1
|
Vega-Granados K, Escobar-Ibarra P, Palomino-Vizcaino K, Cruz-Reyes J, Valverde-Guillén P, Latorre-Redoli S, Caneda-Santiago CT, Marí-Beffa M, Romero-Sánchez LB. Hexyltrimethylammonium ion enhances potential copper-chelating properties of ammonium thiomolybdate in an in vivo zebrafish model. Arch Biochem Biophys 2024; 758:110077. [PMID: 38942109 DOI: 10.1016/j.abb.2024.110077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Ammonium and hexyltrimethylammonium thiomolybdates (ATM and ATM-C6) and thiotungstates (ATT and ATT-C6) were synthesized. Their toxicity was evaluated using both in vitro and in vivo approaches via the zebrafish embryo acute toxicity assay (ZFET), while the copper-thiometallate interaction was studied using cyclic voltammetry, as well as in an in vivo assay. Cyclic voltammetry suggests that all thiometallates form complexes with copper in a 2:1 Cu:thiometallate ratio. Both in vitro and in vivo assays demonstrated low toxicity in BALB/3T3 cells and in zebrafish embryos, with high IC50 and LC50 values. Furthermore, the hexyltrimethylammonium ion played a crucial role in enhancing viability and reducing toxicity during prolonged treatments for ATM and ATT. In particular, the ZEFT assay uncovered the accumulation of ATM in zebrafish yolk, averted by the incorporation of the hexyltrimethylammonium ion. Notably, the copper-thiometallate interaction assay highlighted the improved viability of embryos when cultured in CuCl2 and ATM-C6, even at high CuCl2 concentrations. The hatching assay further confirmed that copper-ATM-C6 interaction mitigates inhibitory effects induced by thiomolybdates and CuCl2 when administered individually. These results suggest that the incorporation of the hexyltrimethylammonium ion in ATM increase its ability to interact with copper and its potential application as a copper chelator.
Collapse
Affiliation(s)
- K Vega-Granados
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana, 22390, Mexico
| | - P Escobar-Ibarra
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana, 22390, Mexico
| | - K Palomino-Vizcaino
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana, 22390, Mexico
| | - J Cruz-Reyes
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana, 22390, Mexico
| | - P Valverde-Guillén
- Department of Cell Biology, Genetics and Physiology, Faculty of Science, University of Malaga, Malaga, Spain
| | - S Latorre-Redoli
- Department of Cell Biology, Genetics and Physiology, Faculty of Science, University of Malaga, Malaga, Spain
| | - C T Caneda-Santiago
- Department of Cell Biology, Genetics and Physiology, Faculty of Science, University of Malaga, Malaga, Spain
| | - M Marí-Beffa
- Department of Cell Biology, Genetics and Physiology, Faculty of Science, University of Malaga, Malaga, Spain; Andalusian Centre for Nanomedicine and Biotechnology (IMABIS-BIONAND), Andalusian Institute of Blue Biotechnology and Development (IBYDA), Experimental Centre Grice Hutchinson, University of Malaga, Malaga, Spain
| | - L B Romero-Sánchez
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana, 22390, Mexico.
| |
Collapse
|
2
|
Massarotti A, Brunelli F, Aprile S, Giustiniano M, Tron GC. Medicinal Chemistry of Isocyanides. Chem Rev 2021; 121:10742-10788. [PMID: 34197077 DOI: 10.1021/acs.chemrev.1c00143] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eons of evolution, isocyanides carved out a niche in the ecological systems probably thanks to their metal coordinating properties. In 1859 the first isocyanide was synthesized by humans and in 1950 the first natural isocyanide was discovered. Now, at the beginning of XXI century, hundreds of isocyanides have been isolated both in prokaryotes and eukaryotes and thousands have been synthesized in the laboratory. For some of them their ecological role is known, and their potent biological activity as antibacterial, antifungal, antimalarial, antifouling, and antitumoral compounds has been described. Notwithstanding, the isocyanides have not gained a good reputation among medicinal chemists who have erroneously considered them either too reactive or metabolically unstable, and this has restricted their main use to technical applications as ligands in coordination chemistry. The aim of this review is therefore to show the richness in biological activity of the isocyanide-containing molecules, to support the idea of using the isocyanide functional group as an unconventional pharmacophore especially useful as a metal coordinating warhead. The unhidden hope is to convince the skeptical medicinal chemists of the isocyanide potential in many areas of drug discovery and considering them in the design of future drugs.
