1
|
van der Sluijs P, Hoelen H, Schmidt A, Braakman I. The Folding Pathway of ABC Transporter CFTR: Effective and Robust. J Mol Biol 2024; 436:168591. [PMID: 38677493 DOI: 10.1016/j.jmb.2024.168591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
De novo protein folding into a native three-dimensional structure is indispensable for biological function, is instructed by its amino acid sequence, and occurs along a vectorial trajectory. The human proteome contains thousands of membrane-spanning proteins, whose biosynthesis begins on endoplasmic reticulum-associated ribosomes. Nearly half of all membrane proteins traverse the membrane more than once, including therapeutically important protein families such as solute carriers, G-protein-coupled receptors, and ABC transporters. These mediate a variety of functions like signal transduction and solute transport and are often of vital importance for cell function and tissue homeostasis. Missense mutations in multispan membrane proteins can lead to misfolding and cause disease; an example is the ABC transporter Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Even though our understanding of multispan membrane-protein folding still is rather rudimental, the cumulative knowledge of 20 years of basic research on CFTR folding has led to development of drugs that modulate the misfolded protein. This has provided the prospect of a life without CF to the vast majority of patients. In this review we describe our understanding of the folding pathway of CFTR in cells, which is modular and tolerates many defects, making it effective and robust. We address how modulator drugs affect folding and function of CFTR, and distinguish protein stability from its folding process. Since the domain architecture of (mammalian) ABC transporters are highly conserved, we anticipate that the insights we discuss here for folding of CFTR may lay the groundwork for understanding the general rules of ABC-transporter folding.
Collapse
Affiliation(s)
- Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | - Hanneke Hoelen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; Present address: GenDx, Yalelaan 48, 3584 CM Utrecht, The Netherlands
| | - Andre Schmidt
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; 3D-Pharmxchange, Tilburg, the Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
2
|
Kamada Y, Ohnishi Y, Nakashima C, Fujii A, Terakawa M, Hamano I, Nakayamada U, Katoh S, Hirata N, Tateishi H, Fukuda R, Takahashi H, Lukacs GL, Okiyoneda T. HERC3 facilitates ERAD of select membrane proteins by recognizing membrane-spanning domains. J Cell Biol 2024; 223:e202308003. [PMID: 38722278 PMCID: PMC11082371 DOI: 10.1083/jcb.202308003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
Aberrant proteins located in the endoplasmic reticulum (ER) undergo rapid ubiquitination by multiple ubiquitin (Ub) E3 ligases and are retrotranslocated to the cytosol as part of the ER-associated degradation (ERAD). Despite several ERAD branches involving different Ub E3 ligases, the molecular machinery responsible for these ERAD branches in mammalian cells remains not fully understood. Through a series of multiplex knockdown/knockout experiments with real-time kinetic measurements, we demonstrate that HERC3 operates independently of the ER-embedded ubiquitin ligases RNF5 and RNF185 (RNF5/185) to mediate the retrotranslocation and ERAD of misfolded CFTR. While RNF5/185 participates in the ERAD process of both misfolded ABCB1 and CFTR, HERC3 uniquely promotes CFTR ERAD. In vitro assay revealed that HERC3 directly interacts with the exposed membrane-spanning domains (MSDs) of CFTR but not with the MSDs embedded in liposomes. Therefore, HERC3 could play a role in the quality control of MSDs in the cytoplasm and might be crucial for the ERAD pathway of select membrane proteins.
Collapse
Affiliation(s)
- Yuka Kamada
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Yuko Ohnishi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Chikako Nakashima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Aika Fujii
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Mana Terakawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Ikuto Hamano
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Uta Nakayamada
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Saori Katoh
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Noriaki Hirata
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Hazuki Tateishi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Ryosuke Fukuda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Hirotaka Takahashi
- Division of Cell-Free Sciences, Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
3
|
Ramananda Y, Naren AP, Arora K. Functional Consequences of CFTR Interactions in Cystic Fibrosis. Int J Mol Sci 2024; 25:3384. [PMID: 38542363 PMCID: PMC10970640 DOI: 10.3390/ijms25063384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 09/01/2024] Open
Abstract
Cystic fibrosis (CF) is a fatal autosomal recessive disorder caused by the loss of function mutations within a single gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a chloride channel that regulates ion and fluid transport across various epithelia. The discovery of CFTR as the CF gene and its cloning in 1989, coupled with extensive research that went into the understanding of the underlying biological mechanisms of CF, have led to the development of revolutionary therapies in CF that we see today. The highly effective modulator therapies have increased the survival rates of CF patients and shifted the epidemiological landscape and disease prognosis. However, the differential effect of modulators among CF patients and the presence of non-responders and ineligible patients underscore the need to develop specialized and customized therapies for a significant number of patients. Recent advances in the understanding of the CFTR structure, its expression, and defined cellular compositions will aid in developing more precise therapies. As the lifespan of CF patients continues to increase, it is becoming critical to clinically address the extra-pulmonary manifestations of CF disease to improve the quality of life of the patients. In-depth analysis of the molecular signature of different CF organs at the transcriptional and post-transcriptional levels is rapidly advancing and will help address the etiological causes and variability of CF among patients and develop precision medicine in CF. In this review, we will provide an overview of CF disease, leading to the discovery and characterization of CFTR and the development of CFTR modulators. The later sections of the review will delve into the key findings derived from single-molecule and single-cell-level analyses of CFTR, followed by an exploration of disease-relevant protein complexes of CFTR that may ultimately define the etiological course of CF disease.
Collapse
Affiliation(s)
- Yashaswini Ramananda
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anjaparavanda P. Naren
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kavisha Arora
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
4
|
Ferreira FC, Amaral MD, Bacalhau M, Lopes-Pacheco M. PTI-801 (posenacaftor) shares a common mechanism with VX-445 (elexacaftor) to rescue p.Phe508del-CFTR. Eur J Pharmacol 2024; 967:176390. [PMID: 38336013 DOI: 10.1016/j.ejphar.2024.176390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/05/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
The deletion of a phenylalanine at position 508 (p.Phe508del) in the CFTR anion channel is the most prevalent variant in people with Cystic Fibrosis (CF). This variant impairs folding and stability of the CF transmembrane conductance regulator (CFTR) protein, resulting in its defective trafficking and premature degradation. Over the last years, therapeutic accomplishments have been attained in developing small molecules that partially correct p.Phe508del-CFTR defects; however, the mechanism of action (MoA) of these compounds has only started to be uncovered. In this study, we employed biochemical, fluorescence microscopy, and functional assays to examine the efficacy and properties of PTI-801, a newly developed p.Phe508del-CFTR corrector. To exploit its MoA, we assessed PTI-801 effects in combination with low temperature, genetic revertants of p.Phe508del-CFTR (the in cis p.Val510Asp, p.Gly550Glu, p.Arg1070Trp, and 4RK) and other correctors. Our results demonstrated that PTI-801 rescues p.Phe508del-CFTR processing, PM trafficking, and channel function (upon agonist stimulation) with greater correction effects in combination with ABBV-2222, FDL-169, VX-661, or VX-809, but not with VX-445. Although PTI-801 exhibited no potentiator activity on low temperature- and corrector-rescued p.Phe508del-CFTR, this compound displayed similar behavior to that of VX-445 on genetic revertants. Such evidence associated with the lack of additivity when PTI-801 and VX-445 were combined indicates that they share a common binding site to correct p.Phe508del-CFTR defects. Despite the high efficacy of PTI-801 in combination with ABBV-2222, FDL-169, VX-661, or VX-809, these dual corrector combinations only partially restored p.Phe508del-CFTR conformational stability, as shown by the lower half-life of the mutant protein compared to that of WT-CFTR. In summary, PTI-801 likely shares a common MoA with VX-445 in rescuing p.Phe508del-CFTR, thus being a feasible alternative for the development of novel corrector combinations with greater capacity to rescue mutant CFTR folding and stability.
Collapse
Affiliation(s)
- Filipa C Ferreira
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal.
| |
Collapse
|
5
|
Farinha CM, Santos L, Ferreira JF. Cell type-specific regulation of CFTR trafficking-on the verge of progress. Front Cell Dev Biol 2024; 12:1338892. [PMID: 38505263 PMCID: PMC10949533 DOI: 10.3389/fcell.2024.1338892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Trafficking of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein is a complex process that starts with its biosynthesis and folding in the endoplasmic reticulum. Exit from the endoplasmic reticulum (ER) is coupled with the acquisition of a compact structure that can be processed and traffic through the secretory pathway. Once reaching its final destination-the plasma membrane, CFTR stability is regulated through interaction with multiple protein partners that are involved in its post-translation modification, connecting the channel to several signaling pathways. The complexity of the process is further boosted when analyzed in the context of the airway epithelium. Recent advances have characterized in detail the different cell types that compose the surface epithelium and shifted the paradigm on which cells express CFTR and on their individual and combined contribution to the total expression (and function) of this chloride/bicarbonate channel. Here we review CFTR trafficking and its relationship with the knowledge on the different cell types of the airway epithelia. We explore the crosstalk between these two areas and discuss what is still to be clarified and how this can be used to develop more targeted therapies for CF.
Collapse
Affiliation(s)
- Carlos M. Farinha
- Faculty of Sciences, BioISI—Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
| | | | | |
Collapse
|
6
|
Marchesin V, Monnier L, Blattmann P, Chevillard F, Kuntz C, Forny C, Kamper J, Studer R, Bossu A, Ertel EA, Nayler O, Brotschi C, Williams JT, Gatfield J. A uniquely efficacious type of CFTR corrector with complementary mode of action. SCIENCE ADVANCES 2024; 10:eadk1814. [PMID: 38427726 DOI: 10.1126/sciadv.adk1814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
Three distinct pharmacological corrector types (I, II, III) with different binding sites and additive behavior only partially rescue the F508del-cystic fibrosis transmembrane conductance regulator (CFTR) folding and trafficking defect observed in cystic fibrosis. We describe uniquely effective, macrocyclic CFTR correctors that were additive to the known corrector types, exerting a complementary "type IV" corrector mechanism. Macrocycles achieved wild-type-like folding efficiency of F508del-CFTR at the endoplasmic reticulum and normalized CFTR currents in reconstituted patient-derived bronchial epithelium. Using photo-activatable macrocycles, docking studies and site-directed mutagenesis a highly probable binding site and pose for type IV correctors was identified in a cavity between lasso helix-1 (Lh1) and transmembrane helix-1 of membrane spanning domain (MSD)-1, distinct from the known corrector binding sites. Since only F508del-CFTR fragments spanning from Lh1 until MSD2 responded to type IV correctors, these likely promote cotranslational assembly of Lh1, MSD1, and MSD2. Previously corrector-resistant CFTR folding mutants were also robustly rescued, suggesting substantial therapeutic potential for type IV correctors.
Collapse
Affiliation(s)
| | - Lucile Monnier
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| | | | | | | | - Camille Forny
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| | - Judith Kamper
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| | - Rolf Studer
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| | | | - Eric A Ertel
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| | - Oliver Nayler
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| | | | | | - John Gatfield
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| |
Collapse
|
7
|
Ferreira FC, Buarque CD, Lopes-Pacheco M. Organic Synthesis and Current Understanding of the Mechanisms of CFTR Modulator Drugs Ivacaftor, Tezacaftor, and Elexacaftor. Molecules 2024; 29:821. [PMID: 38398574 PMCID: PMC10891718 DOI: 10.3390/molecules29040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The monogenic rare disease Cystic Fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance (CFTR) protein, an anion channel expressed at the apical plasma membrane of epithelial cells. The discovery and subsequent development of CFTR modulators-small molecules acting on the basic molecular defect in CF-have revolutionized the standard of care for people with CF (PwCF), thus drastically improving their clinical features, prognosis, and quality of life. Currently, four of these drugs are approved for clinical use: potentiator ivacaftor (VX-770) alone or in combination with correctors lumacaftor, (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). Noteworthily, the triple combinatorial therapy composed of ivacaftor, tezacaftor, and elexacaftor constitutes the most effective modulator therapy nowadays for the majority of PwCF. In this review, we exploit the organic synthesis of ivacaftor, tezacaftor, and elexacaftor by providing a retrosynthetic drug analysis for these CFTR modulators. Furthermore, we describe the current understanding of the mechanisms of action (MoA's) of these compounds by discussing several studies that report the key findings on the molecular mechanisms underlying their action on the CFTR protein.
