1
|
Corrales J, Ramos-Alonso L, González-Sabín J, Ríos-Lombardía N, Trevijano-Contador N, Engen Berg H, Sved Skottvoll F, Moris F, Zaragoza O, Chymkowitch P, Garcia I, Enserink JM. Characterization of a selective, iron-chelating antifungal compound that disrupts fungal metabolism and synergizes with fluconazole. Microbiol Spectr 2024; 12:e0259423. [PMID: 38230926 PMCID: PMC10845951 DOI: 10.1128/spectrum.02594-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024] Open
Abstract
Fungal infections are a growing global health concern due to the limited number of available antifungal therapies as well as the emergence of fungi that are resistant to first-line antimicrobials, particularly azoles and echinocandins. Development of novel, selective antifungal therapies is challenging due to similarities between fungal and mammalian cells. An attractive source of potential antifungal treatments is provided by ecological niches co-inhabited by bacteria, fungi, and multicellular organisms, where complex relationships between multiple organisms have resulted in evolution of a wide variety of selective antimicrobials. Here, we characterized several analogs of one such natural compound, collismycin A. We show that NR-6226C has antifungal activity against several pathogenic Candida species, including C. albicans and C. glabrata, whereas it only has little toxicity against mammalian cells. Mechanistically, NR-6226C selectively chelates iron, which is a limiting factor for pathogenic fungi during infection. As a result, NR-6226C treatment causes severe mitochondrial dysfunction, leading to formation of reactive oxygen species, metabolic reprogramming, and a severe reduction in ATP levels. Using an in vivo model for fungal infections, we show that NR-6226C significantly increases survival of Candida-infected Galleria mellonella larvae. Finally, our data indicate that NR-6226C synergizes strongly with fluconazole in inhibition of C. albicans. Taken together, NR-6226C is a promising antifungal compound that acts by chelating iron and disrupting mitochondrial functions.IMPORTANCEDrug-resistant fungal infections are an emerging global threat, and pan-resistance to current antifungal therapies is an increasing problem. Clearly, there is a need for new antifungal drugs. In this study, we characterized a novel antifungal agent, the collismycin analog NR-6226C. NR-6226C has a favorable toxicity profile for human cells, which is essential for further clinical development. We unraveled the mechanism of action of NR-6226C and found that it disrupts iron homeostasis and thereby depletes fungal cells of energy. Importantly, NR-6226C strongly potentiates the antifungal activity of fluconazole, thereby providing inroads for combination therapy that may reduce or prevent azole resistance. Thus, NR-6226C is a promising compound for further development into antifungal treatment.
Collapse
Affiliation(s)
- Jeanne Corrales
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Lucia Ramos-Alonso
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Javier González-Sabín
- EntreChem SL, Vivero Ciencias de la Salud, Calle Colegio Santo Domingo Guzmán, Oviedo, Spain
| | - Nicolás Ríos-Lombardía
- EntreChem SL, Vivero Ciencias de la Salud, Calle Colegio Santo Domingo Guzmán, Oviedo, Spain
| | - Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Madrid, Spain
| | | | | | - Francisco Moris
- EntreChem SL, Vivero Ciencias de la Salud, Calle Colegio Santo Domingo Guzmán, Oviedo, Spain
| | - Oscar Zaragoza
- EntreChem SL, Vivero Ciencias de la Salud, Calle Colegio Santo Domingo Guzmán, Oviedo, Spain
- Center for Biomedical Research in Network in Infectious Diseases, CB21/13/00105, Instituto de Salud Carlos III, Madrid, Spain
| | - Pierre Chymkowitch
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Ignacio Garcia
- Department of Bacteriology, Norwegian Institute of Public Health, Oslo, Norway
| | - Jorrit M. Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Sharma AN, Verma R. Source, Synthesis, and Biological Evaluation of Natural Occurring 2,2'-Bipyridines. Chem Biodivers 2023; 20:e202300764. [PMID: 37996963 DOI: 10.1002/cbdv.202300764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
Molecules containing bipyridine scaffold are fascinating and versatile compounds in the field of natural product chemistry and drug discovery, and these molecules have possible therapeutic applications due to possession of potent biological activities such as antimicrobial, immunomodulatory, antitumor, and phytotoxic. Significant efforts have been devoted to isolating various 2,2' bipyridine compounds from natural sources, with antimicrobial, anti-cancer, and immunosuppressive properties. This review describes recent developments in isolation from different microbial origins, synthesis, and investigation of different kinds of biological activities of 2,2' bipyridines, with a particular emphasis on caerulomycins, collismycins, and related derivates thereof in detail.
Collapse
Affiliation(s)
- Amar Nath Sharma
- Research and Development unit, Pharmaffiliates Analytics & Synthetics (P) Ltd, Panchkula, Haryana, 134109, India
| | - Rajni Verma
- Department of Applied Sciences, Chandigarh Engineering College, Jhanjeri, Mohali, India
| |
Collapse
|
3
|
Minas HA, François RMM, Hemmerling F, Fraley AE, Dieterich CL, Rüdisser SH, Meoded RA, Collin S, Weissman KJ, Gruez A, Piel J. Modular Oxime Formation by a trans-AT Polyketide Synthase. Angew Chem Int Ed Engl 2023; 62:e202304481. [PMID: 37216334 DOI: 10.1002/anie.202304481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
Modular trans-acyltransferase polyketide synthases (trans-AT PKSs) are enzymatic assembly lines that biosynthesize complex polyketide natural products. Relative to their better studied cis-AT counterparts, the trans-AT PKSs introduce remarkable chemical diversity into their polyketide products. A notable example is the lobatamide A PKS, which incorporates a methylated oxime. Here we demonstrate biochemically that this functionality is installed on-line by an unusual oxygenase-containing bimodule. Furthermore, analysis of the oxygenase crystal structure coupled with site-directed mutagenesis allows us to propose a model for catalysis, as well as identifying key protein-protein interactions that support this chemistry. Overall, our work adds oxime-forming machinery to the biomolecular toolbox available for trans-AT PKS engineering, opening the way to introducing such masked aldehyde functionalities into diverse polyketides.
