1
|
Narykina V, Kleynhans J, Cawthorne C, Schymkowitz J, Rousseau F, Bormans G. Development and evaluation of Hsp90-targeting nanobodies for visualisation of extracellular Hsp90 in tumours using PET imaging. EJNMMI Radiopharm Chem 2025; 10:10. [PMID: 39982615 PMCID: PMC11845643 DOI: 10.1186/s41181-025-00331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND The extracellular localisation of the Heat shock protein 90 (Hsp90) is associated with the diseased state and wound healing and presents a promising opportunity for cancer targeting using Positron Emission Tomography (PET) imaging and molecularly targeted radiotherapy. The aim of this work is to develop a radiotracer with low nanomolar binding affinity to target the extracellular and particularly membrane pool of Hsp90, evaluate it in vitro, and conduct preliminary PET studies in vivo in mouse tumour models. Variable Heavy domain of Heavy chain antibodies, often referred to as Nanobodies, are suitable targeting vectors for the extracellular targets due to their favourable pharmacokinetic properties and low nanomolar target affinities. The main objective of the study is to target tumours expressing extracellular and membrane Hsp90 phenotype with minimal tracer accumulation in the non-target organs, which limited the translation of previously studied small molecule cytosolic Hsp90 tracers suffering from high non-Hsp90 specific background in the abdominal area. RESULTS Six nanobodies were obtained after llama immunization with recombinant Hsp90α and ELISA biopanning, produced in E. coli and screened for stability and affinity. We selected one nanobody, 4DAM26, with good thermal stability, no aggregation at elevated temperatures, and low nanomolar affinity towards Hsp90α and Hsp90β isoforms for translation as a PET radiotracer. The nanobody was bioconjugated to p-NCS-NODAGA and radiolabeled with gallium-68 with 75 ± 11% radiochemical yield and > 99% radiochemical purity and remained stable up to 3 h in phosphate buffered saline and mouse serum. Pilot in vivo evaluation using µPET/CT and ex vivo biodistribution demonstrated a favourable pharmacokinetic profile, but the tumour uptake was non-distinguishable from the background tissue. CONCLUSION Compared to the small molecule Hsp90 tracers, the studied Nb-based tracer has improved pharmacokinetics properties including renal clearance and almost no accumulation in the non-target organs. Tumour uptake, on the other hand, was minimal and could not be differentiated from the background in µPET/CT. Our experiments indicate that in the studied models, membrane and extracellular expression of Hsp90 is majorly an artifact of cellular death, as only dead/dying cells had accessible pools of Hsp90 by flow cytometry, a consequence of a leaky membrane. More fundamental research is required to reassess the role of extracellular Hsp90 in cancer, and our future efforts will be focused on improving our inventory of cytosolic Hsp90 tracers with proven Hsp90-specific tumour accumulation.
Collapse
Affiliation(s)
- Valeria Narykina
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
| | - Janke Kleynhans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Christopher Cawthorne
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University of Leuven, 3000, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
2
|
Singh P, Jay DG. The Role of eHsp90 in Extracellular Matrix Remodeling, Tumor Invasiveness, and Metastasis. Cancers (Basel) 2024; 16:3873. [PMID: 39594828 PMCID: PMC11592750 DOI: 10.3390/cancers16223873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Identifying proteins that act in tumor invasiveness and metastasis remains a critical unmet need in our search for effective cancer therapy. Hsp90, an abundant intracellular chaperone protein, plays a key role in maintaining cell homeostasis, and its elevated activity is pivotal in cancer progression. Due to the reliance of cancer cells on Hsp90's chaperone function to sustain tumor growth and spread, Hsp90 inhibitors have been the subject of numerous clinical trials over the past two decades. However, these efforts have largely been unsuccessful, primarily due to the cellular toxicity caused by pan-Hsp90 inhibitors at doses required for anticancer efficacy. Therefore, novel approaches to target Hsp90 are necessary. An identified subpopulation of Hsp90 located outside cells (eHsp90) may offer a promising alternative as a therapeutic target against cancer. Studies including our own have shown that eHsp90 is released specifically by cancer cells, and eHsp90 has unique interactors and functions extracellularly to promote tumor invasiveness, the initial step in metastasis. Inhibition of eHsp90 has been shown to suppress metastasis in animal models, indicating its therapeutic potential, although the underlying mechanisms remain incompletely understood. Cancer cells modulate the tumor microenvironment (TME) during the invasion, especially the ECM proteins and the state of the ECM is a strong predictor of invasive and metastatic cancer. Given that most of the known eHsp90 clients are ECM proteins or are proteins involved in ECM modulation, ECM remodelling could be the key mechanism through which eHsp90 enhances invasiveness. This review will focus on ECM modulation by eHsp90 as a driver of cancer invasion and metastasis. We will also discuss the potency of inhibiting eHsp90 in inhibiting invasion and metastatic spread in preclinical models and the using circulating Hsp90 patient samples as a biomarker of cancer invasion and metastasis.
Collapse
Affiliation(s)
- Pragya Singh
- Graduate School of Biomedical Sciences, Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Daniel G. Jay
- Graduate School of Biomedical Sciences, Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
3
|
Reynolds TS, Blagg BSJ. Extracellular heat shock protein 90 alpha (eHsp90α)'s role in cancer progression and the development of therapeutic strategies. Eur J Med Chem 2024; 277:116736. [PMID: 39126794 PMCID: PMC11374465 DOI: 10.1016/j.ejmech.2024.116736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Heat shock protein 90 alpha (Hsp90α) is an abundantly expressed and evolutionarily conserved molecular chaperone. Hsp90α is the inducible Hsp90 isoform, and its expression and secretion extracellularly (eHsp90α) can be triggered in response to a variety of cellular stresses to protect/activate client proteins and to facilitate cellular adjustment to the stress. As a result, cancers often have high expression levels of intracellular and extracellular (plasma) Hsp90α, allowing them to support their oncogenesis and progression. In fact, (e)Hsp90α has been implicated in regulating processes such as cell signaling transduction, DNA repair, promotion of the Epithelial-to-Mesenchymal Transition (EMT), promotion of angiogenesis, immune response, and cell migration. Hsp90α levels have been correlated with cancer progression and severity in several cancers, indicating that it may be a useful biomarker or drug-target for cancer. To date, the development of intracellular Hsp90α-targeted therapies include standard N-terminal ATP-competitive inhibitors and allosteric regulators that bind to Hsp90α's middle or C-terminal domain. On-target toxicities and dosing complications as a result of Hsp90α inhibition has driven the development of eHsp90α-targeted therapies. Examples include anti-Hsp90α monoclonal antibodies and cell-impermeable Hsp90α small molecule inhibitors. This review aims to discuss the many roles Hsp90α plays in cancer progression with a focus on the current development of Hsp90α-targeted therapies.