Collapse
Affiliation(s)
- Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Francesca Brunelli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Silvio Aprile
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Mariateresa Giustiniano
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Gian Cesare Tron
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
3
|
Hughes CC. Chemical labeling strategies for small molecule natural product detection and isolation. Nat Prod Rep 2021; 38:1684-1705. [PMID: 33629087 DOI: 10.1039/d0np00034e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: Up to 2020.It is widely accepted that small molecule natural products (NPs) evolved to carry out a particular ecological function and that these finely-tuned molecules can sometimes be appropriated for the treatment of disease in humans. Unfortunately, for the natural products chemist, NPs did not evolve to possess favorable physicochemical properties needed for HPLC-MS analysis. The process known as derivatization, whereby an NP in a complex mixture is decorated with a nonnatural moiety using a derivatizing agent (DA), arose from this sad state of affairs. Here, NPs are freed from the limitations of natural functionality and endowed, usually with some degree of chemoselectivity, with additional structural features that make HPLC-MS analysis more informative. DAs that selectively label amines, carboxylic acids, alcohols, phenols, thiols, ketones, and aldehydes, terminal alkynes, electrophiles, conjugated alkenes, and isocyanides have been developed and will be discussed here in detail. Although usually employed for targeted metabolomics, chemical labeling strategies have been effectively applied to uncharacterized NP extracts and may play an increasing role in the detection and isolation of certain classes of NPs in the future.
Collapse
Affiliation(s)
- Chambers C Hughes
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany 72076.
| |
Collapse
|
4
|
Chen TY, Chen J, Tang Y, Zhou J, Guo Y, Chang WC. Current Understanding toward Isonitrile Group Biosynthesis and Mechanism. CHINESE J CHEM 2021; 39:463-472. [PMID: 34658601 PMCID: PMC8519408 DOI: 10.1002/cjoc.202000448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Isonitrile group has been identified in many natural products. Due to the broad reactivity of N≡C triple bond, these natural products have valuable pharmaceutical potentials. This review summarizes the current biosynthetic pathways and the corresponding enzymes that are responsible for isonitrile-containing natural product generation. Based on the strategies utilized, two fundamentally distinctive approaches are discussed. In addition, recent progress in elucidating isonitrile group formation mechanisms is also presented.
Collapse
Affiliation(s)
- Tzu-Yu Chen
- Department of Chemistry, North Carolina State University Raleigh, NC 27695, U.S.A
| | - Jinfeng Chen
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yijie Tang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A
| | - Wei-chen Chang
- Department of Chemistry, North Carolina State University Raleigh, NC 27695, U.S.A
| |
Collapse
|
5
|
Tingaud‐Sequeira A, Trimouille A, Marlin S, Lopez E, Berenguer M, Gherbi S, Arveiler B, Lacombe D, Rooryck C. Functional and genetic analyses of ZYG11B provide evidences for its involvement in OAVS. Mol Genet Genomic Med 2020; 8:e1375. [PMID: 32738032 PMCID: PMC7549578 DOI: 10.1002/mgg3.1375] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/30/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Oculo-Auriculo-Vertebral Spectrum (OAVS) or Goldenhar Syndrome is an embryonic developmental disorder characterized by hemifacial microsomia associated with auricular, ocular and vertebral malformations. The clinical heterogeneity of this spectrum and its incomplete penetrance limited the molecular diagnosis. In this study, we describe a novel causative gene, ZYG11B. METHODS A sporadic case of OAVS was analyzed by whole exome sequencing in trio strategy. The identified candidate gene, ZYG11B, was screened in 143 patients by next generation sequencing. Overexpression and immunofluorescence of wild-type and mutated ZYG11B forms were performed in Hela cells. Moreover, morpholinos were used for transient knockdown of its homologue in zebrafish embryo. RESULTS A nonsense de novo heterozygous variant in ZYG11B, (NM_024646, c.1609G>T, p.Glu537*) was identified in a single OAVS patient. This variant leads in vitro to a truncated protein whose subcellular localization is altered. Transient knockdown of the zebrafish homologue gene confirmed its role in craniofacial cartilages architecture and in notochord development. Moreover, ZYG11B expression regulates a cartilage master regulator, SOX6, and is regulated by Retinoic Acid, a known developmental toxic molecule leading to clinical features of OAVS. CONCLUSION Based on genetic, cellular and animal model data, we proposed ZYG11B as a novel rare causative gene for OAVS.
