1
|
Eshaq AM, Flanagan TW, Hassan SY, Al Asheikh SA, Al-Amoudi WA, Santourlidis S, Hassan SL, Alamodi MO, Bendhack ML, Alamodi MO, Haikel Y, Megahed M, Hassan M. Non-Receptor Tyrosine Kinases: Their Structure and Mechanistic Role in Tumor Progression and Resistance. Cancers (Basel) 2024; 16:2754. [PMID: 39123481 PMCID: PMC11311543 DOI: 10.3390/cancers16152754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Protein tyrosine kinases (PTKs) function as key molecules in the signaling pathways in addition to their impact as a therapeutic target for the treatment of many human diseases, including cancer. PTKs are characterized by their ability to phosphorylate serine, threonine, or tyrosine residues and can thereby rapidly and reversibly alter the function of their protein substrates in the form of significant changes in protein confirmation and affinity for their interaction with protein partners to drive cellular functions under normal and pathological conditions. PTKs are classified into two groups: one of which represents tyrosine kinases, while the other one includes the members of the serine/threonine kinases. The group of tyrosine kinases is subdivided into subgroups: one of them includes the member of receptor tyrosine kinases (RTKs), while the other subgroup includes the member of non-receptor tyrosine kinases (NRTKs). Both these kinase groups function as an "on" or "off" switch in many cellular functions. NRTKs are enzymes which are overexpressed and activated in many cancer types and regulate variable cellular functions in response to extracellular signaling-dependent mechanisms. NRTK-mediated different cellular functions are regulated by kinase-dependent and kinase-independent mechanisms either in the cytoplasm or in the nucleus. Thus, targeting NRTKs is of great interest to improve the treatment strategy of different tumor types. This review deals with the structure and mechanistic role of NRTKs in tumor progression and resistance and their importance as therapeutic targets in tumor therapy.
Collapse
Affiliation(s)
- Abdulaziz M. Eshaq
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sara A. Al Asheikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Waleed A. Al-Amoudi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Simeon Santourlidis
- Institute of Cell Therapeutics and Diagnostics, University Medical Center of Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Maryam O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Marcelo L. Bendhack
- Department of Urology, Red Cross University Hospital, Positivo University, Rua Mauá 1111, Curitiba 80030-200, Brazil;
| | - Mohammed O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Zhang Y, Xiong X, Sun R, Zhu X, Wang C, Jiang B, Yang X, Li D, Fan G. Development of the non-receptor tyrosine kinase FER-targeting PROTACs as a potential strategy for antagonizing ovarian cancer cell motility and invasiveness. J Biol Chem 2023:104825. [PMID: 37196766 DOI: 10.1016/j.jbc.2023.104825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/23/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023] Open
Abstract
Aberrant overexpression of non-receptor tyrosine kinase FER has been reported in various ovarian carcinoma-derived tumor cells and is a poor prognosis factor for patient survival. It plays an essential role in tumor cell migration and invasion, acting concurrently in both kinase-dependent and -independent manners, which is not easily suppressed by conventional enzymatic inhibitors. Nevertheless, the proteolysis-targeting chimeras (PROTACs) technology offers superior efficacy over traditional activity-based inhibitors by simultaneously targeting enzymatic and scaffold functions. Hence in this study, we report the development of two PROTAC compounds that promote robust FER degradation in a cereblon-dependent manner. Both PROTAC degraders outperform an FDA-approved drug, Brigatinib, in ovarian cancer cell motility suppression. Importantly, these PROTAC compounds also degrade multiple oncogenic FER fusion proteins identified in human tumor samples. These results lay an experimental foundation to apply the PROTAC strategy to antagonize cell motility and invasiveness in ovarian and other types of cancers with aberrant expression of FER kinase and highlight PROTACs as a superior strategy for targeting proteins with multiple tumor-promoting functions.
Collapse
Affiliation(s)
- Yanchun Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xuexue Xiong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Renhong Sun
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China
| | - Xiaotong Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chen Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xiaobao Yang
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China.
| | - Dake Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
3
|
Zhang Y, Xiong X, Zhu Q, Zhang J, Chen S, Wang Y, Cao J, Chen L, Hou L, Zhao X, Hao P, Chen J, Zhuang M, Li D, Fan G. FER-mediated phosphorylation and PIK3R2 recruitment on IRS4 promotes AKT activation and tumorigenesis in ovarian cancer cells. eLife 2022; 11:76183. [PMID: 35550247 PMCID: PMC9098222 DOI: 10.7554/elife.76183] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Tyrosine phosphorylation, orchestrated by tyrosine kinases and phosphatases, modulates a multi-layered signaling network in a time- and space-dependent manner. Dysregulation of this post-translational modification is inevitably associated with pathological diseases. Our previous work has demonstrated that non-receptor tyrosine kinase FER is upregulated in ovarian cancer, knocking down which attenuates metastatic phenotypes. However, due to the limited number of known substrates in the ovarian cancer context, the molecular basis for its pro-proliferation activity remains enigmatic. Here, we employed mass spectrometry and biochemical approaches to identify insulin receptor substrate 4 (IRS4) as a novel substrate of FER. FER engaged its kinase domain to associate with the PH and PTB domains of IRS4. Using a proximity-based tagging system in ovarian carcinoma-derived OVCAR-5 cells, we determined that FER-mediated phosphorylation of Tyr779 enables IRS4 to recruit PIK3R2/p85β, the regulatory subunit of PI3K, and activate the PI3K-AKT pathway. Rescuing IRS4-null ovarian tumor cells with phosphorylation-defective mutant, but not WT IRS4 delayed ovarian tumor cell proliferation both in vitro and in vivo. Overall, we revealed a kinase-substrate mode between FER and IRS4, and the pharmacological inhibition of FER kinase may be beneficial for ovarian cancer patients with PI3K-AKT hyperactivation.