Collapse
Affiliation(s)
- Filipa C. Ferreira
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Camilla D. Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22435-900, RJ, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
8
|
Cao L, Wu Y, Gong Y, Zhou Q. Small molecule modulators of cystic fibrosis transmembrane conductance regulator (CFTR): Structure, classification, and mechanisms. Eur J Med Chem 2024; 265:116120. [PMID: 38194776 DOI: 10.1016/j.ejmech.2023.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
The advent of small molecule modulators targeting the cystic fibrosis transmembrane conductance regulator (CFTR) has revolutionized the treatment of persons with cystic fibrosis (CF) (pwCF). Presently, these small molecule CFTR modulators have gained approval for usage in approximately 90 % of adult pwCF. Ongoing drug development endeavors are focused on optimizing the therapeutic benefits while mitigating potential adverse effects associated with this treatment approach. Based on their mode of interaction with CFTR, these drugs can be classified into two distinct categories: specific CFTR modulators and non-specific CFTR modulators. Specific CFTR modulators encompass potentiators and correctors, whereas non-specific CFTR modulators encompass activators, proteostasis modulators, stabilizers, reader-through agents, and amplifiers. Currently, four small molecule modulators, all classified as potentiators and correctors, have obtained marketing approval. Furthermore, numerous novel small molecule modulators, exhibiting diverse mechanisms of action, are currently undergoing development. This review aims to explore the classification, mechanisms of action, molecular structures, developmental processes, and interrelationships among small molecule CFTR modulators.
Collapse
Affiliation(s)
- Luyang Cao
- China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yong Wu
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China
| | - Yanchun Gong
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China.
| | - Qingfa Zhou
- China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
9
|
Bellacchio E. Exploring the Mechanism of Activation of CFTR by Curcuminoids: An Ensemble Docking Study. Int J Mol Sci 2023; 25:552. [PMID: 38203723 PMCID: PMC10778693 DOI: 10.3390/ijms25010552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Curcumin, a major constituent of turmeric (Curcuma longa L.), has beneficial effects against several diseases. In cystic fibrosis (CF), this compound improves patients' symptoms by recovering the activity of a number of mutants of the cystic fibrosis transmembrane conductance regulator (CFTR). Despite holding promise in the treatment of CF, the curcumin binding site in CFTR and the molecular mechanism of activation of this channel are still unknown. The results of this study, based on docking and molecular dynamics (MD) simulations, allow us to propose that curcumin binds the closed ATP-free CFTR near the nucleotide-binding domain 1 (NBD1)/ICl1/ICl4 interface. The bound ligand, once approached by the nucleotide-binding domain 2 (NBD2) during transient channel opening, lays at a multiple interdomain cross point. Thereafter, curcumin can bridge NBD1 and NBD2, and also ICL1/ICL4 and ICL2/ICL3, finally tightening the same interdomain interactions that normally uphold the open conformation in the wild-type ATP-bound CFTR. The proposed binding site is compatible with biochemical observations made in previous CFTR-curcumin interaction studies. These findings provide a framework for the design of novel drugs that activate CFTR mutants characterized by defects in ATP binding and/or NBD dimerization or even lacking NBD2.
Collapse
Affiliation(s)
- Emanuele Bellacchio
- Genetica Molecolare e Genomica Funzionale, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
10
|
Baroni D, Scarano N, Ludovico A, Brandas C, Parodi A, Lunaccio D, Fossa P, Moran O, Cichero E, Millo E. In Silico and In Vitro Evaluation of the Mechanism of Action of Three VX809-Based Hybrid Derivatives as Correctors of the F508del CFTR Protein. Pharmaceuticals (Basel) 2023; 16:1702. [PMID: 38139828 PMCID: PMC10748060 DOI: 10.3390/ph16121702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Cystic fibrosis (CF), the most common autosomal recessive fatal genetic disease in the Caucasian population, is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel that regulates salt and water transport across a variety of secretory epithelia. Deletion of phenylalanine at position 508, F508del, the most common CF-causing mutation, destabilises the CFTR protein, causing folding and trafficking defects that lead to a dramatic reduction in its functional expression. Small molecules called correctors have been developed to rescue processing-defective F508del CFTR. We have combined in silico and in vitro approaches to investigate the mechanism of action and potential as CFTR correctors of three hybrid derivatives (2a, 7a, and 7m) obtained by merging the amino-arylthiazole core with the benzodioxole carboxamide moiety characterising the corrector lumacaftor. Molecular modelling analyses suggested that the three hybrids interact with a putative region located at the MSD1/NBD1 interface. Biochemical analyses confirmed these results, showing that the three molecules affect the expression and stability of the F508del NBD1. Finally, the YFP assay was used to evaluate the influence of the three hybrid derivatives on F508del CFTR function, assessing that their effect is additive to that of the correctors VX661 and VX445. Our study shows that the development and testing of optimised compounds targeting different structural and functional defects of mutant CFTR is the best strategy to provide more effective correctors that could be used alone or in combination as a valuable therapeutic option to treat an even larger cohort of people affected by CF.
Collapse
Affiliation(s)
- Debora Baroni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genova, Italy; (A.L.); (O.M.)
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (P.F.)
| | - Alessandra Ludovico
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genova, Italy; (A.L.); (O.M.)
| | - Chiara Brandas
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genova, Italy; (A.L.); (O.M.)
| | - Alice Parodi
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (A.P.); (D.L.); (E.M.)
| | - Dario Lunaccio
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (A.P.); (D.L.); (E.M.)
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (P.F.)
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genova, Italy; (A.L.); (O.M.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (P.F.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (A.P.); (D.L.); (E.M.)
| |
Collapse
|
11
|
McDonald EF, Meiler J, Plate L. CFTR Folding: From Structure and Proteostasis to Cystic Fibrosis Personalized Medicine. ACS Chem Biol 2023; 18:2128-2143. [PMID: 37730207 PMCID: PMC10595991 DOI: 10.1021/acschembio.3c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/02/2023] [Indexed: 09/22/2023]
Abstract
Cystic fibrosis (CF) is a lethal genetic disease caused by mutations in the chloride ion channel cystic fibrosis transmembrane conductance regulator (CFTR). Class-II mutants of CFTR lack intermolecular interactions important for CFTR structural stability and lead to misfolding. Misfolded CFTR is detected by a diverse suite of proteostasis factors that preferentially bind and route mutant CFTR toward premature degradation, resulting in reduced plasma membrane CFTR levels and impaired chloride ion conductance associated with CF. CF treatment has been vastly improved over the past decade by the availability of small molecules called correctors. Correctors directly bind CFTR, stabilize its structure by conferring thermodynamically favorable interactions that compensate for mutations, and thereby lead to downstream folding fidelity. However, each of over 100 Class-II CF causing mutations causes unique structural defects and shows a unique response to drug treatment, described as theratype. Understanding CFTR structural defects, the proteostasis factors evaluating those defects, and the stabilizing effects of CFTR correctors will illuminate a path toward personalized medicine for CF. Here, we review recent advances in our understanding of CFTR folding, focusing on structure, corrector binding sites, the mechanisms of proteostasis factors that evaluate CFTR, and the implications for CF personalized medicine.
Collapse
Affiliation(s)
- Eli Fritz McDonald
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Jens Meiler
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Institute
for Drug Discovery, Leipzig University, Leipzig, SAC 04103, Germany
| | - Lars Plate
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
12
|
Oliver KE, Carlon MS, Pedemonte N, Lopes-Pacheco M. The revolution of personalized pharmacotherapies for cystic fibrosis: what does the future hold? Expert Opin Pharmacother 2023; 24:1545-1565. [PMID: 37379072 PMCID: PMC10528905 DOI: 10.1080/14656566.2023.2230129] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF), a potentially fatal genetic disease, is caused by loss-of-function mutations in the gene encoding for the CFTR chloride/bicarbonate channel. Modulator drugs rescuing mutant CFTR traffic and function are now in the clinic, providing unprecedented breakthrough therapies for people with CF (PwCF) carrying specific genotypes. However, several CFTR variants are unresponsive to these therapies. AREA COVERED We discussed several therapeutic approaches that are under development to tackle the fundamental cause of CF, including strategies targeting defective CFTR mRNA and/or protein expression and function. Alternatively, defective chloride secretion and dehydration in CF epithelia could be restored by exploiting pharmacological modulation of alternative targets, i.e., ion channels/transporters that concur with CFTR to maintain the airway surface liquid homeostasis (e.g., ENaC, TMEM16A, SLC26A4, SLC26A9, and ATP12A). Finally, we assessed progress and challenges in the development of gene-based therapies to replace or correct the mutant CFTR gene. EXPERT OPINION CFTR modulators are benefiting many PwCF responsive to these drugs, yielding substantial improvements in various clinical outcomes. Meanwhile, the CF therapy development pipeline continues to expand with the development of novel CFTR modulators and alternative therapeutic strategies with the ultimate goal of providing effective therapies for all PwCF in the foreseeable future.
Collapse
Affiliation(s)
- Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Marianne S. Carlon
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Center for Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
13
|
Renda M, Barreca M, Borrelli A, Spanò V, Montalbano A, Raimondi MV, Bivacqua R, Musante I, Scudieri P, Guidone D, Buccirossi M, Genovese M, Venturini A, Bandiera T, Barraja P, Galietta LJV. Novel tricyclic pyrrolo-quinolines as pharmacological correctors of the mutant CFTR chloride channel. Sci Rep 2023; 13:7604. [PMID: 37165082 PMCID: PMC10172366 DOI: 10.1038/s41598-023-34440-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/29/2023] [Indexed: 05/12/2023] Open
Abstract
F508del, the most frequent mutation in cystic fibrosis (CF), impairs the stability and folding of the CFTR chloride channel, thus resulting in intracellular retention and CFTR degradation. The F508del defect can be targeted with pharmacological correctors, such as VX-809 and VX-445, that stabilize CFTR and improve its trafficking to plasma membrane. Using a functional test to evaluate a panel of chemical compounds, we have identified tricyclic pyrrolo-quinolines as novel F508del correctors with high efficacy on primary airway epithelial cells from CF patients. The most effective compound, PP028, showed synergy when combined with VX-809 and VX-661 but not with VX-445. By testing the ability of correctors to stabilize CFTR fragments of different length, we found that VX-809 is effective on the amino-terminal portion of the protein that includes the first membrane-spanning domain (amino acids 1-387). Instead, PP028 and VX-445 only show a stabilizing effect when the second membrane-spanning domain is included (amino acids 1-1181). Our results indicate that tricyclic pyrrolo-quinolines are a novel class of CFTR correctors that, similarly to VX-445, interact with CFTR at a site different from that of VX-809. Tricyclic pirrolo-quinolines may represent novel CFTR correctors suitable for combinatorial pharmacological treatments to treat the basic defect in CF.