Collapse
Affiliation(s)
| | - Aurélien Trimouille
- Maladies Rares: Génétique et Métabolisme (MRGM)U 1211 INSERMUniv. BordeauxBordeauxFrance
- Service de Génétique MédicaleCentre de Référence Anomalies du Développement et Syndromes MalformatifsCHU de BordeauxBordeauxFrance
| | - Sandrine Marlin
- Département de GénétiqueCentre de Référence des Surdités GénétiquesInstitut ImagineHôpital Universitaire Necker‐Enfants‐MaladesParisFrance
- Institut ImagineU 1163 INSERMUniversité Paris DescartesParisFrance
| | - Estelle Lopez
- Maladies Rares: Génétique et Métabolisme (MRGM)U 1211 INSERMUniv. BordeauxBordeauxFrance
| | - Marie Berenguer
- Maladies Rares: Génétique et Métabolisme (MRGM)U 1211 INSERMUniv. BordeauxBordeauxFrance
| | - Souad Gherbi
- Département de GénétiqueCentre de Référence des Surdités GénétiquesInstitut ImagineHôpital Universitaire Necker‐Enfants‐MaladesParisFrance
| | - Benoit Arveiler
- Maladies Rares: Génétique et Métabolisme (MRGM)U 1211 INSERMUniv. BordeauxBordeauxFrance
- Service de Génétique MédicaleCentre de Référence Anomalies du Développement et Syndromes MalformatifsCHU de BordeauxBordeauxFrance
| | - Didier Lacombe
- Maladies Rares: Génétique et Métabolisme (MRGM)U 1211 INSERMUniv. BordeauxBordeauxFrance
- Service de Génétique MédicaleCentre de Référence Anomalies du Développement et Syndromes MalformatifsCHU de BordeauxBordeauxFrance
| | - Caroline Rooryck
- Maladies Rares: Génétique et Métabolisme (MRGM)U 1211 INSERMUniv. BordeauxBordeauxFrance
- Service de Génétique MédicaleCentre de Référence Anomalies du Développement et Syndromes MalformatifsCHU de BordeauxBordeauxFrance
| |
Collapse
|
6
|
Vlaminck L, Sang-Aram C, Botterman D, Uy CJC, Harper MK, Inzé D, Gheysen G, Depuydt S. Development of a novel and rapid phenotype-based screening method to assess rice seedling growth. PLANT METHODS 2020; 16:139. [PMID: 33072175 PMCID: PMC7560306 DOI: 10.1186/s13007-020-00682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/07/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Rice (Oryza sativa) is one of the most important model crops in plant research. Despite its considerable advantages, (phenotypic) bioassays for rice are not as well developed as for Arabidopsis thaliana. Here, we present a phenotype-based screening method to study shoot-related parameters of rice seedlings via an automated computer analysis. RESULTS The phenotype-based screening method was validated by testing several compounds in pharmacological experiments that interfered with hormone homeostasis, confirming that the assay was consistent with regard to the anticipated plant growth regulation and revealing the robustness of the set-up in terms of reproducibility. Moreover, abiotic stress tests using NaCl and DCMU, an electron transport blocker during the light dependent reactions of photosynthesis, confirmed the validity of the new method for a wide range of applications. Next, this method was used to screen the impact of semi-purified fractions of marine invertebrates on the initial stages of rice seedling growth. Certain fractions clearly stimulated growth, whereas others inhibited it, especially in the root, illustrating the possible applications of this novel, robust, and fast phenotype-based screening method for rice. CONCLUSIONS The validated phenotype-based and cost-efficient screening method allows a quick and proper analysis of shoot growth and requires only small volumes of compounds and media. As a result, this method could potentially be used for a whole range of applications, ranging from discovery of novel biostimulants, plant growth regulators, and plant growth-promoting bacteria to analysis of CRISPR knockouts, molecular plant breeding, genome-wide association, and phytotoxicity studies. The assay system described here can contribute to a better understanding of plant development in general.