Collapse
Affiliation(s)
- Yanchun Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xuexue Xiong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qi Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiali Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shengmiao Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuetong Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jian Cao
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Li Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Linjun Hou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xi Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jian Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Min Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dake Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
4
|
Holland DO, Gotea V, Fedkenheuer K, Jaiswal SK, Baugher C, Tan H, Fedkenheuer M, Elnitski L. Characterization and clustering of kinase isoform expression in metastatic melanoma. PLoS Comput Biol 2022; 18:e1010065. [PMID: 35560144 PMCID: PMC9132324 DOI: 10.1371/journal.pcbi.1010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
Mutations to the human kinome are known to play causal roles in cancer. The kinome regulates numerous cell processes including growth, proliferation, differentiation, and apoptosis. In addition to aberrant expression, aberrant alternative splicing of cancer-driver genes is receiving increased attention as it could lead to loss or gain of functional domains, altering a kinase's downstream impact. The present study quantifies changes in gene expression and isoform ratios in the kinome of metastatic melanoma cells relative to primary tumors. We contrast 538 total kinases and 3,040 known kinase isoforms between 103 primary tumor and 367 metastatic samples from The Cancer Genome Atlas (TCGA). We find strong evidence of differential expression (DE) at the gene level in 123 kinases (23%). Additionally, of the 468 kinases with alternative isoforms, 60 (13%) had significant difference in isoform ratios (DIR). Notably, DE and DIR have little correlation; for instance, although DE highlights enrichment in receptor tyrosine kinases (RTKs), DIR identifies altered splicing in non-receptor tyrosine kinases (nRTKs). Using exon junction mapping, we identify five examples of splicing events favored in metastatic samples. We demonstrate differential apoptosis and protein localization between SLK isoforms in metastatic melanoma. We cluster isoform expression data and identify subgroups that correlate with genomic subtypes and anatomic tumor locations. Notably, distinct DE and DIR patterns separate samples with BRAF hotspot mutations and (N/K/H)RAS hotspot mutations, the latter of which lacks effective kinase inhibitor treatments. DE in RAS mutants concentrates in CMGC kinases (a group including cell cycle and splicing regulators) rather than RTKs as in BRAF mutants. Furthermore, isoforms in the RAS kinase subgroup show enrichment for cancer-related processes such as angiogenesis and cell migration. Our results reveal a new approach to therapeutic target identification and demonstrate how different mutational subtypes may respond differently to treatments highlighting possible new driver events in cancer.
Collapse
Affiliation(s)
- David O. Holland
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Valer Gotea
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kevin Fedkenheuer
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sushil K. Jaiswal
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Catherine Baugher
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hua Tan
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Fedkenheuer
- Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura Elnitski
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Phan QT, Liu R, Tan WH, Imangali N, Cheong B, Schartl M, Winkler C. Macrophages Switch to an Osteo-Modulatory Profile Upon RANKL Induction in a Medaka ( Oryzias latipes) Osteoporosis Model. JBMR Plus 2020; 4:e10409. [PMID: 33210062 PMCID: PMC7657398 DOI: 10.1002/jbm4.10409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/16/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
In mammals, osteoclasts differentiate from macrophages in the monocyte lineage. Although many factors driving osteoclast formation are known, the detailed processes underlying precursor recruitment, differentiation, and interaction of macrophages with other cell types involved in bone remodeling are poorly understood. Using live imaging in a transgenic medaka osteoporosis model, where ectopic osteoclasts are induced by RANKL expression, we show that a subset of macrophages is recruited to bone matrix to physically interact with bone-forming osteoblast progenitors. These macrophages subsequently differentiate into cathepsin K- (ctsk-) positive osteoclasts. One day later, other macrophages are recruited to clear dying osteoclasts from resorbed bone by phagocytosis. To better understand the molecular changes underlying these dynamic processes, we performed transcriptome profiling of activated macrophages upon RANKL induction. This revealed an upregulation of several bone-related transcripts. Besides osteoclast markers, we unexpectedly also found expression of osteoblast-promoting signals in activated macrophages, suggesting a possible non-cell autonomous role in osteogenesis. Finally, we show that macrophage differentiation into osteoclasts is dependent on inflammatory signals. Medaka deficient for TNFα or treated with the TNFα-inhibitor pentoxifylline exhibited impaired macrophage recruitment and osteoclast differentiation. These results show the involvement of inflammatory signals and the dynamics of a distinct subset of macrophages during osteoclast formation. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Quang Tien Phan
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Ranran Liu
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Nurgul Imangali
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Benedict Cheong
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Manfred Schartl
- Department of Developmental Biochemistry, BiocenterUniversity of WürzburgWürzburgGermany
- The Xiphophorus Genetic Stock CenterTexas State UniversitySan MarcosTexasUSA
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
6
|
|
7
|
Chemical genetics strategy to profile kinase target engagement reveals role of FES in neutrophil phagocytosis. Nat Commun 2020; 11:3216. [PMID: 32587248 PMCID: PMC7316778 DOI: 10.1038/s41467-020-17027-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Chemical tools to monitor drug-target engagement of endogenously expressed protein kinases are highly desirable for preclinical target validation in drug discovery. Here, we describe a chemical genetics strategy to selectively study target engagement of endogenous kinases. By substituting a serine residue into cysteine at the DFG-1 position in the ATP-binding pocket, we sensitize the non-receptor tyrosine kinase FES towards covalent labeling by a complementary fluorescent chemical probe. This mutation is introduced in the endogenous FES gene of HL-60 cells using CRISPR/Cas9 gene editing. Leveraging the temporal and acute control offered by our strategy, we show that FES activity is dispensable for differentiation of HL-60 cells towards macrophages. Instead, FES plays a key role in neutrophil phagocytosis via SYK kinase activation. This chemical genetics strategy holds promise as a target validation method for kinases.
Collapse
|
8
|
Patel RK, Weir MC, Shen K, Snyder D, Cooper VS, Smithgall TE. Expression of myeloid Src-family kinases is associated with poor prognosis in AML and influences Flt3-ITD kinase inhibitor acquired resistance. PLoS One 2019; 14:e0225887. [PMID: 31790499 PMCID: PMC6886798 DOI: 10.1371/journal.pone.0225887] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023] Open
Abstract
Unregulated protein-tyrosine kinase signaling is a common feature of AML, often involving mutations in Flt3 and overexpression of myeloid Src-family kinases (Hck, Fgr, Lyn). Here we show that high-level expression of these Src kinases predicts poor survival in a large cohort of AML patients. To test the therapeutic benefit of Flt3 and Src-family kinase inhibition, we used the pyrrolopyrimidine kinase inhibitor A-419259. This compound potently inhibits Hck, Fgr, and Lyn as well as Flt3 bearing an activating internal tandem duplication (ITD). Flt3-ITD expression sensitized human TF-1 myeloid cells to growth arrest by A-419259, supporting direct action on the Flt3-ITD kinase domain. Cells transformed with the Flt3-ITD mutants D835Y and F691L were resistant to A-419259, while co-expression of Hck or Fgr restored inhibitor sensitivity to Flt3-ITD D835Y. Conversely, Hck and Fgr mutants with engineered A-419259 resistance mutations decreased sensitivity of TF-1/Flt3-ITD cells. To investigate de novo resistance mechanisms, A-419259-resistant Flt3-ITD+ AML cell populations were derived via long-term dose escalation. Whole exome sequencing identified a distinct Flt3-ITD kinase domain mutation (N676S/T) among all A-419259 target kinases in each of six independent resistant cell populations. These studies show that Hck and Fgr expression influences inhibitor sensitivity and the pathway to acquired resistance in Flt3-ITD+ AML.