Collapse
Affiliation(s)
- Mario Renda
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Marilia Barreca
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Anna Borrelli
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Virginia Spanò
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberta Bivacqua
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Ilaria Musante
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy
| | - Paolo Scudieri
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Martina Buccirossi
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Michele Genovese
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Arianna Venturini
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Paola Barraja
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy.
- Department of Translational Medical Sciences (DISMET), University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
14
|
Tümmler B. Post-approval studies with the CFTR modulators Elexacaftor-Tezacaftor-Ivacaftor. Front Pharmacol 2023; 14:1158207. [PMID: 37025483 PMCID: PMC10072268 DOI: 10.3389/fphar.2023.1158207] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Triple combination therapy with the CFTR modulators elexacaftor (ELX), tezacaftor (TEZ) and ivacaftor (IVA) has been qualified as a game changer in cystic fibrosis (CF). We provide an overview of the body of literature on ELX/TEZ/IVA published between November 2019 and February 2023 after approval by the regulators. Recombinant ELX/TEZ/IVA-bound Phe508del CFTR exhibits a wild type conformation in vitro, but in patient's tissue a CFTR glyoisoform is synthesized that is distinct from the wild type and Phe508del isoforms. ELX/TEZ/IVA therapy improved the quality of life of people with CF in the real-life setting irrespective of their anthropometry and lung function at baseline. ELX/TEZ/IVA improved sinonasal and abdominal disease, lung function and morphology, airway microbiology and the basic defect of impaired epithelial chloride and bicarbonate transport. Pregnancy rates were increasing in women with CF. Side effects of mental status changes deserve particular attention in the future.
Collapse
Affiliation(s)
- Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Miguel L, Gervais J, Nicolas G, Lecourtois M. SorLA Protective Function Is Restored by Improving SorLA Protein Maturation in a Subset of Alzheimer's Disease-Associated SORL1 Missense Variants. J Alzheimers Dis 2023; 94:1343-1349. [PMID: 37424467 DOI: 10.3233/jad-230211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
SORL1 loss of function is associated with Alzheimer's disease (AD) risk through increased Aβ peptide secretion. We expressed 10 maturation-defective rare missense SORL1 variants in HEK cells and showed that decreasing growing temperature led to a significant increase in the maturation of the encoded protein SorLA for 6/10. In edited hiPSC carrying two of these variants, maturation of the protein was restored partially by decreasing the culture temperature and was associated with concomitant decrease in Aβ secretion. Correcting SorLA maturation in the context of maturation-defective missense variants could thus be a relevant strategy to improve SorLA protective function against AD.
Collapse
Affiliation(s)
- Laetitia Miguel
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and CNR-MAJ, F-76000 Rouen, France
| | - Juliette Gervais
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and CNR-MAJ, F-76000 Rouen, France
| | - Gaël Nicolas
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and CNR-MAJ, F-76000 Rouen, France
| | - Magalie Lecourtois
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and CNR-MAJ, F-76000 Rouen, France
| |
Collapse
|
16
|
Baatallah N, Elbahnsi A, Chevalier B, Castanier S, Mornon JP, Pranke I, Edelman A, Sermet-Gaudelus I, Callebaut I, Hinzpeter A. Acting on the CFTR Membrane-Spanning Domains Interface Rescues Some Misfolded Mutants. Int J Mol Sci 2022; 23:ijms232416225. [PMID: 36555865 PMCID: PMC9780841 DOI: 10.3390/ijms232416225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
ABC transporters are large membrane proteins sharing a complex architecture, which comprises two nucleotide-binding domains (NBDs) and two membrane-spanning domains (MSDs). These domains are susceptible to mutations affecting their folding and assembly. In the CFTR (ABCC7) protein, a groove has been highlighted in the MSD1 at the level of the membrane inner leaflet, containing both multiple mutations affecting folding and a binding site for pharmaco-chaperones that stabilize this region. This groove is also present in ABCB proteins, however it is covered by a short elbow helix, while in ABCC proteins it remains unprotected, due to a lower position of the elbow helix in the presence of the ABCC-specific lasso motif. Here, we identified a MSD1 second-site mutation located in the vicinity of the CFTR MSD1 groove that partially rescued the folding defect of cystic fibrosis causing mutations located within MSD1, while having no effect on the most frequent mutation, F508del, located within NBD1. A model of the mutated protein 3D structure suggests additional interaction between MSD1 and MSD2, strengthening the assembly at the level of the MSD intracellular loops. Altogether, these results provide insightful information in understanding key features of the folding and function of the CFTR protein in particular, and more generally, of type IV ABC transporters.
Collapse
Affiliation(s)
- Nesrine Baatallah
- INSERM, U1151, Institut Necker Enfants Malades (INEM), Faculté de Médecine, Université Paris Cité, CNRS, UMR 8253, 75015 Paris, France
| | - Ahmad Elbahnsi
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
| | - Benoit Chevalier
- INSERM, U1151, Institut Necker Enfants Malades (INEM), Faculté de Médecine, Université Paris Cité, CNRS, UMR 8253, 75015 Paris, France
| | - Solène Castanier
- INSERM, U1151, Institut Necker Enfants Malades (INEM), Faculté de Médecine, Université Paris Cité, CNRS, UMR 8253, 75015 Paris, France
| | - Jean-Paul Mornon
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
| | - Iwona Pranke
- INSERM, U1151, Institut Necker Enfants Malades (INEM), Faculté de Médecine, Université Paris Cité, CNRS, UMR 8253, 75015 Paris, France
| | - Aleksander Edelman
- INSERM, U1151, Institut Necker Enfants Malades (INEM), Faculté de Médecine, Université Paris Cité, CNRS, UMR 8253, 75015 Paris, France
| | - Isabelle Sermet-Gaudelus
- INSERM, U1151, Institut Necker Enfants Malades (INEM), Faculté de Médecine, Université Paris Cité, CNRS, UMR 8253, 75015 Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
- Correspondence: (I.C.); (A.H.)
| | - Alexandre Hinzpeter
- INSERM, U1151, Institut Necker Enfants Malades (INEM), Faculté de Médecine, Université Paris Cité, CNRS, UMR 8253, 75015 Paris, France
- Correspondence: (I.C.); (A.H.)
| |
Collapse
|
17
|
Caverly LJ, Riquelme SA, Hisert KB. The Impact of Highly Effective Modulator Therapy on Cystic Fibrosis Microbiology and Inflammation. Clin Chest Med 2022; 43:647-665. [PMID: 36344072 PMCID: PMC10224747 DOI: 10.1016/j.ccm.2022.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Highly effective cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator therapy (HEMT) corrects the underlying molecular defect causing CF disease. HEMT decreases symptom burden and improves clinical metrics and quality of life for most people with CF (PwCF) and eligible cftr mutations. Improvements in measures of pulmonary health suggest that restoration of function of defective CFTR anion channels by HEMT not only enhances airway mucociliary clearance, but also reduces chronic pulmonary infection and inflammation. This article reviews the evidence for how HEMT influences the dynamic and interdependent processes of infection and inflammation in the CF airway, and what questions remain unanswered.
Collapse
Affiliation(s)
- Lindsay J Caverly
- Department of Pediatrics, University of Michigan Medical School, L2221 UH South, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5212, USA
| | - Sebastián A Riquelme
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, Columbia University Medical Center, 650West 168th Street, New York, NY 10032, USA
| | - Katherine B Hisert
- Department of Medicine, National Jewish Health, Smith A550, 1400 Jackson Street, Denver, CO 80205, USA.
| |
Collapse
|
18
|
Bacalhau M, Ferreira FC, Kmit A, Souza FR, da Silva VD, Pimentel AS, Amaral MD, Buarque CD, Lopes-Pacheco M. Identification of novel F508del-CFTR traffic correctors among triazole derivatives. Eur J Pharmacol 2022; 938:175396. [PMID: 36410419 DOI: 10.1016/j.ejphar.2022.175396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
The most prevalent cystic fibrosis (CF)-causing mutation - F508del - impairs the folding of CFTR protein, resulting in its defective trafficking and premature degradation. Small molecules termed correctors may rescue F508del-CFTR and therefore constitute promising pharmacotherapies acting on the fundamental cause of the disease. Here, we screened a collection of triazole compounds to identify novel F508del-CFTR correctors. The functional primary screen identified four hit compounds (LSO-18, LSO-24, LSO-28, and LSO-39), which were further validated and demonstrated to rescue F508del-CFTR processing, plasma membrane trafficking, and function. To interrogate their mechanism of action (MoA), we examined their additivity to the clinically approved drugs VX-661 and VX-445, low temperature, and genetic revertants of F508del-CFTR. Rescue of F508del-CFTR processing and function by LSO-18, LSO-24, and LSO-28, but not by LSO-39, was additive to VX-661, whereas LSO-28 and LSO-39, but not LSO-18 nor LSO-24, were additive to VX-445. All compounds under investigation demonstrated additive rescue of F508del-CFTR processing and function to low temperature as well as to rescue by genetic revertants G550E and 4RK. Nevertheless, none of these compounds was able to rescue processing nor function of DD/AA-CFTR, and LSO-39 (similarly to VX-661) exhibited no additivity to genetic revertant R1070W. From these findings, we suggest that LSO-39 (like VX-661) has a putative binding site at the NBD1:ICL4 interface, LSO-18 and LSO-24 seem to share the MoA with VX-445, and LSO-28 appears to act by a different MoA. Altogether, these findings represent an encouraging starting point to further exploit this chemical series for the development of novel CFTR correctors.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Filipa C Ferreira
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Arthur Kmit
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Felipe R Souza
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - Verônica D da Silva
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - André S Pimentel
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Camilla D Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
19
|
Ludovico A, Moran O, Baroni D. Modulator Combination Improves In Vitro the Microrheological Properties of the Airway Surface Liquid of Cystic Fibrosis Airway Epithelia. Int J Mol Sci 2022; 23:ijms231911396. [PMID: 36232697 PMCID: PMC9569604 DOI: 10.3390/ijms231911396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a plasma membrane protein expressed on the apical surface of secretory epithelia of the airways. In the airways, defective or absent function of the CFTR protein determines abnormalities of chloride and bicarbonate secretion and, in general, of the transepithelial homeostasis that lead to alterations of airway surface liquid (ASL) composition and properties. The reduction of ASL volume impairs ciliary beating with the consequent accumulation of a sticky mucus. This situation prevents normal mucociliary clearance, favoring the survival and proliferation of bacteria and contributing to the genesis of the CF pulmonary disease. We explored the potential of some CFTR modulators, namely ivacaftor, tezacaftor, elexacaftor and their combination KaftrioTM, capable of partially recovering the basic defects of the CFTR protein, to ameliorate the transepithelial fluid transport and the viscoelastic properties of the mucus when used singly or in combination. Primary human bronchial epithelial cells obtained from CF and non-CF patients were differentiated into a mucociliated epithelia in order to assess the effects of correctors tezacaftor, elexacaftor and their combination with potentiator ivacaftor on the key properties of ASL, such as fluid reabsorption, viscosity, protein content and pH. The treatment of airway epithelia bearing the deletion of a phenylalanine at position 508 (F508del) in the CFTR gene with tezacaftor and elexacaftor significantly improved the pericilial fluid composition, reducing the fluid reabsorption, correcting the ASL pH and reducing the viscosity of the mucus. KaftrioTM was more effective than single modulators in improving all the evaluated parameters, demonstrating once more that this combination recently approved for patients 6 years and older with cystic fibrosis who have at least one F508del mutation in the CFTR gene represents a valuable tool to defeat CF.