Collapse
Affiliation(s)
- Hannah A Minas
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Romain M M François
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
- Université de Lorraine, CNRS, IMoPA, 54000, Nancy, France
| | - Franziska Hemmerling
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Amy E Fraley
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Cora L Dieterich
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Simon H Rüdisser
- Institute of Molecular Biology and Biophysics, Biomolecular NMR Spectroscopy Platform, Eidgenössische Technische Hochschule (ETH) Zürich, Hönggerbergring 64, 8093, Zürich, Switzerland
| | - Roy A Meoded
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Sabrina Collin
- Université de Lorraine, CNRS, IMoPA, 54000, Nancy, France
| | | | - Arnaud Gruez
- Université de Lorraine, CNRS, IMoPA, 54000, Nancy, France
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| |
Collapse
|
4
|
Cuervo L, Méndez C, Salas JA, Olano C, Malmierca MG. Volatile Compounds in Actinomycete Communities: A New Tool for Biosynthetic Gene Cluster Activation, Cooperative Growth Promotion, and Drug Discovery. Cells 2022; 11:3510. [PMID: 36359906 PMCID: PMC9655753 DOI: 10.3390/cells11213510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 07/30/2023] Open
Abstract
The increasing appearance of multiresistant pathogens, as well as emerging diseases, has highlighted the need for new strategies to discover natural compounds that can be used as therapeutic alternatives, especially in the genus Streptomyces, which is one of the largest producers of bioactive metabolites. In recent years, the study of volatile compounds (VOCs) has raised interest because of the variety of their biological properties in addition to their involvement in cell communication. In this work, we analyze the implications of VOCs as mediating molecules capable of inducing the activation of biosynthetic pathways of bioactive compounds in surrounding Actinomycetes. For this purpose, several strains of Streptomyces were co-cultured in chamber devices that allowed VOC exchange while avoiding physical contact. In several of those strains, secondary metabolism was activated by VOCs emitted by companion strains, resulting in increased antibiotic production and synthesis of new VOCs. This study shows a novel strategy to exploit the metabolic potential of Actinomycetes as well as emphasizes the importance of studying the interactions between different microorganisms sharing the same ecological niche.
Collapse
Affiliation(s)
- Lorena Cuervo
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Carmen Méndez
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - José A. Salas
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Carlos Olano
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Mónica G. Malmierca
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
5
|
Sarmiento-Vizcaíno A, Martín J, Ortiz-López FJ, Reyes F, García LA, Blanco G. Natural products, including a new caboxamycin, from Streptomyces and other Actinobacteria isolated in Spain from storm clouds transported by Northern winds of Arctic origin. Front Chem 2022; 10:948795. [PMID: 36405319 PMCID: PMC9669575 DOI: 10.3389/fchem.2022.948795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/17/2022] [Indexed: 01/23/2025] Open
Abstract
Actinobacteria, mostly Streptomyces species, are the main source of natural products essential in medicine. While the majority of producer microorganisms of secondary metabolite are reported from terrestrial or marine environments, there are limited reports of their isolation from atmospheric precipitations. Clouds are considered as atmospheric oases for microorganisms and there is a recent paradigm shift whereby atmospheric-derived Actinobacteria emerge as an alternative source for drug discovery. In this context, we studied a total of 18 bioactive Actinobacteria strains, isolated by sampling nine precipitation events with prevailing Northern winds in the Cantabrian Sea coast, Northern Spain. Backward trajectories meteorological analyses indicate that air masses were originated mostly in the Arctic Ocean, and their trajectory to downwind areas involved the Atlantic Ocean and also terrestrial sources from continental Europe, and in some events from Canada, Greenland, Mauritania and Canary Islands. Taxonomic identification of the isolates, by 16S rRNA gene sequencing and phylogenetic analyses, revealed that they are members of three Actinobacteria genera. Fifteen of the isolates are Streptomyces species, thus increasing the number of bioactive species of this genus in the atmosphere to a 6.8% of the total currently validated species. In addition, two of the strains belong to the genus Micromonospora and one to genus Nocardiopsis. These findings reinforce a previous atmospheric dispersal model, extended herein to the genus Micromonospora. Production of bioactive secondary metabolites was screened in ethyl acetate extracts of the strains by LC-UV-MS and a total of 94 secondary metabolites were detected after LC/MS dereplication. Comparative analyses with natural products databases allowed the identification of 69 structurally diverse natural products with contrasted biological activities, mostly as antibiotics and antitumor agents, but also anti-inflammatory, antiviral, antiparasitic, immunosuppressant and neuroprotective among others. The molecular formulae of the 25 remaining compounds were determined by HRMS. None of these molecules had been previously reported in natural product databases indicating potentially novel metabolites. As a proof of concept, a new metabolite caboxamycin B (1) was isolated from the culture broth of Streptomyces sp. A-177 and its structure was determined by various spectrometric methods. To the best of our knowledge, this is the first novel natural product obtained from an atmospheric Streptomyces, thus pointing out precipitations as an innovative source for discovering new pharmaceutical natural products.
Collapse
Affiliation(s)
- Aida Sarmiento-Vizcaíno
- Departamento de Biología Funcional Área de Microbiología Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Oviedo, Spain
| | - Jesús Martín
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | | | - Fernando Reyes
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Luis A. García
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente Área de Ingeniería Química Universidad de Oviedo, Oviedo, Spain
| | - Gloria Blanco
- Departamento de Biología Funcional Área de Microbiología Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
6
|
Cardullo N, Muccilli V, Tringali C. Laccase-mediated synthesis of bioactive natural products and their analogues. RSC Chem Biol 2022; 3:614-647. [PMID: 35755186 PMCID: PMC9175115 DOI: 10.1039/d1cb00259g] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
Laccases are a class of multicopper oxidases that catalyse the one-electron oxidation of four equivalents of a reducing substrate, with the concomitant four-electron reduction of dioxygen to water. Typically, they catalyse many anabolic reactions, in which mostly phenolic metabolites were subjected to oxidative coupling. Alternatively, laccases catalyse the degradation or modification of biopolymers like lignin in catabolic processes. In recent years, laccases have proved valuable and green biocatalysts for synthesising compounds with therapeutic value, including antitumor, antibiotic, antimicrobial, and antioxidant agents. Further up to date applications include oxidative depolymerisation of lignin to gain new biomaterials and bioremediation processes of industrial waste. This review summarizes selected examples from the last decade's literature about the laccase-mediated synthesis of biologically active natural products and their analogues; these will include lignans and neolignans, dimeric stilbenoids, biflavonoids, biaryls and other compounds of potential interest for the pharmaceutical industry. In addition, a short section about applications of laccases in natural polymer modification has been included.