Collapse
MESH Headings
- Amino Acid Substitution
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Mutation, Missense
- Prognosis
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-hck/biosynthesis
- Proto-Oncogene Proteins c-hck/genetics
- Pyrimidines/pharmacology
- Pyrroles/pharmacology
- Exome Sequencing
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- src-Family Kinases/biosynthesis
- src-Family Kinases/genetics
Collapse
Affiliation(s)
- Ravi K. Patel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Mark C. Weir
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kexin Shen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Daniel Snyder
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
9
|
Gui F, Jiang J, He Z, Li L, Li Y, Deng Z, Lu Y, Wu X, Chen G, Su J, Song S, Zhang Y, Yun C, Huang X, Weisberg E, Zhang J, Deng X. A non-covalent inhibitor XMU-MP-3 overrides ibrutinib-resistant Btk C481S mutation in B-cell malignancies. Br J Pharmacol 2019; 176:4491-4509. [PMID: 31364164 PMCID: PMC6932946 DOI: 10.1111/bph.14809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Bruton's tyrosine kinase (BTK) plays a key role in B-cell receptor signalling by regulating cell proliferation and survival in various B-cell malignancies. Covalent low-MW BTK kinase inhibitors have shown impressive clinical efficacy in B-cell malignancies. However, the mutant BtkC481S poses a major challenge in the management of B-cell malignancies by disrupting the formation of the covalent bond between BTK and irreversible inhibitors, such as ibrutinib. The present studies were designed to develop novel BTK inhibitors targeting ibrutinib-resistant BtkC481S mutation. EXPERIMENTAL APPROACH BTK-Ba/F3, BTK(C481S)-Ba/F3 cells, and human malignant B-cells JeKo-1, Ramos, and NALM-6 were used to evaluate cellular potency of BTK inhibitors. The in vitro pharmacological efficacy and compound selectivity were assayed via cell viability, colony formation, and BTK-mediated signalling. A tumour xenograft model with BTK-Ba/F3, Ramos and BTK(C481S)-Ba/F3 cells in Nu/nu BALB/c mice was used to assess in vivo efficacy of XMU-MP-3. KEY RESULTS XMU-MP-3 is one of a group of low MW compounds that are potent non-covalent BTK inhibitors. XMU-MP-3 inhibited both BTK and the acquired mutant BTKC481S, in vitro and in vivo. Further computational modelling, site-directed mutagenesis analysis, and structure-activity relationships studies indicated that XMU-MP-3 displayed a typical Type-II inhibitor binding mode. CONCLUSION AND IMPLICATIONS XMU-MP-3 directly targets the BTK signalling pathway in B-cell lymphoma. These findings establish XMU-MP-3 as a novel inhibitor of BTK, which could serve as both a tool compound and a lead for further drug development in BTK relevant B-cell malignancies, especially those with the acquired ibrutinib-resistant C481S mutation.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/genetics
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/drug effects
- Drug Screening Assays, Antitumor
- Female
- HEK293 Cells
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Docking Simulation
- Molecular Structure
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Piperidines
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Pyrazoles/chemistry
- Pyrazoles/pharmacology
- Pyrimidines/chemistry
- Pyrimidines/pharmacology
- Signal Transduction/drug effects
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Fu Gui
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Jie Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Zhixiang He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Yunzhan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Zhou Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Yue Lu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Xinrui Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Guyue Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Jingyi Su
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Siyang Song
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| | - Yue‐Ming Zhang
- Institute of Systems Biomedicine, Department of Biophysics and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Cai‐Hong Yun
- Institute of Systems Biomedicine, Department of Biophysics and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Xin Huang
- Division of Drug Discovery, Hongyun Biotech Co., Ltd.NanjingChina
| | - Ellen Weisberg
- Department of Medical Oncology, Dana Farber Cancer InstituteHarvard Medical SchoolBostonMassachusetts
| | - Jianming Zhang
- National Research Center for Translational Medicine, Shanghai State Key Laboratory of Medical Genomics, Rui‐Jin HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Cutaneous Biology Research Center, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusetts
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life ScienceXiamen UniversityXiamenChina
| |
Collapse
|
10
|
Kim BH, Kim YJ, Kim MH, Na YR, Jung D, Seok SH, Kim J, Kim HJ. Identification of FES as a Novel Radiosensitizing Target in Human Cancers. Clin Cancer Res 2019; 26:265-273. [PMID: 31573955 DOI: 10.1158/1078-0432.ccr-19-0610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/29/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE The identification of novel targets for developing synergistic drug-radiation combinations would pave the way to overcome tumor radioresistance. We conducted cell-based screening of a human kinome siRNA library to identify a radiation-specific kinase that has a synergistic toxic effect with radiation upon inhibition and is not essential for cell survival in the absence of radiation. EXPERIMENTAL DESIGN Unbiased RNAi screening was performed by transfecting A549 cells with a human kinome siRNA library followed by irradiation. Radiosensitizing effects of a target gene and involved mechanisms were examined. RESULTS We identified the nonreceptor protein tyrosine kinase FES (FEline Sarcoma oncogene) as a radiosensitizing target. The expression of FES was increased in response to irradiation. Cell viability and clonogenic survival after irradiation were significantly decreased by FES knockdown in lung and pancreatic cancer cell lines. In contrast, FES depletion alone did not significantly affect cell proliferation without irradiation. An inducible RNAi mouse xenograft model verified in vivo radiosensitizing effects. FES-depleted cells showed increased apoptosis, DNA damage, G2-M phase arrest, and mitotic catastrophe after irradiation. FES depletion promoted radiation-induced reactive oxygen species formation, which resulted in phosphorylation of S6K and MDM2. The radiosensitizing effect of FES knockdown was partially reversed by inhibition of S6K activity. Consistent with the increase in phosphorylated MDM2, an increase in nuclear p53 levels was observed, which appears to contribute increased radiosensitivity of FES-depleted cells. CONCLUSIONS We uncovered that inhibition of FES could be a potential strategy for inducing radiosensitization in cancer. Our results provide the basis for developing novel radiosensitizers.
Collapse
Affiliation(s)
- Byoung Hyuck Kim
- Department of Radiation Oncology, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.,Department of Radiation Oncology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Yong Joon Kim
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Myung-Ho Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Yi Rang Na
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University Medical College, Seoul, Republic of Korea
| | - Daun Jung
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University Medical College, Seoul, Republic of Korea
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University Medical College, Seoul, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea.