Collapse
Affiliation(s)
| | | | - Debora Baroni
- Correspondence: ; Tel.: +39-010-647-5559; Fax: +39-010-647-5500
| |
Collapse
|
20
|
Pharmacological chaperone-rescued cystic fibrosis CFTR-F508del mutant overcomes PRAF2-gated access to endoplasmic reticulum exit sites. Cell Mol Life Sci 2022; 79:530. [PMID: 36167862 DOI: 10.1007/s00018-022-04554-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/03/2022]
Abstract
The endoplasmic reticulum exit of some polytopic plasma membrane proteins (PMPs) is controlled by arginin-based retention motifs. PRAF2, a gatekeeper which recognizes these motifs, was shown to retain the GABAB-receptor GB1 subunit in the ER. We report that PRAF2 can interact on a stoichiometric basis with both wild type and mutant F508del Cystic Fibrosis (CF) Transmembrane Conductance Regulator (CFTR), preventing the access of newly synthesized cargo to ER exit sites. Because of its lower abundance, compared to wild-type CFTR, CFTR-F508del recruitment into COPII vesicles is suppressed by the ER-resident PRAF2. We also demonstrate that some pharmacological chaperones that efficiently rescue CFTR-F508del loss of function in CF patients target CFTR-F508del retention by PRAF2 operating with various mechanisms. Our findings open new therapeutic perspectives for diseases caused by the impaired cell surface trafficking of mutant PMPs, which contain RXR-based retention motifs that might be recognized by PRAF2.
Collapse
|
21
|
Amaral MD. Using the genome to correct the ion transport defect in cystic fibrosis. J Physiol 2022; 601:1573-1582. [PMID: 36068724 DOI: 10.1113/jp282308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Human genome information can help finding drugs for human diseases. 'Omics' allow unbiased identification of novel drug targets. High-throughput (HT) approaches provide a global view on disease mechanisms. As a monogenic disease CF has led the way in multiple 'Omic' studies. 'Multi-omics' integration will generate maximal biological significance. ABSTRACT Today Biomedicine faces one of its greatest challenges, i.e. treating diseases through their causative dysfunctional processes and not just their symptoms. However, we still miss a global view of mechanisms and pathways involved in pathophysiology of most diseases. In fact, disease mechanisms and pathways can be achieved by holistic studies provided by 'Omic' approaches. Cystic Fibrosis (CF), caused by mutations in the CF transmembrane conductance regulator (CFTR) gene which encodes an anion channel, is paradigmatic for monogenic disorders, namely channelopathies. A high number of 'omics studies' have focussed on CF, namely several cell-based high-throughput (HT) approaches were developed and applied towards a global mechanistic characterization of CF pathophysiology and the identification of novel and 'unbiased' drug targets. Notwithstanding, it is likely that, through the integration of all these 'layers' of large datasets into comprehensive disease maps that biological significance can be extracted so that the enormous potential of these approaches to identifying dysfunctional mechanisms and novel drugs may become a reality. Abstract figure legend Schematic overview of the 3 main approaches to discovery of new drugs/drug targets. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Margarida D Amaral
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande-C8 bdg, Lisboa, 1749-016, Portugal
| |
Collapse
|
22
|
Absence of EPAC1 Signaling to Stabilize CFTR in Intestinal Organoids. Cells 2022; 11:cells11152295. [PMID: 35892592 PMCID: PMC9332071 DOI: 10.3390/cells11152295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
The plasma membrane (PM) stability of the cystic fibrosis transmembrane conductance regulator (CFTR), the protein which when mutated causes Cystic Fibrosis (CF), relies on multiple interaction partners that connect CFTR to signaling pathways, including cAMP signaling. It was previously shown that activation of exchange protein directly activated by cAMP 1 (EPAC1) by cAMP promotes an increase in CFTR PM levels in airway epithelial cells. However, the relevance of this pathway in other tissues, particularly the intestinal tissue, remains uncharacterized. Here, we used Western blot and forskolin-induced swelling assay to demonstrate that the EPAC1 protein is not expressed in the intestinal organoid model, and consequently the EPAC1 stabilization pathway is not in place. On the other hand, using cell surface biotinylation, EPAC1-mediated stabilization of PM CFTR is observed in intestinal cell lines. These results indicate that the EPAC1 stabilization pathway also occurs in intestinal cells and is a potential target for the development of novel combinatorial therapies for treatment of CF.
Collapse
|
23
|
Molecular mechanisms of Cystic Fibrosis - how mutations lead to misfunction and guide therapy. Biosci Rep 2022; 42:231430. [PMID: 35707985 PMCID: PMC9251585 DOI: 10.1042/bsr20212006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis, the most common autosomal recessive disorder in Caucasians, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a cAMP-activated chloride and bicarbonate channel that regulates ion and water transport in secretory epithelia. Although all mutations lead to the lack or reduction in channel function, the mechanisms through which this occurs are diverse – ranging from lack of full-length mRNA, reduced mRNA levels, impaired folding and trafficking, targeting to degradation, decreased gating or conductance, and reduced protein levels to decreased half-life at the plasma membrane. Here, we review the different molecular mechanisms that cause cystic fibrosis and detail how these differences identify theratypes that can inform the use of directed therapies aiming at correcting the basic defect. In summary, we travel through CFTR life cycle from the gene to function, identifying what can go wrong and what can be targeted in terms of the different types of therapeutic approaches.
Collapse
|
24
|
Ensinck MM, Carlon MS. One Size Does Not Fit All: The Past, Present and Future of Cystic Fibrosis Causal Therapies. Cells 2022; 11:cells11121868. [PMID: 35740997 PMCID: PMC9220995 DOI: 10.3390/cells11121868] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic disorder, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Over the last 30 years, tremendous progress has been made in understanding the molecular basis of CF and the development of treatments that target the underlying defects in CF. Currently, a highly effective CFTR modulator treatment (Kalydeco™/Trikafta™) is available for 90% of people with CF. In this review, we will give an extensive overview of past and ongoing efforts in the development of therapies targeting the molecular defects in CF. We will discuss strategies targeting the CFTR protein (i.e., CFTR modulators such as correctors and potentiators), its cellular environment (i.e., proteostasis modulation, stabilization at the plasma membrane), the CFTR mRNA (i.e., amplifiers, nonsense mediated mRNA decay suppressors, translational readthrough inducing drugs) or the CFTR gene (gene therapies). Finally, we will focus on how these efforts can be applied to the 15% of people with CF for whom no causal therapy is available yet.
Collapse
Affiliation(s)
- Marjolein M. Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Flanders, Belgium
- Correspondence:
| |
Collapse
|
25
|
Anglès F, Wang C, Balch WE. Spatial covariance analysis reveals the residue-by-residue thermodynamic contribution of variation to the CFTR fold. Commun Biol 2022; 5:356. [PMID: 35418593 PMCID: PMC9008016 DOI: 10.1038/s42003-022-03302-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Although the impact of genome variation on the thermodynamic properties of function on the protein fold has been studied in vitro, it remains a challenge to assign these relationships across the entire polypeptide sequence in vivo. Using the Gaussian process regression based principle of Spatial CoVariance, we globally assign on a residue-by-residue basis the biological thermodynamic properties that contribute to the functional fold of CFTR in the cell. We demonstrate the existence of a thermodynamically sensitive region of the CFTR fold involving the interface between NBD1 and ICL4 that contributes to its export from endoplasmic reticulum. At the cell surface a new set of residues contribute uniquely to the management of channel function. These results support a general 'quality assurance' view of global protein fold management as an SCV principle describing the differential pre- and post-ER residue interactions contributing to compartmentalization of the energetics of the protein fold for function. Our results set the stage for future analyses of the quality systems managing protein sequence-to-function-to-structure broadly encompassing genome design leading to protein function in complex cellular relationships responsible for diversity and fitness in biology in response to the environment.
Collapse
Affiliation(s)
- Frédéric Anglès
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Chao Wang
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - William E Balch
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
26
|
McDonald EF, Sabusap CMP, Kim M, Plate L. Distinct proteostasis states drive pharmacologic chaperone susceptibility for Cystic Fibrosis Transmembrane Conductance Regulator misfolding mutants. Mol Biol Cell 2022; 33:ar62. [PMID: 35389766 PMCID: PMC9561855 DOI: 10.1091/mbc.e21-11-0578] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pharmacological chaperones represent a class of therapeutic compounds for treating protein misfolding diseases. One of the most prominent examples is the FDA-approved pharmacological chaperone lumacaftor (VX-809), which has transformed cystic fibrosis (CF) therapy. CF is a fatal disease caused by mutations in the CF transmembrane conductance regulator (CFTR). VX-809 corrects folding of F508del CFTR, the most common patient mutation, yet F508del exhibits only mild VX-809 response. In contrast, rarer mutations P67L and L206W are hyperresponsive to VX-809, while G85E is nonresponsive. Despite the clinical success of VX-809, the mechanistic origin for the distinct susceptibility of mutants remains unclear. Here we use interactomics to characterize the impact of VX-809 on proteostasis interactions of P67L and L206W and compare these with F508del and G85E. We determine that hyperresponsive mutations P67L and L206W exhibit decreased interactions with proteasomal and autophagy degradation machinery compared with F508del and G85E. We then show inhibiting the proteasome attenuates P67L and L206W VX-809 response. Our data suggest a previously unidentified but required role for protein degradation in VX-809 correction. Furthermore, we present an approach for identifying proteostasis characteristics of mutant-specific therapeutic response to pharmacological chaperones.
Collapse
Affiliation(s)
| | | | - Minsoo Kim
- Department of Chemistry.,Chemical and Physical Biology Program
| | - Lars Plate
- Department of Chemistry.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
27
|
Brusa I, Sondo E, Falchi F, Pedemonte N, Roberti M, Cavalli A. Proteostasis Regulators in Cystic Fibrosis: Current Development and Future Perspectives. J Med Chem 2022; 65:5212-5243. [PMID: 35377645 PMCID: PMC9014417 DOI: 10.1021/acs.jmedchem.1c01897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In cystic fibrosis (CF), the deletion of phenylalanine 508 (F508del) in the CF transmembrane conductance regulator (CFTR) leads to misfolding and premature degradation of the mutant protein. These defects can be targeted with pharmacological agents named potentiators and correctors. During the past years, several efforts have been devoted to develop and approve new effective molecules. However, their clinical use remains limited, as they fail to fully restore F508del-CFTR biological function. Indeed, the search for CFTR correctors with different and additive mechanisms has recently increased. Among them, drugs that modulate the CFTR proteostasis environment are particularly attractive to enhance therapy effectiveness further. This Perspective focuses on reviewing the recent progress in discovering CFTR proteostasis regulators, mainly describing the design, chemical structure, and structure-activity relationships. The opportunities, challenges, and future directions in this emerging and promising field of research are discussed, as well.
Collapse
Affiliation(s)
- Irene Brusa
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.,Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Elvira Sondo
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | | | | | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.,Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
28
|
Parodi A, Righetti G, Pesce E, Salis A, Tomati V, Pastorino C, Tasso B, Benvenuti M, Damonte G, Pedemonte N, Cichero E, Millo E. Journey on VX-809-Based Hybrid Derivatives towards Drug-like F508del-CFTR Correctors: From Molecular Modeling to Chemical Synthesis and Biological Assays. Pharmaceuticals (Basel) 2022; 15:ph15030274. [PMID: 35337072 PMCID: PMC8955485 DOI: 10.3390/ph15030274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease affecting the lungs and pancreas and causing progressive damage. CF is caused by mutations abolishing the function of CFTR, a protein whose role is chloride’s mobilization in the epithelial cells of various organs. Recently a therapy focused on small molecules has been chosen as a main approach to contrast CF, designing and synthesizing compounds acting as misfolding (correctors) or defective channel gating (potentiators). Multi-drug therapies have been tested with different combinations of the two series of compounds. Previously, we designed and characterized two series of correctors, namely, hybrids, which were conceived including the aminoarylthiazole (AAT) core, merged with the benzodioxole carboxamide moiety featured by VX-809. In this paper, we herein proceeded with molecular modeling studies guiding the design of a new third series of hybrids, featuring structural variations at the thiazole moiety and modifications on position 4. These derivatives were tested in different assays including a YFP functional assay on models F508del-CFTR CFBE41o-cells, alone and in combination with VX-445, and by using electrophysiological techniques on human primary bronchial epithelia to demonstrate their F508del-CFTR corrector ability. This study is aimed (i) at identifying three molecules (9b, 9g, and 9j), useful as novel CFTR correctors with a good efficacy in rescuing the defect of F508del-CFTR; and (ii) at providing useful information to complete the structure–activity study within all the three series of hybrids as possible CFTR correctors, supporting the development of pharmacophore modelling studies, taking into account all the three series of hybrids. Finally, in silico evaluation of the hybrids pharmacokinetic (PK) properties contributed to highlight hybrid developability as drug-like correctors.