Collapse
Affiliation(s)
- Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania V.le A. Doria 6 95125-Catania Italy +39-095-580138 +39-095-7385041 +39-095-7385025
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania V.le A. Doria 6 95125-Catania Italy +39-095-580138 +39-095-7385041 +39-095-7385025
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania V.le A. Doria 6 95125-Catania Italy +39-095-580138 +39-095-7385041 +39-095-7385025
| |
Collapse
|
7
|
Chen M, Pang B, Ding W, Zhao Q, Tang Z, Liu W. Investigation of 2,2'-Bipyridine Biosynthesis Reveals a Common Two-Component System for Aldehydes Production by Carboxylate Reduction. Org Lett 2022; 24:897-902. [PMID: 35044177 DOI: 10.1021/acs.orglett.1c04239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we report a two-component enzymatic system that efficiently catalyzes the reduction of a carboxylate to an aldehyde in the biosynthesis of 2,2'-bipyridine antibiotics caerulomycins. The associated paradigm involves the activation of carboxylate by ATP-dependent adenylation protein CaeF, followed by its reduction catalyzed by CaeB2, a new class of NADPH-dependent aldehyde dehydrogenase (ALDH) that directly reduces AMP-conjugated carboxylate, which is distinct from the known aldehyde-producing enzymes that reduce ACP- or CoA-conjugated carboxylates.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Bo Pang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wenping Ding
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qunfei Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
8
|
Egan JM, van Santen JA, Liu DY, Linington RG. Development of an NMR-Based Platform for the Direct Structural Annotation of Complex Natural Products Mixtures. JOURNAL OF NATURAL PRODUCTS 2021; 84:1044-1055. [PMID: 33750122 PMCID: PMC8330833 DOI: 10.1021/acs.jnatprod.0c01076] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The development of new "omics" platforms is having a significant impact on the landscape of natural products discovery. However, despite the advantages that such platforms bring to the field, there remains no straightforward method for characterizing the chemical landscape of natural products libraries using two-dimensional nuclear magnetic resonance (2D-NMR) experiments. NMR analysis provides a powerful complement to mass spectrometric approaches, given the universal coverage of NMR experiments. However, the high degree of signal overlap, particularly in one-dimensional NMR spectra, has limited applications of this approach. To address this issue, we have developed a new data analysis platform for complex mixture analysis, termed MADByTE (Metabolomics and Dereplication by Two-Dimensional Experiments). This platform employs a combination of TOCSY and HSQC spectra to identify spin system features within complex mixtures and then matches spin system features between samples to create a chemical similarity network for a given sample set. In this report we describe the design and construction of the MADByTE platform and demonstrate the application of chemical similarity networks for both the dereplication of known compound scaffolds and the prioritization of bioactive metabolites from a bacterial prefractionated extract library.
Collapse
Affiliation(s)
- Joseph M Egan
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Jeffrey A van Santen
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Dennis Y Liu
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
9
|
Becerril A, Pérez-Victoria I, Ye S, Braña AF, Martín J, Reyes F, Salas JA, Méndez C. Discovery of Cryptic Largimycins in Streptomyces Reveals Novel Biosynthetic Avenues Enriching the Structural Diversity of the Leinamycin Family. ACS Chem Biol 2020; 15:1541-1553. [PMID: 32310633 DOI: 10.1021/acschembio.0c00160] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Largimycins are hybrid nonribosomal peptide-polyketides that constitute a new group of metabolites in the leinamycin family of natural products displaying unique structural features such as containing an oxazole instead of a thiazole ring or being oxime ester macrocycles, unprecedented in nature, rather than macrolactams. Their discovery in Streptomyces argillaceus and Streptomyces canus has relied on the activation of two homologous silent gene clusters by overexpressing a transcriptional activator and cultivating in specific media. The proposed biosynthesis of largimycins includes the key action of the oxidoreductase LrgO, responsible for the formation of the oxime group involved in macrocyclization, and two putative cryptic biosynthetic steps consisting of chlorination of l-Thr by the NRPS loading module and incorporation of an olefinic exomethylene group by LrgJ PKS. The discovery of largimycins uncovers novel biosynthetic avenues employed in nature to enrich the structural diversity of leinamycins and provides tools for combinatorial biosynthesis.