Collapse
Affiliation(s)
- Tyelor S Reynolds
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
4
|
Mathenjwa GS, Chakraborty A, Chakraborty A, Muller R, Akerman MP, Bode ML, Edkins AL, Veale CGL. Rationally modified SNX-class Hsp90 inhibitors disrupt extracellular fibronectin assembly without intracellular Hsp90 activity. RSC Med Chem 2024:d4md00501e. [PMID: 39290382 PMCID: PMC11403943 DOI: 10.1039/d4md00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
Despite Hsp90's well documented promise as a target for developing cancer chemotherapeutics, its inhibitors have struggled to progress through clinical trials. This is, in part, attributed to the cytoprotective compensatory heat shock response (HSR) stimulated through intracellular Hsp90 inhibition. Beyond its intracellular role, secreted extracellular Hsp90 (eHsp90) interacts with numerous pro-oncogenic extracellular clients. This includes fibronectin, which in the tumour microenvironment enhances cell invasiveness and metastasis. Through the rational modification of known Hsp90 inhibitors (SNX2112 and SNX25a) we developed four Hsp90 inhibitory compounds, whose alterations restricted their interaction with intracellular Hsp90 and did not stimulate the HSR. Two of the modified cohort (compounds 10 and 11) were able to disrupt the assembly of the extracellular fibronectin network at non-cytotoxic concentrations, and thus represent promising new tool compounds for studying the druggability of eHsp90 as a target for inhibition of tumour invasiveness and metastasis.
Collapse
Affiliation(s)
- Gciniwe S Mathenjwa
- Department of Chemistry, University of Cape Town Rondebosch Cape Town 7701 South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X01 Scottsville 3209 South Africa
| | - Abir Chakraborty
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University Makhanda 6139 South Africa
| | - Abantika Chakraborty
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University Makhanda 6139 South Africa
| | - Ronel Muller
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X01 Scottsville 3209 South Africa
| | - Mathew P Akerman
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X01 Scottsville 3209 South Africa
| | - Moira L Bode
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Private Bag 3, PO WITS 2050 Johannesburg South Africa
| | - Adrienne L Edkins
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University Makhanda 6139 South Africa
| | - Clinton G L Veale
- Department of Chemistry, University of Cape Town Rondebosch Cape Town 7701 South Africa
| |
Collapse
|
5
|
Wickenberg M, Mercier R, Yap M, Walker J, Baker K, LaPointe P. Hsp90 inhibition leads to an increase in surface expression of multiple immunological receptors in cancer cells. Front Mol Biosci 2024; 11:1334876. [PMID: 38645275 PMCID: PMC11027010 DOI: 10.3389/fmolb.2024.1334876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone important for maintaining protein homeostasis (proteostasis) in the cell. Hsp90 inhibitors are being explored as cancer therapeutics because of their ability to disrupt proteostasis. Inhibiting Hsp90 increases surface density of the immunological receptor Major Histocompatibility Complex 1 (MHC1). Here we show that this increase occurs across multiple cancer cell lines and with both cytosol-specific and pan-Hsp90 inhibitors. We demonstrate that Hsp90 inhibition also alters surface expression of both IFNGR and PD-L1, two additional immunological receptors that play a significant role in anti-tumour or anti-immune activity in the tumour microenvironment. Hsp90 also negatively regulates IFN-γ activity in cancer cells, suggesting it has a unique role in mediating the immune system's response to cancer. Our data suggests a strong link between Hsp90 activity and the pathways that govern anti-tumour immunity. This highlights the potential for the use of an Hsp90 inhibitor in combination with another currently available cancer treatment, immune checkpoint blockade therapy, which works to prevent immune evasion of cancer cells. Combination checkpoint inhibitor therapy and the use of an Hsp90 inhibitor may potentiate the therapeutic benefits of both treatments and improve prognosis for cancer patients.
Collapse
Affiliation(s)
- Madison Wickenberg
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Megan Yap
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - John Walker
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Kristi Baker
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Carlson DL, Kowalewski M, Bodoor K, Lietzan AD, Hughes PF, Gooden D, Loiselle DR, Alcorta D, Dingman Z, Mueller EA, Irnov I, Modla S, Chaya T, Caplan J, Embers M, Miller JC, Jacobs-Wagner C, Redinbo MR, Spector N, Haystead TAJ. Targeting Borrelia burgdorferi HtpG with a berserker molecule, a strategy for anti-microbial development. Cell Chem Biol 2024; 31:465-476.e12. [PMID: 37918401 DOI: 10.1016/j.chembiol.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/14/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Conventional antimicrobial discovery relies on targeting essential enzymes in pathogenic organisms, contributing to a paucity of new antibiotics to address resistant strains. Here, by targeting a non-essential enzyme, Borrelia burgdorferi HtpG, to deliver lethal payloads, we expand what can be considered druggable within any pathogen. We synthesized HS-291, an HtpG inhibitor tethered to the photoactive toxin verteporfin. Reactive oxygen species, generated by light, enables HS-291 to sterilize Borrelia cultures by causing oxidation of HtpG, and a discrete subset of proteins in proximity to the chaperone. This caused irreversible nucleoid collapse and membrane blebbing. Tethering verteporfin to the HtpG inhibitor was essential, since free verteporfin was not retained by Borrelia in contrast to HS-291. For this reason, we liken HS-291 to a berserker, wreaking havoc upon the pathogen's biology once selectively absorbed and activated. This strategy expands the druggable pathogenic genome and offsets antibiotic resistance by targeting non-essential proteins.