Collapse
Affiliation(s)
- Lena Vlaminck
- Present Address: Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 21985 South Korea
| | - Chananchida Sang-Aram
- Present Address: Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 21985 South Korea
| | - Deborah Botterman
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 21985 South Korea
| | - Christine Jewel C. Uy
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 21985 South Korea
| | - Mary Kay Harper
- Department of Medical Chemistry, University of Utah, Salt Lake City, UT 84112 USA
| | - Dirk Inzé
- Present Address: Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Stephen Depuydt
- Present Address: Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 21985 South Korea
| |
Collapse
|
7
|
Dai W, Sandoval IT, Cai S, Smith KA, Delacruz RGC, Boyd KA, Mills JJ, Jones DA, Cichewicz RH. Cholinesterase Inhibitory Arisugacins L-Q from a Penicillium sp. Isolate Obtained through a Citizen Science Initiative and Their Activities in a Phenotype-Based Zebrafish Assay. JOURNAL OF NATURAL PRODUCTS 2019; 82:2627-2637. [PMID: 31433188 DOI: 10.1021/acs.jnatprod.9b00563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phenotype-based screening of a fungal extract library yielded an active sample from a Penicillium sp. isolate that impaired zebrafish motility. Bioassay-guided purification led to the identification of 14 meroterpenoids including six new metabolites, arisugacins L-Q (4, 5, 8, and 12-14), seven known arisugacins (1-3, 6, 7, 9, and 10), and one known terreulactone (11). Their structures were determined using a combination of NMR and HRESIMS data, evidence secured from theoretical and experimental ECD spectra, and the modified Mosher's method. The purified compounds were tested in zebrafish embryos, as well as in vitro for cholinesterase inhibition activities. Compound 12 produced defects in myotome structure (metameric muscle, which is critical for locomotion) in vivo and showed the most potent and selective acetylcholinesterase inhibitory activity with an IC50 of 191 nM in vitro. The phenotype assay was also used to reveal bioactivities for several previously reported arisugacins, which had failed to show activity in prior cell-based and in vitro testing. This study demonstrates that utilization of the zebrafish phenotype assay is an effective approach for the identification of bioactive extracts, is compatible with the bioassay-guided compound purification strategies, and offers a valuable tool for probing complex natural product sources to detect bioactive small molecules with potential therapeutic or other commercial applications.