Collapse
Affiliation(s)
- Adriana Becerril
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), Oviedo, Spain
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, Granada, Spain
| | - Suhui Ye
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), Oviedo, Spain
| | - Alfredo F. Braña
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), Oviedo, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, Granada, Spain
| | - José A. Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
10
|
Ma X, Wang G, Liu T, Chi C, Zhang Z, Yang D, Liu W, Ma M. Functional Characterization and Crystal Structure of the Type
II
Peptidyl Carrier Protein
ColA1a
in Collismycins Biosynthesis
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xueyang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences Peking University, 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Guiyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences Peking University, 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Tan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences Peking University, 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Changbiao Chi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences Peking University, 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Zhongyi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences Peking University, 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences Peking University, 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences Peking University, 38 Xueyuan Road, Haidian District Beijing 100191 China
| |
Collapse
|
11
|
Liang L, Haltli B, Marchbank DH, Fischer M, Kirby CW, Correa H, Clark TN, Gray CA, Kerr RG. Discovery of an Isothiazolinone-Containing Antitubercular Natural Product Levesquamide. J Org Chem 2020; 85:6450-6462. [PMID: 32363877 DOI: 10.1021/acs.joc.0c00339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antitubercular agent levesquamide is a new polyketide-nonribosomal peptide (PK-NRP) hybrid marine natural product isolated from Streptomyces sp. RKND-216. The structure contains a rare isothiazolinone moiety which has only been reported in collismycin SN. Structure elucidation by NMR spectroscopy was a significant challenge due to a deficiency of protons in this aromatic moiety. Therefore, the genome of Streptomyces sp. RKND-216 was sequenced to identify the levesquamide biosynthetic gene cluster (BGC). Analysis of the BGC provided structural insights and guided stable-isotope labeling experiments, which led to the assignment of the fused pyridine-isothiazolinone moiety. The BGC and the labeling experiments provide further insights into the biosynthetic origin of isothiazolinones. Levesquamide exhibited antimicrobial activity in the microplate alamarBlue assay (MABA) and low oxygen recovery assay (LORA) against Mycobacterium tuberculosis H37Rv with minimum inhibitory concentration (MIC) values of 9.65 and 22.28 μM, respectively. Similar activity was exhibited against rifampicin- and isoniazid-resistant M. tuberculosis strains with MIC values of 9.46 and 9.90 μM, respectively. This result suggests levesquamide has a different mode of action against M. tuberculosis compared to the two first-line antitubercular drugs rifampicin and isoniazid. Furthermore, levesquamide shows no cytotoxicity against the Vero cell line, suggesting it may have a useful therapeutic window.
Collapse
Affiliation(s)
| | - Bradley Haltli
- Nautilus Biosciences Croda, 550 University Avenue, Regis and Joan Duffy Research Centre, Charlottetown, PE C1A 4P3, Canada
| | - Douglas H Marchbank
- Nautilus Biosciences Croda, 550 University Avenue, Regis and Joan Duffy Research Centre, Charlottetown, PE C1A 4P3, Canada
| | - Maike Fischer
- Charlottetown Research & Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada
| | - Christopher W Kirby
- Charlottetown Research & Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada
| | - Hebelin Correa
- Nautilus Biosciences Croda, 550 University Avenue, Regis and Joan Duffy Research Centre, Charlottetown, PE C1A 4P3, Canada
| | - Trevor N Clark
- Department of Chemistry, University of New Brunswick, 30 Dineen Drive, Fredericton, NB E3B 5A3, Canada
| | - Christopher A Gray
- Department of Chemistry, University of New Brunswick, 30 Dineen Drive, Fredericton, NB E3B 5A3, Canada.,Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Russell G Kerr
- Nautilus Biosciences Croda, 550 University Avenue, Regis and Joan Duffy Research Centre, Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
12
|
Santos-Aberturas J, Chandra G, Frattaruolo L, Lacret R, Pham TH, Vior NM, Eyles TH, Truman AW. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Nucleic Acids Res 2019; 47:4624-4637. [PMID: 30916321 PMCID: PMC6511847 DOI: 10.1093/nar/gkz192] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/27/2019] [Accepted: 03/13/2019] [Indexed: 01/26/2023] Open
Abstract
The rational discovery of new specialized metabolites by genome mining represents a very promising strategy in the quest for new bioactive molecules. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural product that derive from genetically encoded precursor peptides. However, RiPP gene clusters are particularly refractory to reliable bioinformatic predictions due to the absence of a common biosynthetic feature across all pathways. Here, we describe RiPPER, a new tool for the family-independent identification of RiPP precursor peptides and apply this methodology to search for novel thioamidated RiPPs in Actinobacteria. Until now, thioamidation was believed to be a rare post-translational modification, which is catalyzed by a pair of proteins (YcaO and TfuA) in Archaea. In Actinobacteria, the thioviridamide-like molecules are a family of cytotoxic RiPPs that feature multiple thioamides, which are proposed to be introduced by YcaO-TfuA proteins. Using RiPPER, we show that previously undescribed RiPP gene clusters encoding YcaO and TfuA proteins are widespread in Actinobacteria and encode a highly diverse landscape of precursor peptides that are predicted to make thioamidated RiPPs. To illustrate this strategy, we describe the first rational discovery of a new structural class of thioamidated natural products, the thiovarsolins from Streptomyces varsoviensis.
Collapse
Affiliation(s)
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Luca Frattaruolo
- Department of Molecular Microbiology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Rodney Lacret
- Department of Molecular Microbiology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Thu H Pham
- Department of Molecular Microbiology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Natalia M Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Tom H Eyles
- Department of Molecular Microbiology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| |
Collapse
|
13
|
Discovery of caerulomycin/collismycin-type 2,2'-bipyridine natural products in the genomic era. J Ind Microbiol Biotechnol 2018; 46:459-468. [PMID: 30484122 DOI: 10.1007/s10295-018-2092-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/15/2018] [Indexed: 10/27/2022]
Abstract
2,2'-Bipyridine (2,2'-BP) is the unique molecular scaffold of the bioactive natural products represented by caerulomycins (CAEs) and collismycins (COLs). CAEs and COLs are highly similar in the chemical structures in which their 2,2'-BP cores typically contain a di- or tri-substituted ring A and an unmodified ring B. Here, we summarize the CAE and COL-type 2,2'-BP natural products known or hypothesized to date: (1) isolated using methods traditional for natural product characterization, (2) created by engineering the biosynthetic pathways of CAEs or COLs, and (3) predicted upon bioinformatics-guided genome mining. The identification of these CAE and COL-type 2,2'-BP natural products not only demonstrates the development of research techniques and methods in the field of natural product chemistry but also reflects the general interest in the discovery of CAE and COL-type 2,2'-BP natural products.