Collapse
Affiliation(s)
- Dave L Carlson
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Mark Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, 3(rd) Floor, Genetic Medicine Building, Chapel Hill, NC 27599, USA
| | - Khaldon Bodoor
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Adam D Lietzan
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, 385 South Columbia Street, Chapel Hill, NC 27599, USA
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - David Gooden
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - David Alcorta
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Zoey Dingman
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Elizabeth A Mueller
- Sarafan ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA
| | - Irnov Irnov
- Sarafan ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA
| | - Shannon Modla
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Tim Chaya
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Jeffrey Caplan
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Monica Embers
- Department of Microbiology and Immunology, 18703 Three Rivers Road, Covington, LA 70433, USA
| | - Jennifer C Miller
- Galaxy Diagnostics, Inc, P.O. Box 14346 7020 Kit Creek Road, Ste 130, Research Triangle Park, Raliegh, NC 27709, USA
| | - Christine Jacobs-Wagner
- Sarafan ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA; Biology Department, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA; Howard Hughes Medical Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA
| | - Matthew R Redinbo
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, 3(rd) Floor, Genetic Medicine Building, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina at Chapel Hill, 4350 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC 27599-3290, USA.
| | - Neil Spector
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA.
| |
Collapse
|
7
|
Singh P, Ramanathan V, Zhang Y, Georgakoudi I, Jay DG. Extracellular Hsp90 Binds to and Aligns Collagen-1 to Enhance Breast Cancer Cell Invasiveness. Cancers (Basel) 2023; 15:5237. [PMID: 37958410 PMCID: PMC10648158 DOI: 10.3390/cancers15215237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Cancer cell-secreted eHsp90 binds and activates proteins in the tumor microenvironment crucial in cancer invasion. Therefore, targeting eHsp90 could inhibit invasion, preventing metastasis-the leading cause of cancer-related mortality. Previous eHsp90 studies have solely focused on its role in cancer invasion through the 2D basement membrane (BM), a form of extracellular matrix (ECM) that lines the epithelial compartment. However, its role in cancer invasion through the 3D Interstitial Matrix (IM), an ECM beyond the BM, remains unexplored. Using a Collagen-1 binding assay and second harmonic generation (SHG) imaging, we demonstrate that eHsp90 directly binds and aligns Collagen-1 fibers, the primary component of IM. Furthermore, we show that eHsp90 enhances Collagen-1 invasion of breast cancer cells in the Transwell assay. Using Hsp90 conformation mutants and inhibitors, we established that the Hsp90 dimer binds to Collagen-1 via its N-domain. We also demonstrated that while Collagen-1 binding and alignment are not influenced by Hsp90's ATPase activity attributed to the N-domain, its open conformation is crucial for increasing Collagen-1 alignment and promoting breast cancer cell invasion. These findings unveil a novel role for eHsp90 in invasion through the IM and offer valuable mechanistic insights into potential therapeutic approaches for inhibiting Hsp90 to suppress invasion and metastasis.
Collapse
Affiliation(s)
- Pragya Singh
- Department of Developmental, Molecular and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; (P.S.); (I.G.)
| | - Varshini Ramanathan
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA; (V.R.); (Y.Z.)
| | - Yang Zhang
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA; (V.R.); (Y.Z.)
| | - Irene Georgakoudi
- Department of Developmental, Molecular and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; (P.S.); (I.G.)
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA; (V.R.); (Y.Z.)
| | - Daniel G. Jay
- Department of Developmental, Molecular and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; (P.S.); (I.G.)
| |
Collapse
|
8
|
Ahanin EF, Sager RA, Backe SJ, Dunn DM, Dushukyan N, Blanden AR, Mate NA, Suzuki T, Anderson T, Roy M, Oberoi J, Prodromou C, Nsouli I, Daneshvar M, Bratslavsky G, Woodford MR, Bourboulia D, Chisholm JD, Mollapour M. Catalytic inhibitor of Protein Phosphatase 5 activates the extrinsic apoptotic pathway by disrupting complex II in kidney cancer. Cell Chem Biol 2023; 30:1223-1234.e12. [PMID: 37527661 PMCID: PMC10592443 DOI: 10.1016/j.chembiol.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/11/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023]
Abstract
Serine/threonine protein phosphatase-5 (PP5) is involved in tumor progression and survival, making it an attractive therapeutic target. Specific inhibition of protein phosphatases has remained challenging because of their conserved catalytic sites. PP5 contains its regulatory domains within a single polypeptide chain, making it a more desirable target. Here we used an in silico approach to screen and develop a selective inhibitor of PP5. Compound P053 is a competitive inhibitor of PP5 that binds to its catalytic domain and causes apoptosis in renal cancer. We further demonstrated that PP5 interacts with FADD, RIPK1, and caspase 8, components of the extrinsic apoptotic pathway complex II. Specifically, PP5 dephosphorylates and inactivates the death effector protein FADD, preserving complex II integrity and regulating extrinsic apoptosis. Our data suggests that PP5 promotes renal cancer survival by suppressing the extrinsic apoptotic pathway. Pharmacologic inhibition of PP5 activates this pathway, presenting a viable therapeutic strategy for renal cancer.
Collapse
Affiliation(s)
- Elham F Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Diana M Dunn
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Natela Dushukyan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Adam R Blanden
- Department of Neurology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Nilamber A Mate
- Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA
| | - Tamie Suzuki
- Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA
| | - Tyler Anderson
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Health Professions, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Merin Roy
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Chrisostomos Prodromou
- School of Life Sciences, Biochemistry and Biomedicine, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Imad Nsouli
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael Daneshvar
- Department of Urology, University of California, California, Irvine, CA 92868, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | - John D Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA.
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
9
|
Role of Ganetespib, an HSP90 Inhibitor, in Cancer Therapy: From Molecular Mechanisms to Clinical Practice. Int J Mol Sci 2023; 24:ijms24055014. [PMID: 36902446 PMCID: PMC10002602 DOI: 10.3390/ijms24055014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Heat-shock proteins are upregulated in cancer and protect several client proteins from degradation. Therefore, they contribute to tumorigenesis and cancer metastasis by reducing apoptosis and enhancing cell survival and proliferation. These client proteins include the estrogen receptor (ER), epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), human epidermal growth factor receptor 2 (HER-2), and cytokine receptors. The diminution of the degradation of these client proteins activates different signaling pathways, such as the PI3K/Akt/NF-κB, Raf/MEK/ERK, and JAK/STAT3 pathways. These pathways contribute to hallmarks of cancer, such as self-sufficiency in growth signaling, an insensitivity to anti-growth signals, the evasion of apoptosis, persistent angiogenesis, tissue invasion and metastasis, and an unbounded capacity for replication. However, the inhibition of HSP90 activity by ganetespib is believed to be a promising strategy in the treatment of cancer because of its low adverse effects compared to other HSP90 inhibitors. Ganetespib is a potential cancer therapy that has shown promise in preclinical tests against various cancers, including lung cancer, prostate cancer, and leukemia. It has also shown strong activity toward breast cancer, non-small cell lung cancer, gastric cancer, and acute myeloid leukemia. Ganetespib has been found to cause apoptosis and growth arrest in these cancer cells, and it is being tested in phase II clinical trials as a first-line therapy for metastatic breast cancer. In this review, we will highlight the mechanism of action of ganetespib and its role in treating cancer based on recent studies.
