exploit synergistic effects. Many of these small molecule compounds currently undergo preclinical and clinical pharmaceutical development and two have been approved: saproterin dihydrochloride for the treatment of phenylketonuria and tafamidis for the treatment of transthyretin-related hereditary amyloidosis. Different technologies are exploited for the discovery of new small molecule compounds that belong to the still young class of pharmaceutical products discussed here. These compounds may in the near future improve existing treatment strategies or even offer a first-time treatment to patients suffering from nowadays-untreatable inborn errors of metabolism.
Collapse
Affiliation(s)
- Ania C Muntau
- Department of Molecular Pediatrics, Dr von Hauner Children's Hospital, Ludwig Maximilians University, Lindwurmstrasse 4, 80337, Munich, Germany,
| | | | | | | | | |
Collapse
|
47
|
Boinot C, Jollivet Souchet M, Ferru-Clément R, Becq F. Searching for combinations of small-molecule correctors to restore f508del-cystic fibrosis transmembrane conductance regulator function and processing. J Pharmacol Exp Ther 2014; 350:624-34. [PMID: 24970923 DOI: 10.1124/jpet.114.214890] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mutated protein F508del-cystic fibrosis transmembrane conductance regulator (CFTR) failed to traffic properly as a result of its retention in the endoplasmic reticulum and functions as a chloride (Cl(-)) channel with abnormal gating and endocytosis. Small chemicals (called correctors) individually restore F508del-CFTR trafficking and Cl(-) transport function, but recent findings indicate that synergistic pharmacology should be considered to address CFTR defects more clearly. We studied the function and maturation of F508del-CFTR expressed in HeLa cells using a combination of five correctors [miglustat, IsoLAB (1,4-dideoxy-2-hydroxymethyl-1,4-imino-l-threitol), Corr4a (N-[2-(5-chloro-2-methoxy-phenylamino)-4'-methyl-[4,5']bithiazolyl-2'-yl]-benzamide), VX-809 [3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid], and suberoylamilide hydroxamic acid (SAHA)]. Using the whole-cell patch-clamp technique, the current density recorded in response to CFTR activators (forskolin + genistein) was significantly increased in the presence of the following combinations: VX-809 + IsoLAB; VX-809 + miglustat + SAHA; VX-809 + miglustat + IsoLAB; VX-809 + IsoLAB + SAHA; VX-809 + miglustat + IsoLAB + SAHA. These combinations restored the activity of F508del-CFTR but with a differential effect on the appearance of mature c-band of F508del-CFTR proteins. Focusing on the VX-809 + IsoLAB cocktail, we recorded a level of correction higher at 37°C versus room temperature, but without amelioration of the thermal instability of CFTR. The level of functional rescue with VX-809 + IsoLAB after 4 hours of incubation was maximal and similar to that obtained in optimal conditions of use for each compound (i.e., 24 hours for VX-809 + 4 hours for IsoLAB). Finally, we compared the stimulation of F508del-CFTR by forskolin or forskolin + VX-770 [N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide] with cells corrected by VX-809 + IsoLAB. Our results open new perspectives for the development of a synergistic polypharmacology to rescue F508del-CFTR and show the importance of temperature on the effect of correctors and on the level of correction, suggesting that optimized combination of correctors could lead to a better rescue of F508del-CFTR function.
Collapse
Affiliation(s)
- Clément Boinot
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Centre National de la Recherche Scientifique (CNRS), Poitiers, France
| | - Mathilde Jollivet Souchet
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Centre National de la Recherche Scientifique (CNRS), Poitiers, France
| | - Romain Ferru-Clément
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Centre National de la Recherche Scientifique (CNRS), Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Centre National de la Recherche Scientifique (CNRS), Poitiers, France
| |
Collapse
|
48
|
Favia M, Mancini MT, Bezzerri V, Guerra L, Laselva O, Abbattiscianni AC, Debellis L, Reshkin SJ, Gambari R, Cabrini G, Casavola V. Trimethylangelicin promotes the functional rescue of mutant F508del CFTR protein in cystic fibrosis airway cells. Am J Physiol Lung Cell Mol Physiol 2014; 307:L48-61. [PMID: 24816489 DOI: 10.1152/ajplung.00305.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) carrying the F508del mutation is retained in endoplasmic reticulum and fails to traffic to the cell surface where it functions as a protein kinase A (PKA)-activated chloride channel. Pharmacological correctors that rescue the trafficking of F508del CFTR may overcome this defect; however, the rescued F508del CFTR still displays reduced chloride permeability. Therefore, a combined administration of correctors and potentiators of the gating defect is ideal. We recently found that 4,6,4'-trimethylangelicin (TMA), besides inhibiting the expression of the IL-8 gene in airway cells in which the inflammatory response was challenged with Pseudomonas aeruginosa, also potentiates the cAMP/PKA-dependent activation of wild-type CFTR or F508del CFTR that has been restored to the plasma membrane. Here, we demonstrate that long preincubation with nanomolar concentrations of TMA is able to effectively rescue both F508del CFTR-dependent chloride secretion and F508del CFTR cell surface expression in both primary or secondary airway cell monolayers homozygous for F508del mutation. The correction effect of TMA seems to be selective for CFTR and persisted for 24 h after washout. Altogether, the results suggest that TMA, besides its anti-inflammatory and potentiator activities, also displays corrector properties.
Collapse
Affiliation(s)
- Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Maria T Mancini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Valentino Bezzerri
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital Verona, Verona, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Onofrio Laselva
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Anna C Abbattiscianni
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Lucantonio Debellis
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; and
| | - Giulio Cabrini
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital Verona, Verona, Italy
| | - Valeria Casavola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy; Centre of Excellence in Comparative Genomics, University of Bari, Bari, Italy
| |
Collapse
|
49
|
Eckford P, Ramjeesingh M, Molinski S, Pasyk S, Dekkers JF, Li C, Ahmadi S, Ip W, Chung T, Du K, Yeger H, Beekman J, Gonska T, Bear C. VX-809 and Related Corrector Compounds Exhibit Secondary Activity Stabilizing Active F508del-CFTR after Its Partial Rescue to the Cell Surface. ACTA ACUST UNITED AC 2014; 21:666-78. [DOI: 10.1016/j.chembiol.2014.02.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 02/22/2014] [Accepted: 02/25/2014] [Indexed: 12/11/2022]
|
50
|
Using pharmacological chaperones to restore proteostasis. Pharmacol Res 2014; 83:3-9. [PMID: 24747662 DOI: 10.1016/j.phrs.2014.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 12/18/2022]
Abstract
Normal organismal physiology depends on the maintenance of proteostasis in each cellular compartment to achieve a delicate balance between protein synthesis, folding, trafficking, and degradation while minimizing misfolding and aggregation. Defective proteostasis leads to numerous protein misfolding diseases. Pharmacological chaperones are cell-permeant small molecules that promote the proper folding and trafficking of a protein via direct binding to that protein. They stabilize their target protein in a protein-pharmacological chaperone state, increasing the natively folded protein population that can effectively engage trafficking machinery for transport to the final destination for function. Here, as regards the application of pharmacological chaperones, we focus on their capability to promote the folding and trafficking of lysosomal enzymes, G protein coupled receptors (GPCRs), and ion channels, each of which is presently an important drug target. Pharmacological chaperones hold great promise as potential therapeutics to ameliorate a variety of protein misfolding diseases.
Collapse
|