Collapse
|
14
|
Zhang C, Sun C, Huang H, Gui C, Wang L, Li Q, Ju J. Biosynthetic Baeyer-Villiger Chemistry Enables Access to Two Anthracene Scaffolds from a Single Gene Cluster in Deep-Sea-Derived Streptomyces olivaceus SCSIO T05. JOURNAL OF NATURAL PRODUCTS 2018; 81:1570-1577. [PMID: 30015485 DOI: 10.1021/acs.jnatprod.8b00077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Four known compounds, rishirilide B (1), rishirilide C (2), lupinacidin A (3), and galvaquinone B (4), representing two anthracene scaffolds typical of aromatic polyketides, were isolated from a culture of the deep-sea-derived Streptomyces olivaceus SCSIO T05. From the S. olivaceus producer was cloned and sequenced the rsd biosynthetic gene cluster (BGC) that drives rishirilide biosynthesis. The structural gene rsdK2 inactivation and heterologous expression of the rsd BGC confirmed the single rsd BGC encodes construction of 1-4 and, thus, accounts for two anthracene scaffolds. Precursor incubation experiments with 13C-labeled acetate revealed that a Baeyer-Villiger-type rearrangement plays a central role in construction of 1-4. Two luciferase monooxygenase components, along with a reductase component, are presumably involved in the Baeyer-Villiger-type rearrangement reaction enabling access to the two anthracene scaffold variants. Engineering of the rsd BGC unveiled three SARP family transcriptional regulators, enhancing anthracene production. Inactivation of rsdR4, a MarR family transcriptional regulator, failed to impact production of 1-4, although production of 3 was slightly improved; most importantly rsdR4 inactivation led to the new adduct 6 in high titer. Notably, inactivation of rsdH, a putative amidohydrolase, substantially improved the overall titers of 1-4 by more than 4-fold.
Collapse
Affiliation(s)
- Chunyan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou , 510301 , People's Republic of China
- University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing , 100049 , People's Republic of China
| | - Changli Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou , 510301 , People's Republic of China
| | - Hongbo Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou , 510301 , People's Republic of China
| | - Chun Gui
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou , 510301 , People's Republic of China
- University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing , 100049 , People's Republic of China
| | - Liyan Wang
- College of Life Sciences and Oceanology, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science , Shenzhen University , 3688 Nanhai Avenue , Shenzhen , 518060 , People's Republic of China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou , 510301 , People's Republic of China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou , 510301 , People's Republic of China
- University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing , 100049 , People's Republic of China
| |
Collapse
|
15
|
Goettge MN, Cioni JP, Ju KS, Pallitsch K, Metcalf WW. PcxL and HpxL are flavin-dependent, oxime-forming N-oxidases in phosphonocystoximic acid biosynthesis in Streptomyces. J Biol Chem 2018; 293:6859-6868. [PMID: 29540479 PMCID: PMC5936822 DOI: 10.1074/jbc.ra118.001721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
Several oxime-containing small molecules have useful properties, including antimicrobial, insecticidal, anticancer, and immunosuppressive activities. Phosphonocystoximate and its hydroxylated congener, hydroxyphosphonocystoximate, are recently discovered oxime-containing natural products produced by Streptomyces sp. NRRL S-481 and Streptomyces regensis NRRL WC-3744, respectively. The biosynthetic pathways for these two compounds are proposed to diverge at an early step in which 2-aminoethylphosphonate (2AEPn) is converted to (S)-1-hydroxy-2-aminoethylphosphonate ((S)-1H2AEPn) in S. regensis but not in Streptomyces sp. NRRL S-481). Subsequent installation of the oxime moiety into either 2AEPn or (S)-1H2AEPn is predicted to be catalyzed by PcxL or HpxL from Streptomyces sp. NRRL S-481 and S. regensis NRRL WC-3744, respectively, whose sequence and predicted structural characteristics suggest they are unusual N-oxidases. Here, we show that recombinant PcxL and HpxL catalyze the FAD- and NADPH-dependent oxidation of 2AEPn and 1H2AEPn, producing a mixture of the respective aldoximes and nitrosylated phosphonic acid products. Measurements of catalytic efficiency indicated that PcxL has almost an equal preference for 2AEPn and (R)-1H2AEPn. 2AEPn was turned over at a 10-fold higher rate than (R)-1H2AEPn under saturating conditions, resulting in a similar but slightly lower kcat/Km We observed that (S)-1H2AEPn is a relatively poor substrate for PcxL but is clearly the preferred substrate for HpxL, consistent with the proposed biosynthetic pathway in S. regensis. HpxL also used both 2AEPn and (R)-1H2AEPn, with the latter inhibiting HpxL at high concentrations. Bioinformatic analysis indicated that PcxL and HpxL are members of a new class of oxime-forming N-oxidases that are broadly dispersed among bacteria.