Collapse
Affiliation(s)
- Alice Parodi
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Giada Righetti
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.R.); (B.T.)
| | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.P.); (V.T.); (N.P.)
| | - Annalisa Salis
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.P.); (V.T.); (N.P.)
| | - Cristina Pastorino
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DI-NOGMI), University of Genoa, 16132 Genoa, Italy;
| | - Bruno Tasso
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.R.); (B.T.)
| | - Mirko Benvenuti
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Gianluca Damonte
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.P.); (V.T.); (N.P.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.R.); (B.T.)
- Correspondence: (E.C.); (E.M.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
- Correspondence: (E.C.); (E.M.)
| |
Collapse
|
29
|
Fiedorczuk K, Chen J. Mechanism of CFTR correction by type I folding correctors. Cell 2022; 185:158-168.e11. [PMID: 34995514 DOI: 10.1016/j.cell.2021.12.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/02/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Small molecule chaperones have been exploited as therapeutics for the hundreds of diseases caused by protein misfolding. The most successful examples are the CFTR correctors, which transformed cystic fibrosis therapy. These molecules revert folding defects of the ΔF508 mutant and are widely used to treat patients. To investigate the molecular mechanism of their action, we determined cryo-electron microscopy structures of CFTR in complex with the FDA-approved correctors lumacaftor or tezacaftor. Both drugs insert into a hydrophobic pocket in the first transmembrane domain (TMD1), linking together four helices that are thermodynamically unstable. Mutating residues at the binding site rendered ΔF508-CFTR insensitive to lumacaftor and tezacaftor, underscoring the functional significance of the structural discovery. These results support a mechanism in which the correctors stabilize TMD1 at an early stage of biogenesis, prevent its premature degradation, and thereby allosterically rescuing many disease-causing mutations.
Collapse
Affiliation(s)
- Karol Fiedorczuk
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
30
|
Rescue of Mutant CFTR Trafficking Defect by the Investigational Compound MCG1516A. Cells 2022; 11:cells11010136. [PMID: 35011698 PMCID: PMC8750248 DOI: 10.3390/cells11010136] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/27/2023] Open
Abstract
Although some therapeutic progress has been achieved in developing small molecules that correct F508del-CFTR defects, the mechanism of action (MoA) of these compounds remain poorly elucidated. Here, we investigated the effects and MoA of MCG1516A, a newly developed F508del-CFTR corrector. MCG1516A effects on wild-type (WT) and F508del-CFTR were assessed by immunofluorescence microscopy, and biochemical and functional assays both in cell lines and in intestinal organoids. To shed light on the MoA of MCG1516A, we evaluated its additivity to the FDA-approved corrector VX-661, low temperature, genetic revertants of F508del-CFTR (G550E, R1070W, and 4RK), and the traffic-null variant DD/AA. Finally, we explored the ability of MCG1516A to rescue trafficking and function of other CF-causing mutations. We found that MCG1516A rescues F508del-CFTR with additive effects to VX-661. A similar behavior was observed for WT-CFTR. Under low temperature incubation, F508del-CFTR demonstrated an additivity in processing and function with VX-661, but not with MCG1516A. In contrast, both compounds promoted additional effects to low temperature to WT-CFTR. MCG1516A demonstrated additivity to genetic revertant R1070W, while VX-661 was additive to G550E and 4RK. Nevertheless, none of these compounds rescued DD/AA trafficking. Both MCG1516A and VX-661 rescued CFTR processing of L206W- and R334W-CFTR with greater effects when these compounds were combined. In summary, the absence of additivity of MCG1516A to genetic revertant G550E suggests a putative binding site for this compound on NBD1:NBD2 interface. Therefore, a combination of MCG1516A with compounds able to rescue DD/AA traffic, or mimicking the actions of revertant R1070W (e.g., VX-661), could enhance correction of F508del-CFTR defects.
Collapse
|
31
|
Rare Trafficking CFTR Mutations Involve Distinct Cellular Retention Machineries and Require Different Rescuing Strategies. Int J Mol Sci 2021; 23:ijms23010024. [PMID: 35008443 PMCID: PMC8744605 DOI: 10.3390/ijms23010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022] Open
Abstract
Most of the ~2100 CFTR variants so far reported are very rare and still uncharacterized regarding their cystic fibrosis (CF) disease liability. Since some may respond to currently approved modulators, characterizing their defect and response to these drugs is essential. Here we aimed characterizing the defect associated with four rare missense (likely Class II) CFTR variants and assess their rescue by corrector drugs. We produced CFBE cell lines stably expressing CFTR with W57G, R560S, H1079P and Q1100P, assessed their effect upon CFTR expression and maturation and their rescue by VX-661/VX-445 correctors. Results were validated by forskolin-induced swelling assay (FIS) using intestinal organoids from individuals bearing these variants. Finally, knock-down (KD) of genes previously shown to rescue F508del-CFTR was assessed on these mutants. Results show that all the variants preclude the production of mature CFTR, confirming them as Class II mutations. None of the variants responded to VX-661 but the combination rescued H1079P- and Q1100P-CFTR. The KD of factors that correct F508del-CFTR retention only marginally rescued R560S- and H1079P-CFTR. Overall, data evidence that Class II mutations induce distinct molecular defects that are neither rescued by the same corrector compounds nor recognized by the same cellular machinery, thus requiring personalized drug discovery initiatives.
Collapse
|
32
|
Sabbadini R, Pesce E, Parodi A, Mustorgi E, Bruzzone S, Pedemonte N, Casale M, Millo E, Cichero E. Probing Allosteric Hsp70 Inhibitors by Molecular Modelling Studies to Expedite the Development of Novel Combined F508del CFTR Modulators. Pharmaceuticals (Basel) 2021; 14:ph14121296. [PMID: 34959696 PMCID: PMC8709398 DOI: 10.3390/ph14121296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Cystic fibrosis (CF) is caused by different mutations related to the cystic fibrosis transmembrane regulator protein (CFTR), with F508del being the most common. Pioneering the development of CFTR modulators, thanks to the development of effective correctors or potentiators, more recent studies deeply encouraged the administration of triple combination therapeutics. However, combinations of molecules interacting with other proteins involved in functionality of the CFTR channel recently arose as a promising approach to address a large rescue of F508del-CFTR. In this context, the design of compounds properly targeting the molecular chaperone Hsp70, such as the allosteric inhibitor MKT-077, proved to be effective for the development of indirect CFTR modulators, endowed with ability to amplify the accumulation of the rescued protein. Herein we performed structure-based studies of a number of allosteric HSP70 inhibitors, considering the recent X-ray crystallographic structure of the human enzyme. This allowed us to point out the main interaction supporting the binding mode of MKT-077, as well as of the related analogues. In particular, cation-π and π-π stacking with the conserve residue Tyr175 deeply stabilized inhibitor binding at the HSP70 cavity. Molecular docking studies had been followed by QSAR analysis and then by virtual screening of aminoaryl thiazoles (I-IIIa) as putative HSP70 inhibitors. Their effectiveness as CFTR modulators has been verified by biological assays, in combination with VX-809, whose positive results confirmed the reliability of the whole applied computational method. Along with this, the "in-silico" prediction of absorption, distribution, metabolism, and excretion (ADME) properties highlighted, once more, that AATs may represent a chemical class to be further investigated for the rational design of novel combination of compounds for CF treatment.
Collapse
Affiliation(s)
- Roberto Sabbadini
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy;
| | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, 16147 Genova, Italy; (E.P.); (N.P.)
| | - Alice Parodi
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (A.P.); (S.B.)
| | - Eleonora Mustorgi
- Department of Pharmacy, Section of Chemistry and Food and Pharmaceutical Technologies, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy; (E.M.); (M.C.)
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (A.P.); (S.B.)
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, 16147 Genova, Italy; (E.P.); (N.P.)
| | - Monica Casale
- Department of Pharmacy, Section of Chemistry and Food and Pharmaceutical Technologies, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy; (E.M.); (M.C.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (A.P.); (S.B.)
- Correspondence: (E.M.); (E.C.); Tel.: +10-335-3032-3033 (E.M.); +39-010-353-8350 (E.C.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy;
- Correspondence: (E.M.); (E.C.); Tel.: +10-335-3032-3033 (E.M.); +39-010-353-8350 (E.C.)
| |
Collapse
|
33
|
Farinha CM, Gentzsch M. Revisiting CFTR Interactions: Old Partners and New Players. Int J Mol Sci 2021; 22:13196. [PMID: 34947992 PMCID: PMC8703571 DOI: 10.3390/ijms222413196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023] Open
Abstract
Remarkable progress in CFTR research has led to the therapeutic development of modulators that rescue the basic defect in cystic fibrosis. There is continuous interest in studying CFTR molecular disease mechanisms as not all cystic fibrosis patients have a therapeutic option available. Addressing the basis of the problem by comprehensively understanding the critical molecular associations of CFTR interactions remains key. With the availability of CFTR modulators, there is interest in comprehending which interactions are critical to rescue CFTR and which are altered by modulators or CFTR mutations. Here, the current knowledge on interactions that govern CFTR folding, processing, and stability is summarized. Furthermore, we describe protein complexes and signal pathways that modulate the CFTR function. Primary epithelial cells display a spatial control of the CFTR interactions and have become a common system for preclinical and personalized medicine studies. Strikingly, the novel roles of CFTR in development and differentiation have been recently uncovered and it has been revealed that specific CFTR gene interactions also play an important role in transcriptional regulation. For a comprehensive understanding of the molecular environment of CFTR, it is important to consider CFTR mutation-dependent interactions as well as factors affecting the CFTR interactome on the cell type, tissue-specific, and transcriptional levels.
Collapse
Affiliation(s)
- Carlos M. Farinha
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pediatrics, Division of Pediatric Pulmonology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
34
|
Baatallah N, Elbahnsi A, Mornon JP, Chevalier B, Pranke I, Servel N, Zelli R, Décout JL, Edelman A, Sermet-Gaudelus I, Callebaut I, Hinzpeter A. Pharmacological chaperones improve intra-domain stability and inter-domain assembly via distinct binding sites to rescue misfolded CFTR. Cell Mol Life Sci 2021; 78:7813-7829. [PMID: 34714360 PMCID: PMC11071985 DOI: 10.1007/s00018-021-03994-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022]
Abstract
Protein misfolding is involved in a large number of diseases, among which cystic fibrosis. Complex intra- and inter-domain folding defects associated with mutations in the cystic fibrosis transmembrane regulator (CFTR) gene, among which p.Phe508del (F508del), have recently become a therapeutical target. Clinically approved correctors such as VX-809, VX-661, and VX-445, rescue mutant protein. However, their binding sites and mechanisms of action are still incompletely understood. Blind docking onto the 3D structures of both the first membrane-spanning domain (MSD1) and the first nucleotide-binding domain (NBD1), followed by molecular dynamics simulations, revealed the presence of two potential VX-809 corrector binding sites which, when mutated, abrogated rescue. Network of amino acids in the lasso helix 2 and the intracellular loops ICL1 and ICL4 allosterically coupled MSD1 and NBD1. Corrector VX-445 also occupied two potential binding sites on MSD1 and NBD1, the latter being shared with VX-809. Binding of both correctors on MSD1 enhanced the allostery between MSD1 and NBD1, hence the increased efficacy of the corrector combination. These correctors improve both intra-domain folding by stabilizing fragile protein-lipid interfaces and inter-domain assembly via distant allosteric couplings. These results provide novel mechanistic insights into the rescue of misfolded proteins by small molecules.