Collapse
Affiliation(s)
- Wentao Dai
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Imelda T Sandoval
- Functional and Chemical Genomics Program , Oklahoma Medical Research Foundation , 825 NE 13th Street , Oklahoma City , Oklahoma 73104 , United States
| | - Shengxin Cai
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Kaylee A Smith
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Richard Glenn C Delacruz
- Functional and Chemical Genomics Program , Oklahoma Medical Research Foundation , 825 NE 13th Street , Oklahoma City , Oklahoma 73104 , United States
| | - Kevin A Boyd
- Functional and Chemical Genomics Program , Oklahoma Medical Research Foundation , 825 NE 13th Street , Oklahoma City , Oklahoma 73104 , United States
| | - Jessica J Mills
- Functional and Chemical Genomics Program , Oklahoma Medical Research Foundation , 825 NE 13th Street , Oklahoma City , Oklahoma 73104 , United States
| | - David A Jones
- Functional and Chemical Genomics Program , Oklahoma Medical Research Foundation , 825 NE 13th Street , Oklahoma City , Oklahoma 73104 , United States
| | - Robert H Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| |
Collapse
|
8
|
How Surrogate and Chemical Genetics in Model Organisms Can Suggest Therapies for Human Genetic Diseases. Genetics 2018; 208:833-851. [PMID: 29487144 PMCID: PMC5844338 DOI: 10.1534/genetics.117.300124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022] Open
Abstract
Genetic diseases are both inherited and acquired. Many genetic diseases fall under the paradigm of orphan diseases, a disease found in < 1 in 2000 persons. With rapid and cost-effective genome sequencing becoming the norm, many causal mutations for genetic diseases are being rapidly determined. In this regard, model organisms are playing an important role in validating if specific mutations identified in patients drive the observed phenotype. An emerging challenge for model organism researchers is the application of genetic and chemical genetic platforms to discover drug targets and drugs/drug-like molecules for potential treatment options for patients with genetic disease. This review provides an overview of how model organisms have contributed to our understanding of genetic disease, with a focus on the roles of yeast and zebrafish in gene discovery and the identification of compounds that could potentially treat human genetic diseases.
Collapse
|
9
|
Gong G, Jiang L, Lin Q, Liu W, He MF, Zhang J, Feng F, Qu W, Xie N. In vivo toxic effects of 4-methoxy-5-hydroxy-canthin-6-one in zebrafish embryos via copper dyshomeostasis and oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 2018; 204:79-87. [PMID: 29208543 DOI: 10.1016/j.cbpc.2017.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/24/2017] [Accepted: 11/29/2017] [Indexed: 11/23/2022]
Abstract
Dysfunction of copper homeostasis can lead to a host of disorders, which might be toxic sometimes. 4-Methoxy-5-hydroxy-canthin-6-one (CAN) is one of the major constituents from Picrasma quassioides and responsible for its therapeutic effects. In this work, we evaluated the toxic effect of CAN (7.5μM) on zebrafish embryos. CAN treatment decreased survival, delayed hatching time and induced malformations (loss of pigmentation, pericardial edema, as well as hematologic and neurologic abnormalities). Besides, exogenous copper supplementation rescued the pigmentation and cardiovascular defects in CAN-treated embryos. Further spectroscopic studies revealed a copper-chelating activity of CAN. Then its regulation on the expressions of copper homeostasis related genes also be analyzed. In addition, CAN lowered the total activity of SOD, elevated the ROS production and altered the oxidative related genes transcriptions, which led to oxidative stress. In conclusion, we demonstrated that CAN (7.5μM) might exert its toxic effects in zebrafish embryos by causing copper dyshomeostasis and oxidative stress. It will give insight into the risk assessment and prevention of CAN-mediated toxicity.
Collapse
Affiliation(s)
- Guiyi Gong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Lingling Jiang
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Qinghua Lin
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Ming-Fang He
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Jie Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China.
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China.
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicines and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd., Ganzhou 341000, Jiangxi, China
| |
Collapse
|
10
|
Abstract
We report a concise chemical synthesis of kalihinol C via a possible biosynthetic intermediate, "protokalihinol", which was targeted as a scaffold en route to antiplasmodial analogs. High stereocontrol of the kalihinol framework relies on a heterodendralene cascade to establish the target stereotetrad. Common problems of regio- and chemoselectivity encountered in the kalihinol class are explained and solved.