Collapse
|
10
|
Kaneko K, Nagata H, Yang XY, Ginzel J, Hartman Z, Everitt J, Hughes P, Haystead T, Morse M, Lyerly HK, Osada T. A Non-Invasive Deep Photoablation Technique to Inhibit DCIS Progression and Induce Antitumor Immunity. Cancers (Basel) 2022; 14:cancers14235762. [PMID: 36497243 PMCID: PMC9735847 DOI: 10.3390/cancers14235762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) of the breast is often managed by lumpectomy and radiation or mastectomy, despite its indolent features. Effective non-invasive treatment strategies could reduce the morbidity of DCIS treatment. We have exploited the high heat shock protein 90 (HSP90) activity in premalignant and malignant breast disease to non-invasively detect and selectively ablate tumors using photodynamic therapy (PDT). PDT with the HSP90-targeting photosensitizer, HS201, can not only ablate invasive breast cancers (BCs) while sparing non-tumor tissue, but also induce antitumor immunity. We hypothesized that HS201-PDT would both non-invasively ablate DCIS and prevent progression to invasive BC. We tested in vitro selective uptake and photosensitivity of HS201 in DCIS cell lines compared to the non-selective parental verteporfin, and assessed in vivo antitumor efficacy in mammary fat pad and intraductal implantation models. Selective uptake of HS201 enabled treatment of intraductal lesions while minimizing toxicity to non-tumor tissue. The in vivo activity of HS201-PDT was also tested in female MMTV-neu mice prior to the development of spontaneous invasive BC. Mice aged 5 months were administered HS201, and their mammary glands were exposed to laser light. HS201-PDT delayed the emergence of invasive BC, significantly prolonged disease-free survival (DFS) (p = 0.0328) and tended to improve overall survival compared to the no-treatment control (p = 0.0872). Systemic administration of anti-PD-L1 was combined with HS201-PDT and was tested in a more aggressive spontaneous tumor model, HER2delta16 transgenic mice. A single PDT dose combined with anti-PD-L1 improved DFS compared to the no-treatment control, which was significantly improved with repetitive HS201-PDT given with anti-PD-L1 (p = 0.0319). In conclusion, a non-invasive, skin- and tissue-sparing PDT strategy in combination with anti-PD-L1 antibodies effectively prevented malignant progression of DCIS to invasive BC. This non-invasive treatment strategy of DCIS may be safe and effective, while providing an option to reduce the morbidity of current conventional treatment for patients with DCIS. Clinical testing of HS201 is currently underway.
Collapse
Affiliation(s)
- Kensuke Kaneko
- Department of Surgery, Duke University Medical Center, 203 Research Drive, Rm 433A Box 2606, Durham, NC 27710, USA
| | - Hiroshi Nagata
- Department of Surgery, Duke University Medical Center, 203 Research Drive, Rm 433A Box 2606, Durham, NC 27710, USA
| | - Xiao-Yi Yang
- Department of Surgery, Duke University Medical Center, 203 Research Drive, Rm 433A Box 2606, Durham, NC 27710, USA
| | - Joshua Ginzel
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zachary Hartman
- Department of Surgery, Duke University Medical Center, 203 Research Drive, Rm 433A Box 2606, Durham, NC 27710, USA
| | - Jeffrey Everitt
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Philip Hughes
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael Morse
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Herbert Kim Lyerly
- Department of Surgery, Duke University Medical Center, 203 Research Drive, Rm 433A Box 2606, Durham, NC 27710, USA
| | - Takuya Osada
- Department of Surgery, Duke University Medical Center, 203 Research Drive, Rm 433A Box 2606, Durham, NC 27710, USA
- Correspondence: ; Tel.: +1-919-668-5369
| |
Collapse
|
11
|
Scarneo SA, Smith AP, Favret J, O’Connell R, Pickeral J, Yang KW, Ferrari G, Loiselle DR, Hughes PF, Kulkarni MM, Gargesha M, Scott B, Roy D, Haynes BF, Kwiek JJ, Haystead TAJ. Expression of membrane Hsp90 is a molecular signature of T cell activation. Sci Rep 2022; 12:18091. [PMID: 36302951 PMCID: PMC9613876 DOI: 10.1038/s41598-022-22788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/19/2022] [Indexed: 12/30/2022] Open
Abstract
Heat shock protein 90 (Hsp90) maintains cellular proteostasis during stress and has been under investigation as a therapeutic target in cancer for over two decades. We and others have identified a membrane expressed form of Hsp90 (mHsp90) that previously appeared to be restricted to rapidly proliferating cells exhibiting a metastatic phenotype. Here, we used HS-131, a fluor-tethered mHsp90 inhibitor, to quantify the effect of T cell activation on the expression of mHsp90 in human and mouse T cells. In cell-based assays, stimulation of human T cells induced a 20-fold increase in mHsp90 expression at the plasma membrane, suggesting trafficking of mHsp90 is regulated by TCR and inflammatory mediated signaling. Following injection of HS-131 in mouse models of human rheumatoid arthritis and inflammatory bowel disease, we detected localization of the probe at sites of active disease, consistent with immune cell invasion. Moreover, despite rapid hepatobiliary clearance, HS-131 demonstrated efficacy in reducing the mean clinical score in the CIA arthritis model. Our results suggest mHsp90 expression on T cells is a molecular marker of T cell activation and potentially a therapeutic target for chronic diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Scott A. Scarneo
- grid.26009.3d0000 0004 1936 7961Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, Durham, NC 27710 USA
| | - Aaron P. Smith
- grid.26009.3d0000 0004 1936 7961Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, Durham, NC 27710 USA
| | | | | | - Joy Pickeral
- grid.26009.3d0000 0004 1936 7961Department of Surgery, Duke University School of Medicine, Durham, NC 27710 USA
| | - Kelly W. Yang
- grid.26009.3d0000 0004 1936 7961Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, Durham, NC 27710 USA
| | - Guido Ferrari
- grid.26009.3d0000 0004 1936 7961Department of Surgery, Duke University School of Medicine, Durham, NC 27710 USA
| | - David R. Loiselle
- grid.26009.3d0000 0004 1936 7961Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, Durham, NC 27710 USA
| | - Philip F. Hughes
- grid.26009.3d0000 0004 1936 7961Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, Durham, NC 27710 USA
| | - Manjusha M. Kulkarni
- grid.261331.40000 0001 2285 7943Department of Microbiology, Ohio State University, Columbus, OH 43210 USA
| | | | - Bryan Scott
- grid.431911.fBioInVision, Inc., Mayfield, OH 44143 USA
| | - Debashish Roy
- grid.431911.fBioInVision, Inc., Mayfield, OH 44143 USA
| | - Barton F. Haynes
- grid.26009.3d0000 0004 1936 7961Department of Medicine, Duke University School of Medicine, Durham, NC 27710 USA
| | - Jesse J. Kwiek
- grid.261331.40000 0001 2285 7943Department of Microbiology, Ohio State University, Columbus, OH 43210 USA
| | - Timothy A. J. Haystead