Collapse
Affiliation(s)
- Michelle N Goettge
- From the Department of Microbiology and the Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 and
| | - Joel P Cioni
- From the Department of Microbiology and the Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 and
| | - Kou-San Ju
- From the Department of Microbiology and the Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 and
| | - Katharina Pallitsch
- the Institute of Organic Chemistry, University of Vienna, 1090 Vienna, Austria
| | - William W Metcalf
- From the Department of Microbiology and the Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 and
| |
Collapse
|
16
|
Ewing TA, Fraaije MW, Mattevi A, van Berkel WJ. The VAO/PCMH flavoprotein family. Arch Biochem Biophys 2017; 632:104-117. [DOI: 10.1016/j.abb.2017.06.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 01/15/2023]
|
17
|
Chen M, Pang B, Du YN, Zhang YP, Liu W. Characterization of the metallo-dependent amidohydrolases responsible for "auxiliary" leucinyl removal in the biosynthesis of 2,2'-bipyridine antibiotics. Synth Syst Biotechnol 2017; 2:137-146. [PMID: 29062971 PMCID: PMC5636949 DOI: 10.1016/j.synbio.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 01/11/2023] Open
Abstract
2,2'-Bipyridine (2,2'-BiPy) is an attractive core structure present in a number of biologically active natural products, including the structurally related antibiotics caerulomycins (CAEs) and collismycins (COLs). Their biosynthetic pathways share a similar key 2,2'-BiPy-l-leucine intermediate, which is desulfurated or sulfurated at C5, arises from a polyketide synthase/nonribosomal peptide synthetase hybrid assembly line. Focusing on the common off-line modification steps, we here report that the removal of the "auxiliary" l-leucine residue relies on the metallo-dependent amidohydrolase activity of CaeD or ColD. This activity leads to the production of similar 2,2'-BiPy carboxylate products that then receive an oxime functionality that is characteristic for both CAEs and COLs. Unlike many metallo-dependent amidohydrolase superfamily proteins that have been previously reported, these proteins (particularly CaeD) exhibited a strong zinc ion-binding capacity that was proven by site-specific mutagenesis studies to be essential to proteolytic activity. The kinetics of the conversions that respectively involve CaeD and ColD were analyzed, showing the differences in the efficiency and substrate specificity of these two proteins. These findings would generate interest in the metallo-dependent amidohydrolase superfamily proteins that are involved in the biosynthesis of bioactive natural products.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Bioorganic and Nature Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Bo Pang
- State Key Laboratory of Bioorganic and Nature Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ya-Nan Du
- State Key Laboratory of Bioorganic and Nature Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yi-Peng Zhang
- State Key Laboratory of Bioorganic and Nature Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Nature Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
18
|
Waldman AJ, Ng TL, Wang P, Balskus EP. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5784-5863. [PMID: 28375000 PMCID: PMC5534343 DOI: 10.1021/acs.chemrev.6b00621] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural products that contain functional groups with heteroatom-heteroatom linkages (X-X, where X = N, O, S, and P) are a small yet intriguing group of metabolites. The reactivity and diversity of these structural motifs has captured the interest of synthetic and biological chemists alike. Functional groups containing X-X bonds are found in all major classes of natural products and often impart significant biological activity. This review presents our current understanding of the biosynthetic logic and enzymatic chemistry involved in the construction of X-X bond containing functional groups within natural products. Elucidating and characterizing biosynthetic pathways that generate X-X bonds could both provide tools for biocatalysis and synthetic biology, as well as guide efforts to uncover new natural products containing these structural features.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Tai L. Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
19
|
Dunbar KL, Scharf DH, Litomska A, Hertweck C. Enzymatic Carbon-Sulfur Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5521-5577. [PMID: 28418240 DOI: 10.1021/acs.chemrev.6b00697] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sulfur plays a critical role for the development and maintenance of life on earth, which is reflected by the wealth of primary metabolites, macromolecules, and cofactors bearing this element. Whereas a large body of knowledge has existed for sulfur trafficking in primary metabolism, the secondary metabolism involving sulfur has long been neglected. Yet, diverse sulfur functionalities have a major impact on the biological activities of natural products. Recent research at the genetic, biochemical, and chemical levels has unearthed a broad range of enzymes, sulfur shuttles, and chemical mechanisms for generating carbon-sulfur bonds. This Review will give the first systematic overview on enzymes catalyzing the formation of organosulfur natural products.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Daniel H Scharf
- Life Sciences Institute, University of Michigan , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States
| | - Agnieszka Litomska
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany.,Friedrich Schiller University , 07743 Jena, Germany
| |
Collapse
|
20
|
Proteomic profiling reveals that collismycin A is an iron chelator. Sci Rep 2016; 6:38385. [PMID: 27922079 PMCID: PMC5138588 DOI: 10.1038/srep38385] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/09/2016] [Indexed: 12/13/2022] Open
Abstract
Collismycin A (CMA), a microbial product, has anti-proliferative activity against cancer cells, but the mechanism of its action remains unknown. Here, we report the identification of the molecular target of CMA by ChemProteoBase, a proteome-based approach for drug target identification. ChemProteoBase profiling showed that CMA is closely clustered with di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone, an iron chelator. CMA bound to both Fe(II) and Fe(III) ions and formed a 2:1 chelator-iron complex with a redox-inactive center. CMA-induced cell growth inhibition was completely canceled by Fe(II) and Fe(III) ions, but not by other metal ions such as Zn(II) or Cu(II). Proteomic and transcriptomic analyses showed that CMA affects the glycolytic pathway due to the accumulation of HIF-1α. These results suggest that CMA acts as a specific iron chelator, leading to the inhibition of cancer cell growth.
Collapse
|
21
|
Zhu Y, Xu J, Mei X, Feng Z, Zhang L, Zhang Q, Zhang G, Zhu W, Liu J, Zhang C. Biochemical and Structural Insights into the Aminotransferase CrmG in Caerulomycin Biosynthesis. ACS Chem Biol 2016; 11:943-52. [PMID: 26714051 DOI: 10.1021/acschembio.5b00984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Caerulomycin A (CRM A 1) belongs to a family of natural products containing a 2,2'-bipyridyl ring core structure and is currently under development as a potent novel immunosuppressive agent. Herein, we report the functional characterization, kinetic analysis, substrate specificity, and structure insights of an aminotransferase CrmG in 1 biosynthesis. The aminotransferase CrmG was confirmed to catalyze a key transamination reaction to convert an aldehyde group to an amino group in the 1 biosynthetic pathway, preferring l-glutamate and l-glutamine as the amino donor substrates. The crystal structures of CrmG in complex with the cofactor 5'-pyridoxal phosphate (PLP) or 5'-pyridoxamine phosphate (PMP) or the acceptor substrate were determined to adopt a canonical fold-type I of PLP-dependent enzymes with a unique small additional domain. The structure guided site-directed mutagenesis identified key amino acid residues for substrate binding and catalytic activities, thus providing insights into the transamination mechanism of CrmG.
Collapse
Affiliation(s)
- Yiguang Zhu
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jinxin Xu
- Key
Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiangui Mei
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhan Feng
- Key
Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Liping Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Qingbo Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Guangtao Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Weiming Zhu
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jinsong Liu
- Key
Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changsheng Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
22
|
Zhu Y, Picard MÈ, Zhang Q, Barma J, Després XM, Mei X, Zhang L, Duvignaud JB, Couture M, Zhu W, Shi R, Zhang C. Flavoenzyme CrmK-mediated substrate recycling in caerulomycin biosynthesis. Chem Sci 2016; 7:4867-4874. [PMID: 30155134 PMCID: PMC6016722 DOI: 10.1039/c6sc00771f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/11/2016] [Indexed: 11/29/2022] Open
Abstract
Biochemical and structural investigations into the flavoenzyme CrmK reveal a substrate recycling/salvaging mechanism in caerulomycin biosynthesis.