Collapse
Affiliation(s)
- Christopher A Reiher
- Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Ryan A Shenvi
- Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States
| |
Collapse
|
11
|
Wiley DS, Redfield SE, Zon LI. Chemical screening in zebrafish for novel biological and therapeutic discovery. Methods Cell Biol 2016; 138:651-679. [PMID: 28129862 DOI: 10.1016/bs.mcb.2016.10.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Zebrafish chemical screening allows for an in vivo assessment of small molecule modulation of biological processes. Compound toxicities, chemical alterations by metabolism, pharmacokinetic and pharmacodynamic properties, and modulation of cell niches can be studied with this method. Furthermore, zebrafish screening is straightforward and cost effective. Zebrafish provide an invaluable platform for novel therapeutic discovery through chemical screening.
Collapse
Affiliation(s)
- D S Wiley
- Stem Cell Program and Division of Hematology and Oncology, Childrens' Hospital Boston, Dana-Farber Cancer Institute, Howard Hughes Medical Institute and Harvard Medical School, Boston, MA, United States
| | - S E Redfield
- Stem Cell Program and Division of Hematology and Oncology, Childrens' Hospital Boston, Dana-Farber Cancer Institute, Howard Hughes Medical Institute and Harvard Medical School, Boston, MA, United States
| | - L I Zon
- Stem Cell Program and Division of Hematology and Oncology, Childrens' Hospital Boston, Dana-Farber Cancer Institute, Howard Hughes Medical Institute and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Lu HH, Pronin SV, Antonova-Koch Y, Meister S, Winzeler EA, Shenvi RA. Synthesis of (+)-7,20-Diisocyanoadociane and Liver-Stage Antiplasmodial Activity of the Isocyanoterpene Class. J Am Chem Soc 2016; 138:7268-71. [PMID: 27244042 DOI: 10.1021/jacs.6b03899] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
7,20-Diisocyanoadociane, a scarce marine metabolite with potent antimalarial activity, was synthesized as a single enantiomer in 13 steps from simple building blocks (17 linear steps). Chemical synthesis enabled identification of isocyanoterpene antiplasmodial activity against liver-stage parasites, which suggested that inhibition of heme detoxification does not exclusively underlie the mechanism of action of this class.
Collapse
Affiliation(s)
- Hai-Hua Lu
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sergey V Pronin
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yevgeniya Antonova-Koch
- Department of Pediatrics, University of California, San Diego, School of Medicine , 9500 Gilman Drive 0741, La Jolla, California 92093, United States
| | - Stephan Meister
- Department of Pediatrics, University of California, San Diego, School of Medicine , 9500 Gilman Drive 0741, La Jolla, California 92093, United States
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, School of Medicine , 9500 Gilman Drive 0741, La Jolla, California 92093, United States
| | - Ryan A Shenvi
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
13
|
Avilés E, Prudhomme J, Le Roch KG, Franzblau SG, Chandrasena K, Mayer AMS, Rodríguez AD. Synthesis and preliminary biological evaluation of a small library of hybrid compounds based on Ugi isocyanide multicomponent reactions with a marine natural product scaffold. Bioorg Med Chem Lett 2015; 25:5339-43. [PMID: 26421992 PMCID: PMC4815915 DOI: 10.1016/j.bmcl.2015.09.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 01/13/2023]
Abstract
A mixture-based combinatorial library of five Ugi adducts (4-8) incorporating known antitubercular and antimalarial pharmacophores was successfully synthesized, starting from the naturally occurring diisocyanide 3, via parallel Ugi four-center three-component reactions (U-4C-3CR). The novel α-acylamino amides obtained were evaluated for their antiinfective potential against laboratory strains of Mycobacterium tuberculosis H37Rv and chloroquine-susceptible 3D7 Plasmodium falciparum. Interestingly, compounds 4-8 displayed potent in vitro antiparasitic activity with higher cytotoxicity in comparison to their diisocyanide precursor 3, with the best compound exhibiting an IC50 value of 3.6 nM. Additionally, these natural product inspired hybrids potently inhibited in vitro thromboxane B2 (TXB2) and superoxide anion (O2(-)) generation from Escherichia coli lipopolysaccharide (LPS)-activated rat neonatal microglia, with concomitant low short-term toxicity.