- grid.26009.3d0000 0004 1936 7961Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, Durham, NC 27710 USA
| |
Collapse
|
12
|
Wang Y, Scarneo SA, Kim SH, Zhang X, Chen J, Yang KW, Hughes P, Haystead T, Nackley AG. Expression of ectopic heat shock protein 90 in male and female primary afferent nociceptors regulates inflammatory pain. Pain 2022; 163:1091-1101. [PMID: 34995041 PMCID: PMC9001751 DOI: 10.1097/j.pain.0000000000002511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
ABSTRACT Heat shock protein 90 (Hsp90) is a ubiquitously expressed integral cellular protein essential for regulating proteomic stress. Previous research has shown that Hsp90 regulates critical signaling pathways underlying chronic pain and inflammation. Recent discovery of membrane bound ectopic Hsp90 (eHsp90) on tumor cells has shown that Hsp90 induction to the plasma membrane can stabilize disease-relevant proteins. Here, we characterize eHsp90 expression in a mouse model of inflammation and demonstrate its role in nociception and pain. We found that intraplantar complete Freund adjuvant (CFA) induced robust expression of eHsp90 on the cell membranes of primary afferent nociceptors located in the L3-L5 dorsal root ganglia (DRG), bilaterally, with minimal to no expression in other tissues. Complete Freund adjuvant-induced increases in eHsp90 expression on lumbar DRG were significantly greater in females compared with males. Furthermore, exogenous Hsp90 applied to primary Pirt-GCaMP3 nociceptors induced increases in calcium responses. Responses were estrogen-dependent such that greater activity was observed in female or estrogen-primed male nociceptors compared with unprimed male nociceptors. Treatment of mice with the selective eHsp90 inhibitor HS-131 (10 nmol) significantly reversed CFA-induced mechanical pain, thermal heat pain, and hind paw edema. Notably, a higher dose (20 nmol) of HS-131 was required to achieve analgesic and anti-inflammatory effects in females. Here, we provide the first demonstration that inflammation leads to an upregulation of eHsp90 on DRG nociceptors in a sex-dependent manner and that inhibition of eHsp90 reduces nociceptor activity, pain, and inflammation. Thus, eHsp90 represents a novel therapeutic axis for the development of gender-tailored treatments for inflammatory pain.
Collapse
Affiliation(s)
- Yaomin Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham NC 27705
| | - Scott A Scarneo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham NC 27705
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham NC 27705
| | - Shin Hyung Kim
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham NC 27705
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Xin Zhang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham NC 27705
| | - Jiegen Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham NC 27705
| | - Kelly W. Yang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham NC 27705
| | - Philip Hughes
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham NC 27705
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham NC 27705
| | - Andrea G Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham NC 27705
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham NC 27705
| |
Collapse
|
13
|
Osada T, Crosby EJ, Kaneko K, Snyder JC, Ginzel JD, Acharya CR, Yang XY, Polascik TJ, Spasojevic I, Nelson RC, Hobeika A, Hartman ZC, Neckers LM, Rogatko A, Hughes PF, Huang J, Morse MA, Haystead T, Lyerly HK. HSP90-specific nIR probe identifies aggressive prostate cancers: translation from preclinical models to a human phase I study. Mol Cancer Ther 2021; 21:217-226. [PMID: 34675120 DOI: 10.1158/1535-7163.mct-21-0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/08/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
A noninvasive test to discriminate indolent prostate cancers from lethal ones would focus treatment where necessary while reducing over-treatment. We exploited the known activity of heat shock protein 90 (Hsp90) as a chaperone critical for the function of numerous oncogenic drivers, including the androgen receptor and its variants, to detect aggressive prostate cancer. We linked a near infrared fluorescing molecule to an HSP90 binding drug and demonstrated that this probe (designated HS196) was highly sensitive and specific for detecting implanted prostate cancer cell lines with greater uptake by more aggressive subtypes. In a phase I human study, systemically administered HS196 could be detected in malignant nodules within prostatectomy specimens. Single-cell RNA sequencing identified uptake of HS196 by malignant prostate epithelium from the peripheral zone (AMACR+ERG+EPCAM+ cells), including SYP+ neuroendocrine cells that are associated with therapeutic resistance and metastatic progression. A theranostic version of this molecule is under clinical testing.
Collapse
Affiliation(s)
- Takuya Osada
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Erika J Crosby
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Kensuke Kaneko
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Joshua C Snyder
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Joshua D Ginzel
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Chaitanya R Acharya
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Xiao-Yi Yang
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Thomas J Polascik
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
- Pharmacokinetics/Pharmacodynamics Core Laboratory of Duke Cancer Institute, Durham, North Carolina
| | - Rendon C Nelson
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Amy Hobeika
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Zachary C Hartman
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | | | - Andre Rogatko
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Michael A Morse
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - H Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
14
|
Wang R, Alvarez DA, Crouch BT, Pilani A, Lam C, Zhu C, Hughes P, Katz D, Haystead T, Ramanujam N. Understanding the sources of errors in ex vivo Hsp90 molecular imaging for rapid-on-site breast cancer diagnosis. BIOMEDICAL OPTICS EXPRESS 2021; 12:2299-2311. [PMID: 33996230 PMCID: PMC8086448 DOI: 10.1364/boe.418818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 05/12/2023]
Abstract
Overexpression of heat shock protein 90 (Hsp90) on the surface of breast cancer cells makes it an attractive molecular biomarker for breast cancer diagnosis. Before a ubiquitous diagnostic method can be established, an understanding of the systematic errors in Hsp90-based imaging is essential. In this study, we investigated three factors that may influence the sensitivity of ex vivo Hsp90 molecular imaging: time-dependent tissue viability, nonspecific diffusion of an Hsp90 specific probe (HS-27), and contact-based imaging. These three factors will be important considerations when designing any diagnostic imaging strategy based on fluorescence imaging of a molecular target on tissue samples.