Substrate salvage or recycling is common and important for primary metabolism in cells but is rare in secondary metabolism. Herein we report flavoenzyme CrmK-mediated shunt product recycling in the biosynthesis of caerulomycin A (CRM A 1), a 2,2′-bipyridine-containing natural product that is under development as a potent novel immunosuppressive agent. We demonstrated that the alcohol oxidase CrmK, belonging to the family of bicovalent FAD-binding flavoproteins, catalyzed the conversion of an alcohol into a carboxylate via an aldehyde. The CrmK-mediated reactions were not en route to 1 biosynthesis but played an unexpectedly important role by recycling shunt products back to the main pathway of 1. Crystal structures and site-directed mutagenesis studies uncovered key residues for FAD-binding, substrate binding and catalytic activities, enabling the proposal for the CrmK catalytic mechanism. This study provides the first biochemical and structural evidence for flavoenzyme-mediated substrate recycling in secondary metabolism.
Collapse
Affiliation(s)
- Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China .
| | - Marie-Ève Picard
- Département de biochimie , de microbiologie et de bio-informatique , PROTEO , Institut de Biologie Intégrative et des Systèmes (IBIS) , Université Laval , Québec G1V 0A6 , Canada .
| | - Qingbo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China .
| | - Julie Barma
- Département de biochimie , de microbiologie et de bio-informatique , PROTEO , Institut de Biologie Intégrative et des Systèmes (IBIS) , Université Laval , Québec G1V 0A6 , Canada .
| | - Xavier Murphy Després
- Département de biochimie , de microbiologie et de bio-informatique , PROTEO , Institut de Biologie Intégrative et des Systèmes (IBIS) , Université Laval , Québec G1V 0A6 , Canada .
| | - Xiangui Mei
- Key Laboratory of Marine Drugs , Chinese Ministry of Education , School of Medicine and Pharmacy , Ocean University of China , 5 Yushan Road , Qingdao 266003 , China
| | - Liping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China .
| | - Jean-Baptiste Duvignaud
- Département de biochimie , de microbiologie et de bio-informatique , PROTEO , Institut de Biologie Intégrative et des Systèmes (IBIS) , Université Laval , Québec G1V 0A6 , Canada .
| | - Manon Couture
- Département de biochimie , de microbiologie et de bio-informatique , PROTEO , Institut de Biologie Intégrative et des Systèmes (IBIS) , Université Laval , Québec G1V 0A6 , Canada .
| | - Weiming Zhu
- Key Laboratory of Marine Drugs , Chinese Ministry of Education , School of Medicine and Pharmacy , Ocean University of China , 5 Yushan Road , Qingdao 266003 , China
| | - Rong Shi
- Département de biochimie , de microbiologie et de bio-informatique , PROTEO , Institut de Biologie Intégrative et des Systèmes (IBIS) , Université Laval , Québec G1V 0A6 , Canada .
| | - Changsheng Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China .
| |
Collapse
|
23
|
Liu N, Song L, Liu M, Shang F, Anderson Z, Fox DJ, Challis GL, Huang Y. Unique post-translational oxime formation in the biosynthesis of the azolemycin complex of novel ribosomal peptides from Streptomyces sp. FXJ1.264. Chem Sci 2015; 7:482-488. [PMID: 28791101 PMCID: PMC5518661 DOI: 10.1039/c5sc03021h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/05/2015] [Indexed: 11/21/2022] Open
Abstract
Streptomycetes are a rich source of bioactive specialized metabolites, including several examples of the rapidly growing class of ribosomally-biosynthesized and post-translationally-modified peptide (RiPP) natural products. Here we report the discovery from Streptomyces sp. FXJ1.264 of azolemycins A-D, a complex of novel linear azole-containing peptides incorporating a unique oxime functional group. Bioinformatics analysis of the Streptomyces sp. FXJ1.264 draft genome sequence identified a cluster of genes that was hypothesized to be responsible for elaboration of the azolemycins from a ribosomally-biosynthesized precursor. Inactivation of genes within this cluster abolished azolemycin production, consistent with this hypothesis. Moreover, mutants lacking the azmE and azmF genes accumulated azolemycin derivatives lacking the O-methyl groups and an amino group in place of the N-terminal oxime (as well as proteolysed derivatives), respectively. Thus AzmE, a putative S-adenosyl methionine-dependent methyl transferase, is responsible for late-stage O-methylation reactions in azolemycin biosynthesis and AzmF, a putative flavin-dependent monooxygenase, catalyzes oxidation of the N-terminal amino group in an azolemycin precursor to the corresponding oxime. To the best of our knowledge, oxime formation is a hitherto unknown posttranslational modification in RiPP biosynthesis.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Microbial Resources , Institute of Microbiology , Chinese Academy of Sciences , Beijing 100101 , P. R. China . ; ; Tel: +86 10 64807311
| | - Lijiang Song
- Department of Chemistry , University of Warwick , Coventry , UK CV4 7AL . ; ; Tel: +44 (0)2476 574024
| | - Minghao Liu
- State Key Laboratory of Microbial Resources , Institute of Microbiology , Chinese Academy of Sciences , Beijing 100101 , P. R. China . ; ; Tel: +86 10 64807311.,University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
| | - Fei Shang
- Analytical and Testing Center , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Zoe Anderson
- Department of Chemistry , University of Warwick , Coventry , UK CV4 7AL . ; ; Tel: +44 (0)2476 574024
| | - David J Fox
- Department of Chemistry , University of Warwick , Coventry , UK CV4 7AL . ; ; Tel: +44 (0)2476 574024
| | - Gregory L Challis
- Department of Chemistry , University of Warwick , Coventry , UK CV4 7AL . ; ; Tel: +44 (0)2476 574024
| | - Ying Huang
- State Key Laboratory of Microbial Resources , Institute of Microbiology , Chinese Academy of Sciences , Beijing 100101 , P. R. China . ; ; Tel: +86 10 64807311
| |
Collapse
|
24
|