Collapse
Affiliation(s)
- Edward Avilés
- Department of Chemistry, University of Puerto Rico, PO Box 23346, U.P.R. Station, San Juan, PR 00931-3346, United States
| | - Jacques Prudhomme
- Department of Cell Biology and Neuroscience, University of California at Riverside, CA 92521, United States
| | - Karine G Le Roch
- Department of Cell Biology and Neuroscience, University of California at Riverside, CA 92521, United States
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Kevin Chandrasena
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, United States
| | - Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, United States
| | - Abimael D Rodríguez
- Department of Chemistry, University of Puerto Rico, PO Box 23346, U.P.R. Station, San Juan, PR 00931-3346, United States.
| |
Collapse
|
14
|
Abstract
The zebrafish has become a prominent vertebrate model for disease and has already contributed to several examples of successful phenotype-based drug discovery. For the zebrafish to become useful in drug development more broadly, key hurdles must be overcome, including a more comprehensive elucidation of the similarities and differences between human and zebrafish biology. Recent studies have begun to establish the capabilities and limitations of zebrafish for disease modelling, drug screening, target identification, pharmacology, and toxicology. As our understanding increases and as the technologies for manipulating zebrafish improve, it is hoped that the zebrafish will have a key role in accelerating the emergence of precision medicine.
Collapse
Affiliation(s)
- Calum A MacRae
- Cardiovascular Medicine and Network Medicine Divisions, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Randall T Peterson
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
15
|
Abstract
This review covers the literature published in 2013 for marine natural products (MNPs), with 982 citations (644 for the period January to December 2013) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1163 for 2013), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
16
|
Schnermann MJ, Shenvi RA. Syntheses and biological studies of marine terpenoids derived from inorganic cyanide. Nat Prod Rep 2015; 32:543-77. [PMID: 25514696 DOI: 10.1039/c4np00109e] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Isocyanoterpenes (ICTs) are marine natural products biosynthesized through an unusual pathway that adorns terpene scaffolds with nitrogenous functionality derived from cyanide. The appendage of nitrogen functional groups - isonitriles in particular - onto stereochemically-rich carbocyclic ring systems provides enigmatic, bioactive molecules that have required innovative chemical syntheses. This review discusses the challenges inherent to the synthesis of this diverse family and details the development of the field. We also present recent progress in isolation and discuss key aspects of the remarkable biological activity of these compounds.
Collapse
Affiliation(s)
- Martin J Schnermann
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21701, USA.
| | | |
Collapse
|
17
|
Rennekamp AJ, Peterson RT. 15 years of zebrafish chemical screening. Curr Opin Chem Biol 2014; 24:58-70. [PMID: 25461724 DOI: 10.1016/j.cbpa.2014.10.025] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 12/13/2022]
Abstract
In 2000, the first chemical screen using living zebrafish in a multi-well plate was reported. Since then, more than 60 additional screens have been published describing whole-organism drug and pathway discovery projects in zebrafish. To investigate the scope of the work reported in the last 14 years and to identify trends in the field, we analyzed the discovery strategies of 64 primary research articles from the literature. We found that zebrafish screens have expanded beyond the use of developmental phenotypes to include behavioral, cardiac, metabolic, proliferative and regenerative endpoints. Additionally, many creative strategies have been used to uncover the mechanisms of action of new small molecules including chemical phenocopy, genetic phenocopy, mutant rescue, and spatial localization strategies.
Collapse
Affiliation(s)
- Andrew J Rennekamp
- Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA; Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA; Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Randall T Peterson
- Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA; Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA; Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|