Collapse
Affiliation(s)
- Nesrine Baatallah
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France
| | - Ahmad Elbahnsi
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France
- Department of Applied Physics of Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jean-Paul Mornon
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France
| | - Benoit Chevalier
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France
| | - Iwona Pranke
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France
| | - Nathalie Servel
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France
| | - Renaud Zelli
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
| | | | - Aleksander Edelman
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France
| | - Isabelle Sermet-Gaudelus
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France.
| | - Alexandre Hinzpeter
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France.
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France.
| |
Collapse
|
35
|
Comprehensive Analysis of Combinatorial Pharmacological Treatments to Correct Nonsense Mutations in the CFTR Gene. Int J Mol Sci 2021; 22:ijms222111972. [PMID: 34769402 PMCID: PMC8584557 DOI: 10.3390/ijms222111972] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is caused by loss of function of the CFTR chloride channel. A substantial number of CF patients carry nonsense mutations in the CFTR gene. These patients cannot directly benefit from pharmacological correctors and potentiators that have been developed for other types of CFTR mutations. We evaluated the efficacy of combinations of drugs targeting at various levels the effects of nonsense mutations: SMG1i to protect CFTR mRNA from nonsense-mediated decay (NMD), G418 and ELX-02 for readthrough, VX-809 and VX-445 to promote protein maturation and function, PTI-428 to enhance CFTR protein synthesis. We found that the extent of rescue and sensitivity to the various agents is largely dependent on the type of mutation, with W1282X and R553X being the mutations most and least sensitive to pharmacological treatments, respectively. In particular, W1282X-CFTR was highly responsive to NMD suppression by SMG1i but also required treatment with VX-445 corrector to show function. In contrast, G542X-CFTR required treatment with readthrough agents and VX-809. Importantly, we never found cooperativity between the NMD inhibitor and readthrough compounds. Our results indicate that treatment of CF patients with nonsense mutations requires a precision medicine approach with the design of specific drug combinations for each mutation.
Collapse
|
36
|
NBD2 Is Required for the Rescue of Mutant F508del CFTR by a Thiazole-Based Molecule: A Class II Corrector for the Multi-Drug Therapy of Cystic Fibrosis. Biomolecules 2021; 11:biom11101417. [PMID: 34680050 PMCID: PMC8533355 DOI: 10.3390/biom11101417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF) is caused by loss-of-function mutations in the CF transmembrane conductance regulator (CFTR) protein, an anion channel that regulates epithelial surface fluid secretion. The deletion of phenylalanine at position 508 (F508del) is the most common CFTR mutation. F508del CFTR is characterized by folding and trafficking defects, resulting in decreased functional expression of the protein on the plasma membrane. Several classes of small molecules, named correctors, have been developed to rescue defective F508del CFTR. Although individual correctors failed to improve the clinical status of CF patients carrying the F508del mutation, better results were obtained using correctors combinations. These results were obtained according to the premise that the administration of correctors having different sites of action should enhance F508del CFTR rescue. We investigated the putative site of action of an aminoarylthiazole 4-(3-chlorophenyl)-N-(3-(methylthio)phenyl)thiazol-2-amine, named FCG, with proven CFTR corrector activity, and its synergistic effect with the corrector VX809. We found that neither the total expression nor the maturation of WT CFTR transiently expressed in human embryonic kidney 293 cells was influenced by FCG, administrated alone or in combination with VX809. On the contrary, FCG was able to enhance F508del CFTR total expression, and its combination with VX809 provided a further effect, being able to increase not only the total expression but also the maturation of the mutant protein. Analyses on different CFTR domains and groups of domains, heterologously expressed in HEK293 cells, show that NBD2 is necessary for FCG corrector activity. Molecular modelling analyses suggest that FCG interacts with a putative region located into the NBD2, ascribing this molecule to class II correctors. Our study indicates that the continuous development and testing of combinations of correctors targeting different structural and functional defects of mutant CFTR is the best strategy to ensure a valuable therapeutic perspective to a larger cohort of CF patients.
Collapse
|
37
|
Oliveira I, Jacinto R, Pestana S, Nolasco F, Calado J, Lopes SS, Roxo-Rosa M. Zebrafish Model as a Screen to Prevent Cyst Inflation in Autosomal Dominant Polycystic Kidney Disease. Int J Mol Sci 2021; 22:ijms22169013. [PMID: 34445719 PMCID: PMC8396643 DOI: 10.3390/ijms22169013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
In autosomal dominant polycystic kidney disease (ADPKD), kidney cyst growth requires the recruitment of CFTR (cystic fibrosis transmembrane conductance regulator), the chloride channel that is defective in cystic fibrosis. We have been studying cyst inflation using the zebrafish Kupffer’s vesicle (KV) as model system because we previously demonstrated that knocking down polycystin 2 (PC2) induced a CFTR-mediated enlargement of the organ. We have now quantified the PC2 knockdown by showing that it causes a 73% reduction in the number of KV cilia expressing PC2. According to the literature, this is an essential event in kidney cystogenesis in ADPKD mice. Additionally, we demonstrated that the PC2 knockdown leads to a significant accumulation of CFTR-GFP at the apical region of the KV cells. Furthermore, we determined that KV enlargement is rescued by the injection of Xenopus pkd2 mRNA and by 100 µM tolvaptan treatment, the unique and approved pharmacologic approach for ADPKD management. We expected vasopressin V2 receptor antagonist to lower the cAMP levels of KV-lining cells and, thus, to inactivate CFTR. These findings further support the use of the KV as an in vivo model for screening compounds that may prevent cyst enlargement in this ciliopathy, through CFTR inhibition.
Collapse
Affiliation(s)
- Inês Oliveira
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
| | - Raquel Jacinto
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
| | - Sara Pestana
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
| | - Fernando Nolasco
- Department of Nephrology, Centro Hospitalar e Universitário de Lisboa Central, Hospital de Curry Cabral, Rua da Beneficência, 8, 1069-166 Lisboa, Portugal; (F.N.); (J.C.)
| | - Joaquim Calado
- Department of Nephrology, Centro Hospitalar e Universitário de Lisboa Central, Hospital de Curry Cabral, Rua da Beneficência, 8, 1069-166 Lisboa, Portugal; (F.N.); (J.C.)
- ToxOmics, Center of ToxicoGenomics & Human Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Susana Santos Lopes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
- Correspondence: (S.S.L.); (M.R.-R.)
| | - Mónica Roxo-Rosa
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
- Correspondence: (S.S.L.); (M.R.-R.)
| |
Collapse
|
38
|
Differential Effects of Oleuropein and Hydroxytyrosol on Aggregation and Stability of CFTR NBD1-ΔF508 Domain. JOURNAL OF RESPIRATION 2021. [DOI: 10.3390/jor1030019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cystic Fibrosis (CF) is caused by loss of function mutations in the Cystic Fibrosis transmembrane conductance regulator (CFTR). The folding and assembly of CFTR is inefficient. Deletion of F508 in the first nucleotide binding domain (NBD1-ΔF508) further disrupts protein stability leading to endoplasmic reticulum retention and proteasomal degradation. Stabilization and prevention of NBD1-ΔF508 aggregation is critical to rescuing the folding and function of the entire CFTR channel. We report that the phenolic compounds Oleuropein and Hydroxytryosol reduce aggregation of NBD1-ΔF508. The NBD1-ΔF508 aggregate size was smaller in the presence of Hydroxytryosol as determined by dynamic light scattering. Neither phenolic compound increased the thermal stability of NBD1-ΔF508 as measured by differential scanning fluorimetry. Interestingly, Hydroxytyrosol inhibited the stabilizing effect of the indole compound BIA, a known stabilizer, on NBD1-ΔF508. Molecular docking studies predicted that Oleuropein preferred to bind in the F1-type core ATP-binding subdomain in NBD1. In contrast, Hydroxytyrosol preferred to bind in the α4/α5/α6 helical bundle of the ABCα subdomain of NBD1 next to the putative binding site for BIA. This result suggests that Hydroxytyrosol interferes with BIA binding, thus providing an explanation for the antagonistic effect on NBD1 stability upon incubation with both compounds. To our knowledge, these studies are the first to explore the effects of these two phenolic compounds on the aggregation and stability of NBD1-ΔF508 domain of CFTR.
Collapse
|
39
|
Pinto MC, Silva IAL, Figueira MF, Amaral MD, Lopes-Pacheco M. Pharmacological Modulation of Ion Channels for the Treatment of Cystic Fibrosis. J Exp Pharmacol 2021; 13:693-723. [PMID: 34326672 PMCID: PMC8316759 DOI: 10.2147/jep.s255377] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel that transports chloride and bicarbonate across epithelia. Despite clinical progress in delaying disease progression with symptomatic therapies, these individuals still develop various chronic complications in lungs and other organs, which significantly restricts their life expectancy and quality of life. The development of high-throughput assays to screen drug-like compound libraries have enabled the discovery of highly effective CFTR modulator therapies. These novel therapies target the primary defect underlying CF and are now approved for clinical use for individuals with specific CF genotypes. However, the clinically approved modulators only partially reverse CFTR dysfunction and there is still a considerable number of individuals with CF carrying rare CFTR mutations who remain without any effective CFTR modulator therapy. Accordingly, additional efforts have been pursued to identify novel and more potent CFTR modulators that may benefit a larger CF population. The use of ex vivo individual-derived specimens has also become a powerful tool to evaluate novel drugs and predict their effectiveness in a personalized medicine approach. In addition to CFTR modulators, pro-drugs aiming at modulating alternative ion channels/transporters are under development to compensate for the lack of CFTR function. These therapies may restore normal mucociliary clearance through a mutation-agnostic approach (ie, independent of CFTR mutation) and include inhibitors of the epithelial sodium channel (ENaC), modulators of the calcium-activated channel transmembrane 16A (TMEM16, or anoctamin 1) or of the solute carrier family 26A member 9 (SLC26A9), and anionophores. The present review focuses on recent progress and challenges for the development of ion channel/transporter-modulating drugs for the treatment of CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Iris A L Silva
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miriam F Figueira
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
40
|
A Precision Medicine Approach to Optimize Modulator Therapy for Rare CFTR Folding Mutants. J Pers Med 2021; 11:jpm11070643. [PMID: 34357110 PMCID: PMC8307171 DOI: 10.3390/jpm11070643] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
Trikafta, a triple-combination drug, consisting of folding correctors VX-661 (tezacaftor), VX-445 (elexacaftor) and the gating potentiator VX-770 (ivacaftor) provided unprecedented clinical benefits for patients with the most common cystic fibrosis (CF) mutation, F508del. Trikafta indications were recently expanded to additional 177 mutations in the CF transmembrane conductance regulator (CFTR). To minimize life-long pharmacological and financial burden of drug administration, if possible, we determined the necessary and sufficient modulator combination that can achieve maximal benefit in preclinical setting for selected mutants. To this end, the biochemical and functional rescue of single corrector-responsive rare mutants were investigated in a bronchial epithelial cell line and patient-derived human primary nasal epithelia (HNE), respectively. The plasma membrane density of P67L-, L206W- or S549R-CFTR corrected by VX-661 or other type I correctors was moderately increased by VX-445. Short-circuit current measurements of HNE, however, uncovered that correction comparable to Trikafta was achieved for S549R-CFTR by VX-661 + VX-770 and for P67L- and L206W-CFTR by the VX-661 + VX-445 combination. Thus, introduction of a third modulator may not provide additional benefit for patients with a subset of rare CFTR missense mutations. These results also underscore that HNE, as a precision medicine model, enable the optimization of mutation-specific modulator combinations to maximize their efficacy and minimize life-long drug exposure of CF patients.