Li Y, Chen L, Yue Q, Liu X, An Z, Bills GF. Genetic Manipulation of the Pneumocandin Biosynthetic Pathway for Generation of Analogues and Evaluation of Their Antifungal Activity. ACS Chem Biol 2015; 10:1702-10. [PMID: 25879325 DOI: 10.1021/acschembio.5b00013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pneumocandins are lipohexapeptides of the echinocandin family that potently interrupt fungal cell wall biogenesis by noncompetitive inhibition of 1,3-β-glucan synthase. The pneumocandin biosynthetic gene cluster was previously elucidated by whole genome sequencing. In addition to the core nonribosomal peptide synthetase and polyketide synthase (GLNRPS4 and GLPKS4), the pneumocandin biosynthetic cluster includes two P450-type hemeprotein monooxygenase genes (GLP450-1 and GLP450-2) and four nonheme mononuclear iron oxygenase genes (GLOXY1, GLOXY2, GLOXY3, and GLOXY4), which function to biosynthesize and create the unusual sequence of hydroxylated amino acids of the mature pneumocandin peptide. Insertional inactivation of three of these genes (GLP450-1, GLP450-2, and GLOXY1) generated 13 different pneumocandin analogues that lack one, two, three, or four hydroxyl groups on 4R,5R-dihydroxy-ornithine and 3S,4S-dihydroxy-homotyrosine of the parent hexapeptide. Among them, seven analogues are previously unreported genetically engineered pneumocandins whose structures were established by NMR experiments. These new pneumocandins afforded a unique opportunity for side-by-side exploration of the effects of hydroxylation on pneumocandin antifungal activity. All of these cyclic lipopeptides showed potent antifungal activities, and two new metabolites pneumocandins F (3) and G (4) were more potent in vitro against Candida species and Aspergillus fumigatus than the principal fermentation products, pneumocandins A0 and B0.
Collapse
Affiliation(s)
- Yan Li
- Texas
Therapeutics Institute, the Brown Foundation Institute of Molecular
Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Li Chen
- Texas
Therapeutics Institute, the Brown Foundation Institute of Molecular
Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Qun Yue
- Texas
Therapeutics Institute, the Brown Foundation Institute of Molecular
Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Xingzhong Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Zhiqiang An
- Texas
Therapeutics Institute, the Brown Foundation Institute of Molecular
Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Gerald F. Bills
- Texas
Therapeutics Institute, the Brown Foundation Institute of Molecular
Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| |
Collapse
|
25
|
Fu P, Zhu Y, Mei X, Wang Y, Jia H, Zhang C, Zhu W. Acyclic congeners from Actinoalloteichus cyanogriseus provide insights into cyclic bipyridine glycoside formation. Org Lett 2014; 16:4264-7. [PMID: 25090585 DOI: 10.1021/ol5019757] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Inactivation of the O-methyltransferase gene crmM of Actinoalloteichus cyanogriseus WH1-2216-6 led to a mutant that produced three new acyclic bipyridine glycosides, cyanogrisides E-G (1-3). Further chemical analysis of the wild strain yielded 1 and another new analogue, cyanogriside H (4). Compounds 1-4 possess a skeleton consisting of a 2,2'-bipyridine and a d-quinovose or l-rhamnose sugar moiety. Cyanogriside G (3) was considered to be a key biosynthetic intermediate of the cyclic bipyridine glycosides cyanogrisides A-D. Compounds 2 and 3 showed cytotoxicities against HCT116 and HL-60 cells, and compounds 1 and 4 were cytotoxic on K562 cells.
Collapse
Affiliation(s)
- Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Vior NM, Olano C, García I, Méndez C, Salas JA. Collismycin A biosynthesis in Streptomyces sp. CS40 is regulated by iron levels through two pathway-specific regulators. Microbiology (Reading) 2014; 160:467-478. [DOI: 10.1099/mic.0.075218-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two putative pathway-specific regulators have been identified in the collismycin A gene cluster: ClmR1, belonging to the TetR-family, and the LuxR-family transcriptional regulator ClmR2. Inactivation of clmR1 led to a moderate increase of collismycin A yields along with an early onset of its production, suggesting an inhibitory role for the product of this gene. Inactivation of clmR2 abolished collismycin A biosynthesis, whereas overexpression of ClmR2 led to a fourfold increase in production yields, indicating that ClmR2 is an activator of collismycin A biosynthesis. Expression analyses of the collismycin gene cluster in the wild-type strain and in ΔclmR1 and ΔclmR2 mutants confirmed the role proposed for both regulatory genes, revealing that ClmR2 positively controls the expression of most of the genes in the cluster and ClmR1 negatively regulates both its own expression and that of clmR2. Additionally, production assays and further transcription analyses confirmed the existence of a higher regulatory level modulating collismycin A biosynthesis in response to iron concentrations in the culture medium. Thus, high iron levels inhibit collismycin A biosynthesis through the repression of clmR2 transcription. These results have allowed us to propose a regulatory model that integrates the effect of iron as the main environmental stimulus controlling collismycin A biosynthesis.
Collapse
Affiliation(s)
- Natalia M. Vior
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ignacio García
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - José A. Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
27
|
Zhu Y, Zhang Q, Li S, Lin Q, Fu P, Zhang G, Zhang H, Shi R, Zhu W, Zhang C. Insights into Caerulomycin A Biosynthesis: A Two-Component Monooxygenase CrmH-Catalyzed Oxime Formation. J Am Chem Soc 2013; 135:18750-3. [PMID: 24295370 DOI: 10.1021/ja410513g] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yiguang Zhu
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| | - Qingbo Zhang
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Sumei Li
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| | - Qinheng Lin
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Fu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangtao Zhang
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| | - Haibo Zhang
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| | - Rong Shi
- Département
de Biochimie, de Microbiologie et de Bio-informatique, PROTEO et IBIS, Université Laval, Québec, G1V 0A6, Canada
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Changsheng Zhang
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| |
Collapse
|