Collapse
Affiliation(s)
- Roujia Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Daniel A. Alvarez
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Brian T. Crouch
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Aditi Pilani
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Christopher Lam
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Caigang Zhu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
- Currently at Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, 40506, USA
| | - Philip Hughes
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke University, Durham, North Carolina 27708, USA
| | - David Katz
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke University, Durham, North Carolina 27708, USA
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
15
|
Kaneko K, Osada T, Morse MA, Gwin WR, Ginzel JD, Snyder JC, Yang XY, Liu CX, Diniz MA, Bodoor K, Hughes PF, Haystead TA, Lyerly HK. Heat shock protein 90-targeted photodynamic therapy enables treatment of subcutaneous and visceral tumors. Commun Biol 2020; 3:226. [PMID: 32385408 PMCID: PMC7210113 DOI: 10.1038/s42003-020-0956-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/21/2020] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) ablates malignancies by applying focused near-infrared (nIR) light onto a lesion of interest after systemic administration of a photosensitizer (PS); however, the accumulation of existing PS is not tumor-exclusive. We developed a tumor-localizing strategy for PDT, exploiting the high expression of heat shock protein 90 (Hsp90) in cancer cells to retain high concentrations of PS by tethering a small molecule Hsp90 inhibitor to a PS (verteporfin, VP) to create an Hsp90-targeted PS (HS201). HS201 accumulates to a greater extent than VP in breast cancer cells both in vitro and in vivo, resulting in increased treatment efficacy of HS201-PDT in various human breast cancer xenografts regardless of molecular and clinical subtypes. The therapeutic index achieved with Hsp90-targeted PDT would permit treatment not only of localized tumors, but also more diffusely infiltrating processes such as inflammatory breast cancer.
Collapse
Affiliation(s)
- Kensuke Kaneko
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Takuya Osada
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Michael A Morse
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - William R Gwin
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Joshua D Ginzel
- Department of Cell Biology, Duke University, Durham, NC, 27710, USA
| | - Joshua C Snyder
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Cell Biology, Duke University, Durham, NC, 27710, USA
| | - Xiao-Yi Yang
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Cong-Xiao Liu
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Márcio A Diniz
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Khaldon Bodoor
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Timothy Aj Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA.
| | - H Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
16
|
Zhu S, Shen Q, Gao Y, Wang L, Fang Y, Chen Y, Lu W. Design, Synthesis, and Biological Evaluation of HSP90 Inhibitor–SN38 Conjugates for Targeted Drug Accumulation. J Med Chem 2020; 63:5421-5441. [DOI: 10.1021/acs.jmedchem.0c00305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shulei Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Qianqian Shen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Yinglei Gao
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Lei Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Yanfen Fang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| |
Collapse
|
17
|
Zhu S, Li Y, Huang Y, Zhang M, Gu X, He Y, Liu H, Ma M, Lu W. Optimized HSP90 mediated fluorescent probes for cancer-specific bioimaging. J Mater Chem B 2020; 8:1878-1896. [PMID: 32037409 DOI: 10.1039/c9tb02505g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer-specific bioimaging has been correlated with fluorescence-guided tumor therapy, garnering extensive interest from researchers. Herein, a highly efficient tumor-targeting fluorescent probe (NP-001), which is integrated with 4-hydroxy-1,8-naphthalimide and NVP-AUY922, for tumor imaging has been established. 4-Hydroxy-1,8-naphthalimide is a fluorescent molecule with remarkable imaging compatibility. NVP-AUY922 is a heat shock protein 90 (HSP90) inhibitor with preferential tumor selectivity that is conjugated to 4-hydroxy-1,8-naphthalimide as a tumor-targeting ligand. NP-002, a resorcinol-blocked probe which prevented binding with an amino acid residue of the HSP90 ATP binding pocket, was also synthesized as a control. In vitro and ex vivo assays showed that NP-001 could arrest cell proliferation, induce apoptosis and accumulate to inhibit HSP90. Confocal laser scanning microscopy (CLSM) also confirmed that NP-001 could be selectively internalized by tumor cells for cancer-specific bioimaging. Moreover, pharmacokinetic studies and histological analysis also indicated that NP-001 had a relatively longer retention time and showed no major organ-related toxicities. Overall, these encouraging data suggest that NP-001 is a promising new candidate for the early diagnosis of metastatic disease as well as targeted tumor imaging.
Collapse
Affiliation(s)
- Shulei Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China.
| | - Yalei Li
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Yushu Huang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China.
| | - Minmin Zhang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Xiaofan Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China.
| | - Yang He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China.
| | - Hongchun Liu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Mingliang Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China. and Key Laboratory of Brain Functional Genomics-Ministry of Education, School of Life Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China.
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China.
| |
Collapse
|
18
|
Barth CW, Gibbs SL. Fluorescence Image-Guided Surgery - a Perspective on Contrast Agent Development. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11222:112220J. [PMID: 32255887 PMCID: PMC7115043 DOI: 10.1117/12.2545292] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past several decades, a number of novel fluorescence image-guided surgery (FGS) contrast agents have been under development, with many in clinical translation and undergoing clinical trials. In this review, we have identified and summarized the contrast agents currently undergoing clinical translation. In total, 39 novel FGS contrast agents are being studied in 85 clinical trials. Four FGS contrast agents are currently being studied in phase III clinical trials and are poised to reach FDA approval within the next two to three years. Among all novel FGS contrast agents, a wide variety of probe types, targeting mechanisms, and fluorescence properties exists. Clinically available FGS imaging systems have been developed for FDA approved FGS contrast agents, and thus further clinical development is required to yield FGS imaging systems tuned for the variety of contrast agents in the clinical pipeline. Additionally, study of current FGS contrast agents for additional disease types and development of anatomy specific contrast agents is required to provide surgeons FGS tools for all surgical specialties and associated comorbidities. The work reviewed here represents a significant effort from many groups and further development of this promising technology will have an enormous impact on surgical outcomes across all specialties.