Collapse
|
41
|
Extracellular phosphate enhances the function of F508del-CFTR rescued by CFTR correctors. J Cyst Fibros 2021; 20:843-850. [PMID: 34020896 PMCID: PMC8503924 DOI: 10.1016/j.jcf.2021.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/13/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
CFTR correctors rescue the plasma membrane expression of F508del-CFTR. Extracellular phosphate enhances F508del-CFTR function rescued by CFTR correctors. Cystic fibrosis airway epithelia express the phosphate transporter SLC34A2. Extracellular phosphate levels might contribute to variable drug responses.
Background: The clinical response to cystic fibrosis transmembrane conductance regulator (CFTR) modulators varies between people with cystic fibrosis (CF) of the same genotype, in part through the action of solute carriers encoded by modifier genes. Here, we investigate whether phosphate transport by SLC34A2 modulates the function of F508del-CFTR after its rescue by CFTR correctors. Methods: With Fischer rat thyroid (FRT) cells heterologously expressing wild-type and F508del-CFTR and fully-differentiated CF and non-CF human airway epithelial cells, we studied SLC34A2 expression and the effects of phosphate on CFTR-mediated transepithelial ion transport. F508del-CFTR was trafficked to the plasma membrane by incubation with different CFTR correctors (alone or in combination) or by low temperature. Results: Quantitative RT-PCR demonstrated that both FRT and primary airway epithelial cells express SLC34A2 mRNA and no differences were found between cells expressing wild-type and F508del-CFTR. For both heterologously expressed and native F508del-CFTR rescued by either VX-809 or C18, the magnitude of CFTR-mediated Cl− currents was dependent on the presence of extracellular phosphate. However, this effect of phosphate was not detected with wild-type and low temperature-rescued F508del-CFTR Cl− currents. Importantly, the modulatory effect of phosphate was observed in native CF airway cells exposed to VX-445, VX-661 and VX-770 (Trikafta) and was dependent on the presence of both sodium and phosphate. Conclusions: Extracellular phosphate modulates the magnitude of CFTR-mediated Cl− currents after F508del-CFTR rescue by clinically-approved CFTR correctors. This effect likely involves electrogenic phosphate transport by SLC34A2. It might contribute to inter-individual variability in the clinical response to CFTR correctors.
Collapse
|
42
|
Graeber SY, Vitzthum C, Mall MA. Potential of Intestinal Current Measurement for Personalized Treatment of Patients with Cystic Fibrosis. J Pers Med 2021; 11:jpm11050384. [PMID: 34066648 PMCID: PMC8151208 DOI: 10.3390/jpm11050384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
Refinement of personalized treatment of cystic fibrosis (CF) with emerging medicines targeting the CF basic defect will likely benefit from biomarkers sensitive to detect improvement of cystic fibrosis transmembrane conductance regulator (CFTR) function in individual patients. Intestinal current measurement (ICM) is a technique that enables quantitative assessment of CFTR chloride channel function in rectal tissues or other intestinal epithelia. ICM was originally developed to study the CF ion transport defect in the intestine and has been established as a sensitive biomarker of CFTR function and diagnostic test for CF. With the emergence of CFTR-directed therapeutics, ICM has become an important tool to estimate the level of rescue of CFTR function achieved by approved CFTR modulators, both at the level of CFTR genotype groups, as well as individual patients with CF. In combination with preclinical patient-derived cell culture models, ICM may aid the development of targeted therapies for patients with rare CFTR mutations. Here, we review the principles of ICM and examine how this CFTR biomarker may be used to support diagnostic testing and enhance personalized medicine for individual patients with common as well as rare CFTR mutations in the new era of medicines targeting the underlying cause of CF.
Collapse
Affiliation(s)
- Simon Y. Graeber
- Charité—Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, 13353 Berlin, Germany; (S.Y.G.); (C.V.)
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Centre for Lung Research (DZL), 13353 Berlin, Germany
| | - Constanze Vitzthum
- Charité—Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, 13353 Berlin, Germany; (S.Y.G.); (C.V.)
- German Centre for Lung Research (DZL), 13353 Berlin, Germany
| | - Marcus A. Mall
- Charité—Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, 13353 Berlin, Germany; (S.Y.G.); (C.V.)
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Centre for Lung Research (DZL), 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-(30)-450-566-182; Fax: +49-(30)-450-566-931
| |
Collapse
|
43
|
Lopes-Pacheco M, Pedemonte N, Veit G. Discovery of CFTR modulators for the treatment of cystic fibrosis. Expert Opin Drug Discov 2021; 16:897-913. [PMID: 33823716 DOI: 10.1080/17460441.2021.1912732] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a life-threatening inherited disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel expressed at the apical membrane of secretory epithelia. CF leads to multiorgan dysfunction with progressive deterioration of lung function being the major cause of untimely death. Conventional CF therapies target only symptoms and consequences downstream of the primary genetic defect and the current life expectancy and quality of life of these individuals are still very limited. AREA COVERED CFTR modulator drugs are novel-specialized therapies that enhance or even restore functional expression of CFTR mutants and have been approved for clinical use for individuals with specific CF genotypes. This review summarizes classical approaches used for the pre-clinical development of CFTR correctors and potentiators as well as emerging strategies aiming to accelerate modulator development and expand theratyping efforts. EXPERT OPINION Highly effective CFTR modulator drugs are expected to deeply modify the disease course for the majority of individuals with CF. A multitude of experimental approaches have been established to accelerate the development of novel modulators. CF patient-derived specimens are valuable cell models to predict therapeutic effectiveness of existing (and novel) modulators in a precision medicine approach.
Collapse
Affiliation(s)
| | | | - Guido Veit
- Department of Physiology, McGill University, Montréal, Canada
| |
Collapse
|
44
|
Gentzsch M, Cholon DM, Quinney NL, Martino MEB, Minges JT, Boyles SE, Guhr Lee TN, Esther CR, Ribeiro CMP. Airway Epithelial Inflammation In Vitro Augments the Rescue of Mutant CFTR by Current CFTR Modulator Therapies. Front Pharmacol 2021; 12:628722. [PMID: 33859562 PMCID: PMC8042279 DOI: 10.3389/fphar.2021.628722] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/01/2021] [Indexed: 12/28/2022] Open
Abstract
In cystic fibrosis (CF), defective biogenesis and activity of the cystic fibrosis transmembrane conductance regulator (CFTR) leads to airway dehydration and impaired mucociliary clearance, resulting in chronic airway infection and inflammation. The most common CFTR mutation, F508del, results in a processing defect in which the protein is retained in the endoplasmic reticulum and does not reach the apical surface. CFTR corrector compounds address this processing defect to promote mutant CFTR transfer to the apical membrane. When coupled with potentiators to increase CFTR channel activity, these drugs yield significant clinical benefits in CF patients carrying the F508del mutation. However, processing of CFTR and other proteins can be influenced by environmental factors such as inflammation, and the impact of airway inflammation on pharmacological activity of CFTR correctors is not established. The present study evaluated CFTR-rescuing therapies in inflamed CF airway epithelial cultures, utilizing models that mimic the inflammatory environment of CF airways. Primary bronchial epithelial cultures from F508del/F508del CF patients were inflamed by mucosal exposure to one of two inflammatory stimuli: 1) supernatant from mucopurulent material from CF airways with advanced lung disease, or 2) bronchoalveolar lavage fluid from pediatric CF patients. Cultures inflamed with either stimulus exhibited augmented F508del responses following therapy with correctors VX-809 or VX-661, and overcame the detrimental effects of chronic exposure to the CFTR potentiator VX-770. Remarkably, even the improved CFTR rescue responses resulting from a clinically effective triple therapy (VX-659/VX-661/VX-770) were enhanced by epithelial inflammation. Thus, the airway inflammatory milieu from late- and early-stage CF lung disease improves the efficacy of CFTR modulators, regardless of the combination therapy used. Our findings suggest that pre-clinical evaluation of CFTR corrector therapies should be performed under conditions mimicking the native inflammatory status of CF airways, and altering the inflammatory status of CF airways may change the efficacy of CFTR modulator therapies.
Collapse
Affiliation(s)
- Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States.,Department of Pediatrics, Division of Pediatric Pulmonology, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States.,Department of Cell Biology and Physiology, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Deborah M Cholon
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Nancy L Quinney
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Mary E B Martino
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - John T Minges
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Susan E Boyles
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Tara N Guhr Lee
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Charles R Esther
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States.,Department of Pediatrics, Division of Pediatric Pulmonology, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Carla M P Ribeiro
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States.,Department of Cell Biology and Physiology, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States.,Department of Medicine, Division of Pulmonary Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
45
|
Sabusap CM, Joshi D, Simhaev L, Oliver KE, Senderowitz H, van Willigen M, Braakman I, Rab A, Sorscher EJ, Hong JS. The CFTR P67L variant reveals a key role for N-terminal lasso helices in channel folding, maturation, and pharmacologic rescue. J Biol Chem 2021; 296:100598. [PMID: 33781744 PMCID: PMC8102917 DOI: 10.1016/j.jbc.2021.100598] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Patients with cystic fibrosis (CF) harboring the P67L variant in the cystic fibrosis transmembrane conductance regulator (CFTR) often exhibit a typical CF phenotype, including severe respiratory compromise. This rare mutation (reported in <300 patients worldwide) responds robustly to CFTR correctors, such as lumacaftor and tezacaftor, with rescue in model systems that far exceed what can be achieved for the archetypical CFTR mutant F508del. However, the specific molecular consequences of the P67L mutation are poorly characterized. In this study, we conducted biochemical measurements following low-temperature growth and/or intragenic suppression, which suggest a mechanism underlying P67L that (1) shares key pathogenic features with F508del, including off-pathway (non-native) folding intermediates, (2) is linked to folding stability of nucleotide-binding domains 1 and 2, and (3) demonstrates pharmacologic rescue that requires domains in the carboxyl half of the protein. We also investigated the "lasso" helices 1 and 2, which occur immediately upstream of P67. Based on limited proteolysis, pulse chase, and molecular dynamics analysis of full-length CFTR and a series of deletion constructs, we argue that P67L and other maturational processing (class 2) defects impair the integrity of the lasso motif and confer misfolding of downstream domains. Thus, amino-terminal missense variants elicit a conformational change throughout CFTR that abrogates maturation while providing a robust substrate for pharmacologic repair.