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea. .,Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Matsuura Y. High-resolution structural analysis shows how different crystallographic environments can induce alternative modes of binding of a phosphotyrosine peptide to the SH2 domain of Fer tyrosine kinase. Protein Sci 2019; 28:2011-2019. [PMID: 31441171 DOI: 10.1002/pro.3713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 11/08/2022]
Abstract
Fes and Fes-related (Fer) protein tyrosine kinases (PTKs) comprise a subfamily of nonreceptor tyrosine kinases characterized by a unique multidomain structure composed of an N-terminal Fer/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain, a central Src homology 2 (SH2) domain, and a C-terminal PTK domain. Fer is ubiquitously expressed, and upregulation of Fer has been implicated in various human cancers. The PTK activity of Fes has been shown to be positively regulated by the binding of phosphotyrosine-containing ligands to the SH2 domain. Here, the X-ray crystal structure of human Fer SH2 domain bound to a phosphopeptide that has D-E-pY-E-N-V-D sequence is reported at 1.37 å resolution. The asymmetric unit (ASU) contains six Fer-phosphopeptide complexes, and the structure reveals three distinct binding modes for the same phosphopeptide. At four out of the six binding sites in the ASU, the phosphopeptide binds to Fer SH2 domain in a type I β-turn conformation, and this could be the optimal binding mode of this phosphopeptide. At the other two binding sites in the ASU, it appears that spatial proximity of neighboring SH2 domains in the crystal induces alternative modes of binding of this phosphopeptide.
Collapse
Affiliation(s)
- Yoshiyuki Matsuura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.,Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
12
|
Shen K, Moroco JA, Patel RK, Shi H, Engen JR, Dorman HR, Smithgall TE. The Src family kinase Fgr is a transforming oncoprotein that functions independently of SH3-SH2 domain regulation. Sci Signal 2018; 11:11/553/eaat5916. [DOI: 10.1126/scisignal.aat5916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fgr is a member of the Src family of nonreceptor tyrosine kinases, which are overexpressed and constitutively active in many human cancers. Fgr expression is restricted to myeloid hematopoietic cells and is markedly increased in a subset of bone marrow samples from patients with acute myeloid leukemia (AML). Here, we investigated the oncogenic potential of Fgr using Rat-2 fibroblasts that do not express the kinase. Expression of either wild-type or regulatory tail-mutant constructs of Fgr promoted cellular transformation (inferred from colony formation in soft agar), which was accompanied by phosphorylation of the Fgr activation loop, suggesting that the kinase domain of Fgr functions independently of regulation by its noncatalytic SH3-SH2 region. Unlike other family members, recombinant Fgr was not activated by SH3-SH2 domain ligands. However, hydrogen-deuterium exchange mass spectrometry data suggested that the regulatory SH3 and SH2 domains packed against the back of the kinase domain in a Src-like manner. Sequence alignment showed that the activation loop of Fgr was distinct from that of all other Src family members, with proline rather than alanine at the +2 position relative to the activation loop tyrosine. Substitution of the activation loop of Fgr with the sequence from Src partially inhibited kinase activity and suppressed colony formation. Last, Fgr expression enhanced the sensitivity of human myeloid progenitor cells to the cytokine GM-CSF. Because its kinase domain is not sensitive to SH3-SH2–mediated control, simple overexpression of Fgr without mutation may contribute to oncogenic transformation in AML and other blood cancers.
Collapse
|
13
|
Latif M, Ashraf Z, Basit S, Ghaffar A, Zafar MS, Saeed A, Meo SA. Latest perspectives of orally bioavailable 2,4-diarylaminopyrimidine analogues (DAAPalogues) as anaplastic lymphoma kinase inhibitors: discovery and clinical developments. RSC Adv 2018; 8:16470-16493. [PMID: 35540549 PMCID: PMC9080316 DOI: 10.1039/c8ra01934g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/19/2018] [Indexed: 01/06/2023] Open
Abstract
The course of anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC) therapy has improved impressively. The Food and Drug Administration (FDA) has approved crizotinib (Xalkori, Pfizer) as a first-in-class tyrosine kinase inhibitor (TKI) that demonstrated a substantial objective response rate (ORR) and remarkable progression-free survival (PFS). However, acquired resistance to crizotinib is still a major concern especially as the central nervous system (CNS) remains the most common sites of relapse. To combat disease resistance, limited PFS and poor CNS exposure exhibited by crizotinib (Xalkori, Pfizer) led to the discovery of numerous next generation ALK-TKIs and surprisingly most of them are 2,4-Diarylaminopyrimidine Analogues (DAAPalogues). To date, DAAPalogues have been investigated extensively to display their superior potency against numerous kinase targets especially ALK/ROS1. This review describes hit-to-drug evolution strategies, activity spectra, milestones related to medicinal chemistry discovery efforts and scalable synthetic pathways of clinically emerging DAAPalouges which are either progressing as investigational or preclinical candidates. In addition, the significance of DAAPalogues to treat the patients with ALK+-NSCLC in clinical settings has been detailed. This review is beneficial for medicinal chemists and researchers contributing to discovering ALK-TKIs to overcome existing issues related to DAAPalouges in the drug discovery process.
Collapse
Affiliation(s)
- Muhammad Latif
- College of Medicine, Centre for Genetics and Inherited Diseases (CGID), Taibah University Al-Madinah Al-Munawwarah Kingdom of Saudi Arabia
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University Islamabad 44000 Pakistan
| | - Sulman Basit
- College of Medicine, Centre for Genetics and Inherited Diseases (CGID), Taibah University Al-Madinah Al-Munawwarah Kingdom of Saudi Arabia
| | - Abdul Ghaffar
- Department of Chemistry, University of Engineering and Technology Lahore Pakistan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University Al-Madinah Al-Munawwarah Kingdom of Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University Islamabad 44000 Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-e-Azam University Islamabad Pakistan
| | - Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University Riyadh Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Stanicka J, Rieger L, O’Shea S, Cox O, Coleman M, O’Flanagan C, Addario B, McCabe N, Kennedy R, O’Connor R. FES-related tyrosine kinase activates the insulin-like growth factor-1 receptor at sites of cell adhesion. Oncogene 2018. [DOI: 10.1038/s41388-017-0113-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Siveen KS, Prabhu KS, Achkar IW, Kuttikrishnan S, Shyam S, Khan AQ, Merhi M, Dermime S, Uddin S. Role of Non Receptor Tyrosine Kinases in Hematological Malignances and its Targeting by Natural Products. Mol Cancer 2018; 17:31. [PMID: 29455667 PMCID: PMC5817858 DOI: 10.1186/s12943-018-0788-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Tyrosine kinases belong to a family of enzymes that mediate the movement of the phosphate group to tyrosine residues of target protein, thus transmitting signals from the cell surface to cytoplasmic proteins and the nucleus to regulate physiological processes. Non-receptor tyrosine kinases (NRTK) are a sub-group of tyrosine kinases, which can relay intracellular signals originating from extracellular receptor. NRTKs can regulate a huge array of cellular functions such as cell survival, division/propagation