Collapse
Affiliation(s)
- Connor W Barth
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR 97201
| |
Collapse
|
19
|
Crouch BT, Gallagher J, Wang R, Duer J, Hall A, Soo MS, Hughes P, Haystead T, Ramanujam N. Exploiting heat shock protein expression to develop a non-invasive diagnostic tool for breast cancer. Sci Rep 2019; 9:3461. [PMID: 30837677 PMCID: PMC6400939 DOI: 10.1038/s41598-019-40252-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/12/2019] [Indexed: 01/23/2023] Open
Abstract
Leveraging the unique surface expression of heat shock protein 90 (Hsp90) in breast cancer provides an exciting opportunity to develop rapid diagnostic tests at the point-of-care setting. Hsp90 has previously been shown to have elevated expression levels across all breast cancer receptor subtypes. We have developed a non-destructive strategy using HS-27, a fluorescently-tethered Hsp90 inhibitor, to assay surface Hsp90 expression on intact tissue specimens and validated our approach in clinical samples from breast cancer patients across estrogen receptor positive, Her2-overexpressing, and triple negative receptor subtypes. Utilizing a pre-clinical biopsy model, we optimized three imaging parameters that may affect the specificity of HS-27 based diagnostics – time between tissue excision and staining, agent incubation time, and agent dose, and translated our strategy to clinical breast cancer samples. Findings indicated that HS-27 florescence was highest in tumor tissue, followed by benign tissue, and finally followed by mammoplasty negative control samples. Interestingly, fluorescence in tumor samples was highest in Her2+ and triple negative subtypes, and inversely correlated with the presence of tumor infiltrating lymphocytes indicating that HS-27 fluorescence increases in aggressive breast cancer phenotypes. Development of a Gaussian support vector machine classifier based on HS-27 fluorescence features resulted in a sensitivity and specificity of 82% and 100% respectively when classifying tumor and benign conditions, setting the stage for rapid and automated tissue diagnosis at the point-of-care.
Collapse
Affiliation(s)
- Brian T Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | | | - Roujia Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Joy Duer
- Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Allison Hall
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Mary Scott Soo
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Philip Hughes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
20
|
Vermeulen K, Naus E, Ahamed M, Attili B, Siemons M, Luyten K, Celen S, Schymkowitz J, Rousseau F, Bormans G. Evaluation of [ 11C]NMS-E973 as a PET tracer for in vivo visualisation of HSP90. Am J Cancer Res 2019; 9:554-572. [PMID: 30809293 PMCID: PMC6376183 DOI: 10.7150/thno.27213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
Heat shock protein 90 is an ATP-dependent molecular chaperone important for folding, maturation and clearance of aberrantly expressed proteins and is abundantly expressed (1-2% of all proteins) in the cytosol of all normal cells. In some tumour cells, however, strong expression of HSP90 is also observed on the cell membrane and in the extracellular matrix and the affinity of tumoural HSP90 for ATP domain inhibitors was reported to increase over 100-fold compared to that of HSP90 in normal cells. Here, we explore [11C]NMS-E973 as a PET tracer for in vivo visualisation of HSP90 and as a potential tool for in vivo quantification of occupancy of HSP90 inhibitors. Methods: HSP90 expression was biochemically characterized in a panel of established cell lines including the melanoma line B16.F10. B16.F10 melanoma xenograft tumour tissue was compared to non-malignant mouse tissue. NMS-E973 was tested in vitro for HSP90 inhibitory activity in several tumour cell lines. HSP90-specific binding of [11C]NMS-E973 was evaluated in B16.F10 melanoma cells and B16.F10 melanoma, prostate cancer LNCaP and PC3, SKOV-3 xenograft tumour slices and in vivo in a B16.F10 melanoma mouse model. Results: Strong intracellular upregulation and abundant membrane localisation of HSP90 was observed in the different tumour cell lines, in the B16.F10 tumour cell line and in B16.F10 xenograft tumours compared to non-malignant tissue. NMS-E973 showed HSP90-specific inhibition and reduced proliferation of cells. [11C]NMS-E973 showed strong binding to B16.F10 melanoma cells, which was inhibited by 200 µM of PU-H71, a non-structurally related HSP90 inhibitor. HSP90-specific binding was observed by in vitro autoradiography of murine B16.F10 melanoma, LNCaP and PC3 prostate cancer and SKOV-3 ovary carcinoma tissue slices. Further, B16.F10 melanoma-inoculated mice were subjected to a µPET study, where the tracer showed fast and persistent tumour uptake. Pretreatment of B16.F10 melanoma mice with PU-H71 or Ganetespib (50 mg/kg) completely blocked tumour accumulation of [11C]NMS-E973 and confirmed in vivo HSP90 binding specificity. HSP90-specific binding of [11C]NMS-E973 was observed in blood, lungs and spleen of tumour-bearing animals but not in control animals. Conclusion: [11C]NMS-E973 is a PET tracer for in vivo visualisation of tumour HSP90 expression and can potentially be used for quantification of HSP90 occupancy. Further translational evaluation of [11C]NMS-E973 is warranted.
Collapse
|
21
|
Joshi BP, Wang TD. Targeted Optical Imaging Agents in Cancer: Focus on Clinical Applications. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:2015237. [PMID: 30224903 PMCID: PMC6129851 DOI: 10.1155/2018/2015237] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/27/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Abstract
Molecular imaging is an emerging strategy for in vivo visualization of cancer over time based on biological mechanisms of disease activity. Optical imaging methods offer a number of advantages for real-time cancer detection, particularly in the epithelium of hollow organs and ducts, by using a broad spectral range of light that spans from visible to near-infrared. Targeted ligands are being developed for improved molecular specificity. These platforms include small molecule, peptide, affibody, activatable probes, lectin, and antibody. Fluorescence labeling is used to provide high image contrast. This emerging methodology is clinically useful for early cancer detection by identifying and localizing suspicious lesions that may not otherwise be seen and serves as a guide for tissue biopsy and surgical resection. Visualizing molecular expression patterns may also be useful to determine the best choice of therapy and to monitor efficacy. A number of these imaging agents are overcoming key challenges for clinical translation and are being validated in vivo for a wide range of human cancers.