Collapse
Affiliation(s)
- Carleen Mae Sabusap
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Disha Joshi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Luba Simhaev
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | - Kathryn E Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Marcel van Willigen
- Department of Cellular Protein Chemistry, Utrecht University, Utrecht, Netherlands
| | - Ineke Braakman
- Department of Cellular Protein Chemistry, Utrecht University, Utrecht, Netherlands
| | - Andras Rab
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.
| | - Jeong S Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
46
|
Bitam S, Elbahnsi A, Creste G, Pranke I, Chevalier B, Berhal F, Hoffmann B, Servel N, Baatalah N, Tondelier D, Hatton A, Moquereau C, Faria Da Cunha M, Pastor A, Lepissier A, Hinzpeter A, Mornon JP, Prestat G, Edelman A, Callebaut I, Gravier-Pelletier C, Sermet-Gaudelus I. New insights into structure and function of bis-phosphinic acid derivatives and implications for CFTR modulation. Sci Rep 2021; 11:6842. [PMID: 33767236 PMCID: PMC7994384 DOI: 10.1038/s41598-021-83240-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/18/2021] [Indexed: 01/31/2023] Open
Abstract
C407 is a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein carrying the p.Phe508del (F508del) mutation. We investigated the corrector effect of c407 and its derivatives on F508del-CFTR protein. Molecular docking and dynamics simulations combined with site-directed mutagenesis suggested that c407 stabilizes the F508del-Nucleotide Binding Domain 1 (NBD1) during the co-translational folding process by occupying the position of the p.Phe1068 side chain located at the fourth intracellular loop (ICL4). After CFTR domains assembly, c407 occupies the position of the missing p.Phe508 side chain. C407 alone or in combination with the F508del-CFTR corrector VX-809, increased CFTR activity in cell lines but not in primary respiratory cells carrying the F508del mutation. A structure-based approach resulted in the synthesis of an extended c407 analog G1, designed to improve the interaction with ICL4. G1 significantly increased CFTR activity and response to VX-809 in primary nasal cells of F508del homozygous patients. Our data demonstrate that in-silico optimized c407 derivative G1 acts by a mechanism different from the reference VX-809 corrector and provide insights into its possible molecular mode of action. These results pave the way for novel strategies aiming to optimize the flawed ICL4-NBD1 interface.
Collapse
Affiliation(s)
- Sara Bitam
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Ahmad Elbahnsi
- Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, 75005, Paris, France
| | - Geordie Creste
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), Université de Paris, 75006, Paris, France
| | - Iwona Pranke
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Benoit Chevalier
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Farouk Berhal
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), Université de Paris, 75006, Paris, France
| | - Brice Hoffmann
- Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, 75005, Paris, France
| | - Nathalie Servel
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Nesrine Baatalah
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Danielle Tondelier
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Aurelie Hatton
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Christelle Moquereau
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Mélanie Faria Da Cunha
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Alexandra Pastor
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), Université de Paris, 75006, Paris, France
| | - Agathe Lepissier
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Alexandre Hinzpeter
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Jean-Paul Mornon
- Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, 75005, Paris, France
| | - Guillaume Prestat
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), Université de Paris, 75006, Paris, France
| | - Aleksander Edelman
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Isabelle Callebaut
- Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, 75005, Paris, France
| | - Christine Gravier-Pelletier
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), Université de Paris, 75006, Paris, France
| | - Isabelle Sermet-Gaudelus
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France.
- Centre de Référence Maladies Rares Mucoviscidose et Maladies du CFTR, European Reference Network for Rare Respiratory Diseases, Hôpital Necker Enfants Malades, 75015, Paris, France.
| |
Collapse
|
47
|
Kleizen B, van Willigen M, Mijnders M, Peters F, Grudniewska M, Hillenaar T, Thomas A, Kooijman L, Peters KW, Frizzell R, van der Sluijs P, Braakman I. Co-Translational Folding of the First Transmembrane Domain of ABC-Transporter CFTR is Supported by Assembly with the First Cytosolic Domain. J Mol Biol 2021; 433:166955. [PMID: 33771570 DOI: 10.1016/j.jmb.2021.166955] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/29/2022]
Abstract
ABC transporters transport a wealth of molecules across membranes and consist of transmembrane and cytosolic domains. Their activity cycle involves a tightly regulated and concerted domain choreography. Regulation is driven by the cytosolic domains and function by the transmembrane domains. Folding of these polytopic multidomain proteins to their functional state is a challenge for cells, which is mitigated by co-translational and sequential events. We here reveal the first stages of co-translational domain folding and assembly of CFTR, the ABC transporter defective in the most abundant rare inherited disease cystic fibrosis. We have combined biosynthetic radiolabeling with protease-susceptibility assays and domain-specific antibodies. The most N-terminal domain, TMD1 (transmembrane domain 1), folds both its hydrophobic and soluble helices during translation: the transmembrane helices pack tightly and the cytosolic N- and C-termini assemble with the first cytosolic helical loop ICL1, leaving only ICL2 exposed. This N-C-ICL1 assembly is strengthened by two independent events: (i) assembly of ICL1 with the N-terminal subdomain of the next domain, cytosolic NBD1 (nucleotide-binding domain 1); and (ii) in the presence of corrector drug VX-809, which rescues cell-surface expression of a range of disease-causing CFTR mutants. Both lead to increased shielding of the CFTR N-terminus, and their additivity implies different modes of action. Early assembly of NBD1 and TMD1 is essential for CFTR folding and positions both domains for the required assembly with TMD2. Altogether, we have gained insights into this first, nucleating, VX-809-enhanced domain-assembly event during and immediately after CFTR translation, involving structures conserved in type-I ABC exporters.
Collapse
Affiliation(s)
- Bertrand Kleizen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Marcel van Willigen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Julius Clinical Ltd, Broederplein 41-43, 3703 CD Zeist, the Netherlands(‡)
| | - Marjolein Mijnders
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands‡
| | - Florence Peters
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Magda Grudniewska
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands; GenomeScan B.V, Plesmanlaan 1d, 2333 BZ Leiden, the Netherlands‡
| | - Tamara Hillenaar
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Ann Thomas
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands; UniQure, Paasheuvelweg 25a, 1105 BP Amsterdam, the Netherlands‡
| | - Laurens Kooijman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland‡
| | - Kathryn W Peters
- Departments of Pediatrics and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Raymond Frizzell
- Departments of Pediatrics and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
48
|
Rimessi A, Vitto VAM, Patergnani S, Pinton P. Update on Calcium Signaling in Cystic Fibrosis Lung Disease. Front Pharmacol 2021; 12:581645. [PMID: 33776759 PMCID: PMC7990772 DOI: 10.3389/fphar.2021.581645] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder characterized by mutations in the cystic fibrosis transmembrane conductance regulator gene, which causes multifunctional defects that preferentially affect the airways. Abnormal viscosity of mucus secretions, persistent pathogen infections, hyperinflammation, and lung tissue damage compose the classical pathological manifestation referred to as CF lung disease. Among the multifunctional defects associated with defective CFTR, increasing evidence supports the relevant role of perturbed calcium (Ca2+) signaling in the pathophysiology of CF lung disease. The Ca2+ ion is a critical player in cell functioning and survival. Its intracellular homeostasis is maintained by a fine balance between channels, transporters, and exchangers, mediating the influx and efflux of the ion across the plasma membrane and the intracellular organelles. An abnormal Ca2+ profile has been observed in CF cells, including airway epithelial and immune cells, with heavy repercussions on cell function, viability, and susceptibility to pathogens, contributing to proinflammatory overstimulation, organelle dysfunction, oxidative stress, and excessive cytokines release in CF lung. This review discusses the role of Ca2+ signaling in CF and how its dysregulation in airway epithelial and immune cells contributes to hyperinflammation in the CF lung. Finally, we provide an outlook on the therapeutic options that target the Ca2+ signaling to treat the CF lung disease.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Veronica A M Vitto
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| |
Collapse
|
49
|
Spanò V, Barreca M, Cilibrasi V, Genovese M, Renda M, Montalbano A, Galietta LJV, Barraja P. Evaluation of Fused Pyrrolothiazole Systems as Correctors of Mutant CFTR Protein. Molecules 2021; 26:molecules26051275. [PMID: 33652850 PMCID: PMC7956813 DOI: 10.3390/molecules26051275] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations that impair the function of the CFTR chloride channel. The most frequent mutation, F508del, causes misfolding and premature degradation of CFTR protein. This defect can be overcome with pharmacological agents named “correctors”. So far, at least three different classes of correctors have been identified based on the additive/synergistic effects that are obtained when compounds of different classes are combined together. The development of class 2 correctors has lagged behind that of compounds belonging to the other classes. It was shown that the efficacy of the prototypical class 2 corrector, the bithiazole corr-4a, could be improved by generating conformationally-locked bithiazoles. In the present study, we investigated the effect of tricyclic pyrrolothiazoles as analogues of constrained bithiazoles. Thirty-five compounds were tested using the functional assay based on the halide-sensitive yellow fluorescent protein (HS-YFP) that measured CFTR activity. One compound, having a six atom carbocyle central ring in the tricyclic pyrrolothiazole system and bearing a pivalamide group at the thiazole moiety and a 5-chloro-2-methoxyphenyl carboxamide at the pyrrole ring, significantly increased F508del-CFTR activity. This compound could lead to the synthesis of a novel class of CFTR correctors.
Collapse
Affiliation(s)
- Virginia Spanò
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (V.S.); (M.B.); (V.C.); (P.B.)
| | - Marilia Barreca
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (V.S.); (M.B.); (V.C.); (P.B.)
| | - Vincenzo Cilibrasi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (V.S.); (M.B.); (V.C.); (P.B.)
| | - Michele Genovese
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078 Naples, Italy; (M.G.); (M.R.); (L.J.V.G.)
| | - Mario Renda
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078 Naples, Italy; (M.G.); (M.R.); (L.J.V.G.)
| | - Alessandra Montalbano
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (V.S.); (M.B.); (V.C.); (P.B.)
- Correspondence: ; Tel.: +39-091-238-968-22
| | - Luis Juan Vicente Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078 Naples, Italy; (M.G.); (M.R.); (L.J.V.G.)
- Department of Translational Medical Sciences (DISMET), University of Naples, “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Paola Barraja
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (V.S.); (M.B.); (V.C.); (P.B.)
| |
Collapse
|
50
|
Yadav S, Shaughnessy CA, Zeitlin PL, Bratcher PE. Downregulation of epithelial sodium channel (ENaC) activity in human airway epithelia after low temperature incubation. BMJ Open Respir Res 2021; 8:8/1/e000861. [PMID: 33622672 PMCID: PMC7907861 DOI: 10.1136/bmjresp-2020-000861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Accepted: 02/13/2021] [Indexed: 11/12/2022] Open
Abstract
Introduction The incubation of airway epithelia cells at low temperatures is a common in vitro experimental approach used in the field of cystic fibrosis (CF) research to thermo-stabilise F508del-CFTR and increase its functional expression. Given that the airway epithelium includes numerous ion transporters other than CFTR, we hypothesised that there was an impact of low temperature incubation on CFTR-independent ionoregulatory mechanisms in airway epithelia derived from individuals with and without CF. Methods After differentiation at the air–liquid interface, nasal epithelia were incubated at either 37°C or 29°C (low temperature) for 48 hours prior to analysis in an Ussing chamber. Results While F508del-CFTR activity was increased after low temperature incubation, activity of CFTR in non-CF epithelia was unchanged. Importantly, cultures incubated at 29°C demonstrated decreased transepithelial potential difference (TEPD) and short-circuit currents (Isc) at baseline. The predominant factor contributing to the reduced baseline TEPD and Isc in 29°C cultures was the reduced activity of the epithelial sodium channel (ENaC), evidenced by a reduced responsiveness to amiloride. This effect was observed in cells derived from both non-CF and CF donors. Discussion Significant transcriptional downregulation of ENaC subunits β and γ were observed, which may partially explain the decreased ENaC activity. We speculate that low temperature incubation may be a useful experimental paradigm to reduce ENaC activity in in vitro epithelial cultures.
Collapse
Affiliation(s)
- Sangya Yadav
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | | | - Pamela L Zeitlin
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Preston E Bratcher
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA .,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|