and adhesion, gene expression, immune response, etc. NRTKs exhibit considerable variability in their structural make up, having a shared kinase domain and commonly possessing many other domains such as SH2, SH3 which are protein-protein interacting domains. Recent studies show that NRTKs are mutated in several hematological malignancies, including lymphomas, leukemias and myelomas, leading to aberrant activation. It can be due to point mutations which are intragenic changes or by fusion of genes leading to chromosome translocation. Mutations that lead to constitutive kinase activity result in the formation of oncogenes, such as Abl, Fes, Src, etc. Therefore, specific kinase inhibitors have been sought after to target mutated kinases. A number of compounds have since been discovered, which have shown to inhibit the activity of NRTKs, which are remarkably well tolerated. This review covers the role of various NRTKs in the development of hematological cancers, including their deregulation, genetic alterations, aberrant activation and associated mutations. In addition, it also looks at the recent advances in the development of novel natural compounds that can target NRTKs and perhaps in combination with other forms of therapy can show great promise for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Kodappully S Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Iman W Achkar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Sunitha Shyam
- Medical Research Center, Hamad Medical Corporation, Doha, State of Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, State of Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, State of Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| |
Collapse
|
16
|
Zheng Y, Sethi R, Mangala LS, Taylor C, Goldsmith J, Wang M, Masuda K, Karaminejadranjbar M, Mannion D, Miranda F, Herrero-Gonzalez S, Hellner K, Chen F, Alsaadi A, Albukhari A, Fotso DC, Yau C, Jiang D, Pradeep S, Rodriguez-Aguayo C, Lopez-Berestein G, Knapp S, Gray NS, Campo L, Myers KA, Dhar S, Ferguson D, Bast RC, Sood AK, von Delft F, Ahmed AA. Tuning microtubule dynamics to enhance cancer therapy by modulating FER-mediated CRMP2 phosphorylation. Nat Commun 2018; 9:476. [PMID: 29396402 PMCID: PMC5797184 DOI: 10.1038/s41467-017-02811-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 12/27/2017] [Indexed: 12/13/2022] Open
Abstract
Though used widely in cancer therapy, paclitaxel only elicits a response in a fraction of patients. A strong determinant of paclitaxel tumor response is the state of microtubule dynamic instability. However, whether the manipulation of this physiological process can be controlled to enhance paclitaxel response has not been tested. Here, we show a previously unrecognized role of the microtubule-associated protein CRMP2 in inducing microtubule bundling through its carboxy terminus. This activity is significantly decreased when the FER tyrosine kinase phosphorylates CRMP2 at Y479 and Y499. The crystal structures of wild-type CRMP2 and CRMP2-Y479E reveal how mimicking phosphorylation prevents tetramerization of CRMP2. Depletion of FER or reducing its catalytic activity using sub-therapeutic doses of inhibitors increases paclitaxel-induced microtubule stability and cytotoxicity in ovarian cancer cells and in vivo. This work provides a rationale for inhibiting FER-mediated CRMP2 phosphorylation to enhance paclitaxel on-target activity for cancer therapy. Some anticancer drugs target cell microtubules inhibiting mitosis and cell division. Here, the authors show that CRMP2 induces microtubule bundling and that this activity is regulated by the FER kinase, thus providing a rationale for targeting FER in combination with microtubule-targeting drugs.
Collapse
Affiliation(s)
- Yiyan Zheng
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Ritika Sethi
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Charlotte Taylor
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Juliet Goldsmith
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Ming Wang
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Kenta Masuda
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Mohammad Karaminejadranjbar
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - David Mannion
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Fabrizio Miranda
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Sandra Herrero-Gonzalez
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Karin Hellner
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Fiona Chen
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Abdulkhaliq Alsaadi
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Ashwag Albukhari
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21551, Saudi Arabia
| | - Donatien Chedom Fotso
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Christopher Yau
- Wellcome Trust Centre for Human Genetics and NIHR Biomedical Research Centre, Roosevelt Drive, Oxford, OX3 7BN, UK.,Department of Statistics, 1 South Parks Road, Oxford, OX1 3TG, UK
| | - Dahai Jiang
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Sunila Pradeep
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Cristian Rodriguez-Aguayo
- Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stefan Knapp
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.,Goethe-University Frankfurt, Institute for Pharmaceutical Chemistry and Buchmann Institute for Life Sciences, Riedberg Campus, Frankfurt am Main, 60438, Germany
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Leticia Campo
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Kevin A Myers
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Sunanda Dhar
- Department of Histopathology, Oxford University Hospitals, Oxford, OX3 9DU, UK
| | - David Ferguson
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine University of Oxford, Oxford University Hospitals, Oxford, OX3 9DU, UK
| | - Robert C Bast
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Frank von Delft
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.,Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK.,Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Ahmed Ashour Ahmed
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK. .,Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| |
Collapse
|
17
|
Hawkinson JE, Sinville R, Mudaliar D, Shetty J, Ward T, Herr JC, Georg GI. Potent Pyrimidine and Pyrrolopyrimidine Inhibitors of Testis-Specific Serine/Threonine Kinase 2 (TSSK2). ChemMedChem 2017; 12:1857-1865. [PMID: 28952188 PMCID: PMC5962959 DOI: 10.1002/cmdc.201700503] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 11/09/2022]
Abstract
Testis-specific serine/threonine kinase 2 (TSSK2) is an important target for reversible male contraception. A high-throughput screen of ≈17 000 compounds using a mobility shift assay identified two potent series of inhibitors having a pyrrolopyrimidine or pyrimidine core. The pyrrolopyrimidine 10 (IC50 22 nm; GSK2163632A) and the pyrimidine 17 (IC50 31 nm; ALK inhibitor 1) are the most potent TSSK2 inhibitors in these series, which contain the first sub-100 nanomolar inhibitors of any TSSK isoform reported, except for the broad kinase inhibitor staurosporine. The novel, potent pyrimidine TSSK2 inhibitor compound 19 (IC50 66 nm; 2-[[5-chloro-2-[2-methoxy-4-(1-methylpiperidin-4-yl)anilino]pyrimidin-4-yl]amino]-N-methylbenzenesulfonamide) lacks the potential for metabolic activation. Compound 19 had a potency rank order of TSSK1>TSSK2>TSSK3>TSSK6, indicating that potent dual inhibitors of TSSK1/2 can be identified, which may be required for a complete contraceptive effect. The future availability of a TSSK2 crystal structure will facilitate structure-based discovery of selective TSSK inhibitors from these pyrrolopyrimidine and pyrimidine scaffolds.
Collapse
Affiliation(s)
- Jon E Hawkinson
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Rondedrick Sinville
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Deepti Mudaliar
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Jagathpala Shetty
- Department of Cell Biology, Center for Research in Contraceptive and Reproductive Health, University of Virginia, Charlottesville, VA, 22908, USA
| | - Timothy Ward
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55414, USA
| | - John C Herr
- Department of Cell Biology, Center for Research in Contraceptive and Reproductive Health, University of Virginia, Charlottesville, VA, 22908, USA
| | - Gunda I Georg
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55414, USA
| |
Collapse
|
18
|
Weir MC, Hellwig S, Tan L, Liu Y, Gray NS, Smithgall TE. Dual inhibition of Fes and Flt3 tyrosine kinases potently inhibits Flt3-ITD+ AML cell growth. PLoS One 2017; 12:e0181178. [PMID: 28727840 PMCID: PMC5519068 DOI: 10.1371/journal.pone.0181178] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 06/27/2017] [Indexed: 01/25/2023] Open
Abstract
Acute myelogenous leukemia (AML) is often associated with activating mutations in the receptor tyrosine kinase, Flt3, including internal tandem duplications (ITDs) within the regulatory juxtamembrane region. Previous studies have linked Flt3-ITD to the activation of the Fes protein tyrosine kinase in AML, and RNAi-knockdown studies suggest that Fes may be required for Flt3 function. In this study, we tested Fes inhibitors from three different chemical classes for their growth-suppressive activity against Flt3-ITD+ myeloid leukemia cell lines (MV4-11, MOLM-13 and MOLM-14) vs. myeloid cells with wild-type Flt3 (THP-1). All Fes inhibitors selectively inhibited the growth of Flt3-ITD+ AML cells, with IC50 values for diaminopyrimidine and pyrrolopyridine inhibitors ranging from 19 to 166 nM. In contrast, a pyrazolopyrimidine inhibitor was less potent in Flt3-ITD+ AML cells, with IC50 values in the 1.0 μM range. In vitro kinase assays showed that the most potent inhibitors of Flt3-ITD+ AML cell proliferation blocked both Fes and Flt3-ITD kinase activity, while the pyrazolopyrimidine was more selective for Fes vs. Flt3-ITD. All three inhibitors induced significant apoptosis in Flt3-ITD+ AML cells, with potency equivalent to or greater than the established Flt3-ITD inhibitor, tandutinib. Transformation of TF-1 cells with Flt3-ITD resulted in constitutive activation of endogenous Fes, and rendered the cells highly sensitive to all three Fes inhibitors with IC50 values in the 30–500 nM range. The pyrrolopyridine compound also induced apoptotic responses in patient-derived Flt3-ITD+ AML bone marrow cells but not in normal bone marrow mononuclear cells. These results demonstrate that Fes kinase activity contributes to Flt3-ITD signaling in AML, and suggests that dual inhibition of both Flt3 and Fes may provide a therapeutic advantage for the treatment of Flt3-ITD+ AML.
Collapse
Affiliation(s)
- Mark C. Weir
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Sabine Hellwig
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Li Tan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Yao Liu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Nathanael S. Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
19
|
Korkmaz FT, Kerr DE. Genome-wide methylation analysis reveals differentially methylated loci that are associated with an age-dependent increase in bovine fibroblast response to LPS. BMC Genomics 2017; 18:405. [PMID: 28545453 PMCID: PMC5445414 DOI: 10.1186/s12864-017-3796-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Differences in DNA methylation are known to contribute to the development of immune-related disorders in humans but relatively little is known about how methylation regulates immune function in cattle. Utilizing whole-transcriptome analyses of bovine dermal fibroblasts, we have previously identified an age and breed-dependent up-regulation of genes within the toll-like receptor 4 (TLR4) pathway that correlates with enhanced fibroblast production of IL-8 in response to lipopolysaccharide (LPS). Age-dependent differences in IL-8 production are abolished by treatment with 5-aza-2-deoxycytidine and Trichostatin A (AZA-TSA), suggesting epigenetic regulation of the innate response to LPS. In the current study, we performed reduced representation bisulfite sequencing (RRBS) on fibroblast cultures isolated from the same animals at 5- and 16-months of age to identify genes that exhibit variable methylation with age. To validate the role of methylation in gene expression, six innate response genes that were hyper-methylated in young animals were assessed by RT-qPCR in fibroblasts from animals at different ages and from different breeds. RESULTS We identified 14,094 differentially methylated CpGs (DMCs) that differed between fibroblast cultures at 5- versus 16-months of age. Of the 5065 DMCs that fell within gene regions, 1117 were located within promoters, 1057 were within gene exons and 2891 were within gene introns and 67% were more methylated in young cultures. Transcription factor enrichment of the promoter regions hyper-methylated in young cultures revealed significant regulation by the key pro-inflammatory regulator, NF-κB. Additionally, five out of six chosen genes (PIK3R1, FES, NFATC1, TNFSF13 and RORA) that were more methylated in young cultures showed a significant reduction in expression post-LPS treatment in comparison with older cultures. Two of these genes, FES and NFATC1, were similarly down-regulated in Angus cultures that also exhibit a low LPS response phenotype. CONCLUSIONS Our study has identified immune-related loci regulated by DNA methylation in cattle that may contribute to differential cellular response to LPS, two of which exhibit an identical expression profile in both low-responding age and breed phenotypes. Methylation biomarkers of differential immunity may prove useful in developing selection strategies for replacement cows that are less susceptible to severe infections, such as coliform mastitis.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Cellular, Molecular and Biomedical Sciences Program, University of Vermont, 89 Beaumont Avenue, C141C Given, Burlington, VT, 05405, USA. .,Department of Animal and Veterinary Sciences, University of Vermont, 570 Main Street, 213 Terrill Hall, Burlington, VT, 05405, USA.
| | - David E Kerr
- Cellular, Molecular and Biomedical Sciences Program, University of Vermont, 89 Beaumont Avenue, C141C Given, Burlington, VT, 05405, USA.,Department of Animal and Veterinary Sciences, University of Vermont, 570 Main Street, 213 Terrill Hall, Burlington, VT, 05405, USA
| |
Collapse
|
20
|
Fan G, Zhang S, Gao Y, Greer PA, Tonks NK. HGF-independent regulation of MET and GAB1 by nonreceptor tyrosine kinase FER potentiates metastasis in ovarian cancer. Genes Dev 2017; 30:1542-57. [PMID: 27401557 PMCID: PMC4949327 DOI: 10.1101/gad.284166.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 06/07/2016] [Indexed: 12/29/2022]
Abstract
In this study, Fan et al. report a novel ligand- and autophosphorylation-independent activation of MET through the nonreceptor tyrosine kinase FER. The findings show that levels of FER were elevated in ovarian cancer cell lines and that loss of FER impaired the metastasis of ovarian cancer cells in vivo, providing new insights into signaling events that underlie metastasis in ovarian cancer cells. Ovarian cancer cells disseminate readily within the peritoneal cavity, which promotes metastasis, and are often resistant to chemotherapy. Ovarian cancer patients tend to present with advanced disease, which also limits treatment options; consequently, new therapies are required. The oncoprotein tyrosine kinase MET, which is the receptor for hepatocyte growth factor (HGF), has been implicated in ovarian tumorigenesis and has been the subject of extensive drug development efforts. Here, we report a novel ligand- and autophosphorylation-independent activation of MET through the nonreceptor tyrosine kinase feline sarcoma-related (FER). We demonstrated that the levels of FER were elevated in ovarian cancer cell lines relative to those in immortalized normal surface epithelial cells and that suppression of FER attenuated the motility and invasive properties of these cancer cells. Furthermore, loss of FER impaired the metastasis of ovarian cancer cells in vivo. Mechanistically, we demonstrated that FER phosphorylated a signaling site in MET: Tyr1349. This enhanced activation of RAC1/PAK1 and promoted a kinase-independent scaffolding function that led to recruitment and phosphorylation of GAB1 and the specific activation of the SHP2–ERK signaling pathway. Overall, this analysis provides new insights into signaling events that underlie metastasis in ovarian cancer cells, consistent with a prometastatic role of FER and highlighting its potential as a novel therapeutic target for metastatic ovarian cancer.
Collapse
Affiliation(s)
- Gaofeng Fan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Siwei Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Yan Gao
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Peter A Greer
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
21
|
Olvedy M, Tisserand JC, Luciani F, Boeckx B, Wouters J, Lopez S, Rambow F, Aibar S, Thienpont B, Barra J, Köhler C, Radaelli E, Tartare-Deckert S, Aerts S, Dubreuil P, van den Oord JJ, Lambrechts D, De Sepulveda P, Marine JC. Comparative oncogenomics identifies tyrosine kinase FES as a tumor suppressor in melanoma. J Clin Invest 2017; 127:2310-2325. [PMID: 28463229 DOI: 10.1172/jci91291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/02/2017] [Indexed: 01/11/2023] Open
Abstract
Identification and functional validation of oncogenic drivers are essential steps toward advancing cancer precision medicine. Here, we have presented a comprehensive analysis of the somatic genomic landscape of the widely used BRAFV600E- and NRASQ61K-driven mouse models of melanoma. By integrating the data with publically available genomic, epigenomic, and transcriptomic information from human clinical samples, we confirmed the importance of several genes and pathways previously implicated in human melanoma, including the tumor-suppressor genes phosphatase and tensin homolog (PTEN), cyclin dependent kinase inhibitor 2A (CDKN2A), LKB1, and others. Importantly, this approach also identified additional putative melanoma drivers with prognostic and therapeutic relevance. Surprisingly, one of these genes encodes the tyrosine kinase FES. Whereas FES is highly expressed in normal human melanocytes, FES expression is strongly decreased in over 30% of human melanomas. This downregulation correlates with poor overall survival. Correspondingly, engineered deletion of Fes accelerated tumor progression in a BRAFV600E-driven mouse model of melanoma. Together, these data implicate FES as a driver of melanoma progression and demonstrate the potential of cross-species oncogenomic approaches combined with mouse modeling to uncover impactful mutations and oncogenic driver alleles with clinical importance in the treatment of human cancer.
Collapse
Affiliation(s)
- Michael Olvedy
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Julie C Tisserand
- INSERM, Aix Marseille University, CNRS, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Flavie Luciani
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Bram Boeckx
- Laboratory for Translational Genetics, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Translational Genetics, and
| | - Jasper Wouters
- Laboratory of Computational Biology, Department of Human Genetics, KU Leuven, Leuven, Belgium.,Laboratory of Computational Biology, and
| | - Sophie Lopez
- INSERM, Aix Marseille University, CNRS, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sara Aibar
- Laboratory of Computational Biology, Department of Human Genetics, KU Leuven, Leuven, Belgium.,Laboratory of Computational Biology, and
| | - Bernard Thienpont
- Laboratory for Translational Genetics, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Translational Genetics, and
| | - Jasmine Barra
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Corinna Köhler
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Enrico Radaelli
- Mouse Histopathology Core Facility, VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Sophie Tartare-Deckert
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, U1065, Université Côte d'Azur, Nice, France
| | - Stein Aerts
- Laboratory of Computational Biology, Department of Human Genetics, KU Leuven, Leuven, Belgium.,Laboratory of Computational Biology, and
| | - Patrice Dubreuil
- INSERM, Aix Marseille University, CNRS, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Joost J van den Oord
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Translational Genetics, and
| | - Paulo De Sepulveda
- INSERM, Aix Marseille University, CNRS, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Mitsunari K, Miyata Y, Watanabe SI, Asai A, Yasuda T, Kanda S, Sakai H. Stromal expression of Fer suppresses tumor progression in renal cell carcinoma and is a predictor of survival. Oncol Lett 2016; 13:834-840. [PMID: 28356966 DOI: 10.3892/ol.2016.5481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/21/2016] [Indexed: 11/06/2022] Open
Abstract
Fps/Fes related (Fer) is a non-receptor tyrosine kinase that is expressed in fibroblasts, immune cells and endothelial cells. Fer serves an important pathological role in cell survival, angiogenesis and the immune system. However, the pathological role of Fer expression in the stromal cells surrounding renal cell carcinoma (RCC) has not been previously investigated. In the present study, immunohistochemical analysis of Fer was performed using the formalin-fixed tissue samples of 152 patients with RCC. The proliferative and apoptotic indices were used to represent the percentage of proliferation marker protein Ki-67- and cleaved caspase-3-positive cells, respectively. The microvessel density was defined as the number of cluster of differentiation (CD) 31-positively stained vessels/mm2. In addition, CD57+ and CD68+ cells were counted using semi-quantification of natural killer (NK) cells and macrophages. Fer expression in stromal cells was negatively associated with Fuhrman grade, pathological tumor stage and metastasis (P<0.001). Fer expression in stromal cells was negatively associated with CD68+ macrophage density, whereas it was positively associated with CD57+ NK cell density. Kaplan-Meier estimators indicated that decreased stromal Fer expression was a predictive marker of decreased cause-specific survival rate (P<0.001). Furthermore, low expression of Fer was identified as being an independent marker of decreased cause-specific survival using multivariate analysis (hazard ratio, 7.4; 95% confidence interval, 1.7-33.0; P<0.001). The results of the present study suggested that low Fer expression in stromal cells is associated with increased malignant aggressiveness and decreased survival in patients with RCC. CD57+ NK cell and CD68+ macrophage regulation in cancer-stromal tissue is considered to affect RCC pathology.
Collapse
Affiliation(s)
- Kensuke Mitsunari
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Shin-Ichi Watanabe
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Akihiro Asai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Takuji Yasuda
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Shigeru Kanda
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| |
Collapse
|
23
|
Hojjat-Farsangi M. Targeting non-receptor tyrosine kinases using small molecule inhibitors: an overview of recent advances. J Drug Target 2015. [DOI: 10.3109/1061186x.2015.1068319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden and
- Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
24
|
Moroco JA, Baumgartner MP, Rust HL, Choi HG, Hur W, Gray NS, Camacho CJ, Smithgall TE. A Discovery Strategy for Selective Inhibitors of c-Src in Complex with the Focal Adhesion Kinase SH3/SH2-binding Region. Chem Biol Drug Des 2014; 86:144-55. [PMID: 25376742 DOI: 10.1111/cbdd.12473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/29/2014] [Accepted: 10/29/2014] [Indexed: 11/30/2022]
Abstract
The c-Src tyrosine kinase co-operates with the focal adhesion kinase to regulate cell adhesion and motility. Focal adhesion kinase engages the regulatory SH3 and SH2 domains of c-Src, resulting in localized kinase activation that contributes to tumor cell metastasis. Using assay conditions where c-Src kinase activity required binding to a tyrosine phosphopeptide based on the focal adhesion kinase SH3-SH2 docking sequence, we screened a kinase-biased library for selective inhibitors of the Src/focal adhesion kinase peptide complex versus c-Src alone. This approach identified an aminopyrimidinyl carbamate compound, WH-4-124-2, with nanomolar inhibitory potency and fivefold selectivity for c-Src when bound to the phospho-focal adhesion kinase peptide. Molecular docking studies indicate that WH-4-124-2 may preferentially inhibit the 'DFG-out' conformation of the kinase active site. These findings suggest that interaction of c-Src with focal adhesion kinase induces a unique kinase domain conformation amenable to selective inhibition.
Collapse
Affiliation(s)
- Jamie A Moroco
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Matthew P Baumgartner
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Heather L Rust
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Hwan Geun Choi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , 250 Longwood Avenue, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Wooyoung Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , 250 Longwood Avenue, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , 250 Longwood Avenue, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| |
Collapse
|
25
|
van Linden OPJ, Kooistra AJ, Leurs R, de Esch IJP, de Graaf C. KLIFS: a knowledge-based structural database to navigate kinase-ligand interaction space. J Med Chem 2013; 57:249-77. [PMID: 23941661 DOI: 10.1021/jm400378w] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein kinases regulate the majority of signal transduction pathways in cells and have become important targets for the development of designer drugs. We present a systematic analysis of kinase-ligand interactions in all regions of the catalytic cleft of all 1252 human kinase-ligand cocrystal structures present in the Protein Data Bank (PDB). The kinase-ligand interaction fingerprints and structure database (KLIFS) contains a consistent alignment of 85 kinase ligand binding site residues that enables the identification of family specific interaction features and classification of ligands according to their binding modes. We illustrate how systematic mining of kinase-ligand interaction space gives new insights into how conserved and selective kinase interaction hot spots can accommodate the large diversity of chemical scaffolds in kinase ligands. These analyses lead to an improved understanding of the structural requirements of kinase binding that will be useful in ligand discovery and design studies.
Collapse
Affiliation(s)
- Oscar P J van Linden
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University Amsterdam , De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Ahn J, Truesdell P, Meens J, Kadish C, Yang X, Boag AH, Craig AWB. Fer protein-tyrosine kinase promotes lung adenocarcinoma cell invasion and tumor metastasis. Mol Cancer Res 2013; 11:952-63. [PMID: 23699534 DOI: 10.1158/1541-7786.mcr-13-0003-t] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Epidermal growth factor receptor (EGFR) is frequently amplified or mutated in non-small cell lung cancer (NSCLC). Although Fer protein-tyrosine kinase signals downstream of EGFR, its role in NSCLC tumor progression has not been reported. Here, Fer kinase was elevated in NSCLC tumors compared to normal lung epithelium. EGFR signaling in NSCLC cells fosters rapid Fer activation and increased localization to lamellipodia. Stable silencing of Fer in H1299 lung adenocarcinoma cells (Fer KD) caused impaired EGFR-induced lamellipodia formation compared to control cells. Fer KD NSCLC cells showed reduced Vav2 tyrosine phosphorylation that was correlated with direct Fer-mediated phosphorylation of Vav2 on tyrosine-172, which was previously reported to increase the guanine nucleotide exchange factor activity of Vav2. Indeed, Fer KD cells displayed defects in Rac-GTP localization to lamellipodia, cell migration, and cell invasion in vitro. To test the role of Fer in NSCLC progression and metastasis, control and Fer KD cells were grown as subcutaneous tumors in mice. Although Fer was not required for tumor growth, Fer KD tumor-bearing mice had significantly fewer numbers of spontaneous metastases. Combined, these data demonstrate that Fer kinase is elevated in NSCLC tumors and is important for cellular invasion and metastasis. IMPLICATIONS Fer protein-tyrosine kinase is a potential therapeutic target in metastatic lung cancer. Mol Cancer Res; 11(8); 952-63. ©2013 AACR.
Collapse
Affiliation(s)
- Joseph Ahn
- Division of Cancer Biology & Genetics, Queen's University, Botterell Hall, 3rd Fl, CRI315, 18 Stuart St., Kingston, ON K7L 3N6, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Rodrigues FSLM, Yang X, Nikaido M, Liu Q, Kelsh RN. A simple, highly visual in vivo screen for anaplastic lymphoma kinase inhibitors. ACS Chem Biol 2012; 7:1968-74. [PMID: 22985331 DOI: 10.1021/cb300361a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anaplastic lymphoma kinase (ALK) is an important drug target in many cancers, including lymphoma, neuroblastoma, and lung cancer. Here, we demonstrate proof-of-principle for a novel and inexpensive assay for ALK inhibitor activity and identification in zebrafish. We demonstrate that the human oncogenic ALK fusion, NPM-ALK, drives overproduction of iridophores, a highly visible, shiny pigment cell-type in zebrafish. Treatment with the potent ALK inhibitor, TAE684, fully inhibits production of ALK-dependent iridophores. Using our assay, we test multiple properties of TAE684 in vivo, including efficacy, specificity, and toxicity. We note that TAE684 also inhibits the closely related leukocyte tyrosine kinase (Ltk) that is required for endogenous iridophore development. Similar effects are observed with an independent inhibitor, Crizotinib. Our assay can thus be utilized to identify ALK or LTK inhibitors. Importantly, the natural reflectivity of iridophores lends itself to automation for high throughput assessment of ALK and LTK inhibitor compounds in vivo.
Collapse
Affiliation(s)
- Frederico S. L. M. Rodrigues
- Centre for
Regenerative Medicine
and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Xueyan Yang
- Centre for
Regenerative Medicine
and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Masataka Nikaido
- Centre for
Regenerative Medicine
and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Qingsong Liu
- Dana Farber Cancer Institute
and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115,
United States
| | - Robert N. Kelsh
- Centre for
Regenerative Medicine
and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|