Collapse
Affiliation(s)
- Bishnu P. Joshi
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 1722, Ann Arbor, MI 48109, USA
| | - Thomas D. Wang
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 1722, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Huang L, Wei G, Sun X, Jiang Y, Huang Z, Huang Y, Shen Y, Xu X, Liao Y, Zhao C. A tumor-targeted Ganetespib-zinc phthalocyanine conjugate for synergistic chemo-photodynamic therapy. Eur J Med Chem 2018; 151:294-303. [DOI: 10.1016/j.ejmech.2018.03.077] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/08/2018] [Accepted: 03/26/2018] [Indexed: 12/23/2022]
|
23
|
Ogawa M, Tomita Y, Nakamura Y, Lee MJ, Lee S, Tomita S, Nagaya T, Sato K, Yamauchi T, Iwai H, Kumar A, Haystead T, Shroff H, Choyke PL, Trepel JB, Kobayashi H. Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity. Oncotarget 2018; 8:10425-10436. [PMID: 28060726 PMCID: PMC5354669 DOI: 10.18632/oncotarget.14425] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/13/2016] [Indexed: 01/20/2023] Open
Abstract
Immunogenic cell death (ICD) is a form of cell death that activates an adaptive immune response against dead-cell-associated antigens. Cancer cells killed via ICD can elicit antitumor immunity. ICD is efficiently induced by near-infrared photo-immunotherapy (NIR-PIT) that selectively kills target-cells on which antibody-photoabsorber conjugates bind and are activated by NIR light exposure. Advanced live cell microscopies showed that NIR-PIT caused rapid and irreversible damage to the cell membrane function leading to swelling and bursting, releasing intracellular components due to the influx of water into the cell. The process also induces relocation of ICD bio markers including calreticulin, Hsp70 and Hsp90 to the cell surface and the rapid release of immunogenic signals including ATP and HMGB1 followed by maturation of immature dendritic cells. Thus, NIR-PIT is a therapy that kills tumor cells by ICD, eliciting a host immune response against tumor.
Collapse
Affiliation(s)
- Mikako Ogawa
- Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.,Laboratory for Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yusuke Tomita
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yuko Nakamura
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Saori Tomita
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Kazuhide Sato
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Toyohiko Yamauchi
- Central Research Laboratory, Hamamatsu Photonics K. K., Hamamatsu 434-8601, Japan
| | - Hidenao Iwai
- Central Research Laboratory, Hamamatsu Photonics K. K., Hamamatsu 434-8601, Japan
| | - Abhishek Kumar
- Section on High Resolution Optical Imaging, NIBIB/NIH, Bethesda, MD 20892, USA
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Hari Shroff
- Section on High Resolution Optical Imaging, NIBIB/NIH, Bethesda, MD 20892, USA
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Kinzel L, Ernst A, Orth M, Albrecht V, Hennel R, Brix N, Frey B, Gaipl US, Zuchtriegel G, Reichel CA, Blutke A, Schilling D, Multhoff G, Li M, Niyazi M, Friedl AA, Winssinger N, Belka C, Lauber K. A novel HSP90 inhibitor with reduced hepatotoxicity synergizes with radiotherapy to induce apoptosis, abrogate clonogenic survival, and improve tumor control in models of colorectal cancer. Oncotarget 2017; 7:43199-43219. [PMID: 27259245 PMCID: PMC5190018 DOI: 10.18632/oncotarget.9774] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 05/24/2016] [Indexed: 12/20/2022] Open
Abstract
The chaperone heat shock protein 90 (HSP90) crucially supports the maturation, folding, and stability of a variety of client proteins which are of pivotal importance for the survival and proliferation of cancer cells. Consequently, targeting of HSP90 has emerged as an attractive strategy of anti-cancer therapy, and it appears to be particularly effective in the context of molecular sensitization towards radiotherapy as has been proven in preclinical models of different cancer entities. However, so far the clinical translation has largely been hampered by suboptimal pharmacological properties and serious hepatotoxicity of first- and second-generation HSP90 inhibitors. Here, we report on NW457, a novel radicicol-derived member of the pochoxime family with reduced hepatotoxicity, how it inhibits the DNA damage response and how it synergizes with ionizing irradiation to induce apoptosis, abrogate clonogenic survival, and improve tumor control in models of colorectal cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Linda Kinzel
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anne Ernst
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Orth
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Valerie Albrecht
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Roman Hennel
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nikko Brix
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gabriele Zuchtriegel
- Department of Otorhinolaryngology, Head and Neck Surgery, and Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christoph A Reichel
- Department of Otorhinolaryngology, Head and Neck Surgery, and Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniela Schilling
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Minglun Li
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anna A Friedl
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Claus Belka
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
25
|
Crouch B, Murphy H, Belonwu S, Martinez A, Gallagher J, Hall A, Soo MS, Lee M, Hughes P, Haystead T, Ramanujam N. Leveraging ectopic Hsp90 expression to assay the presence of tumor cells and aggressive tumor phenotypes in breast specimens. Sci Rep 2017; 7:17487. [PMID: 29235516 PMCID: PMC5727497 DOI: 10.1038/s41598-017-17832-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/27/2017] [Indexed: 01/02/2023] Open
Abstract
Hsp90 has been studied extensively as a therapeutic target in breast cancer in pre-clinical and clinical trials, demonstrating a variety of roles in metastatic progression. The evidence to date suggests a compelling opportunity to leverage attributes of Hsp90 expression beyond therapeutics with potential applications in breast cancer diagnosis, prognosis, and recurrence risk assessment. In this study, we developed a completely non-destructive strategy using HS-27, a fluorescently-tethered Hsp90 inhibitor, to assay Hsp90 expression on intact tissue specimens with comparable contrast to in vivo administration routes, and demonstrate the feasibility of our approach in breast cancer patients. In addition to Hsp90 inhibition being most effective in glycolytic tumors, we found ectopic Hsp90 expression to be highest in glycolytic tumors reinforcing its role as an indicator of aggressive disease. This work sets the stage for immediately using Hsp90 to improve outcomes for breast cancer patients without affecting traditional care pathways.
Collapse
Affiliation(s)
- Brian Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| | - Helen Murphy
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Stella Belonwu
- Duke University Trinity College of Arts and Sciences, Durham, NC 27710, USA
| | - Amy Martinez
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Jennifer Gallagher
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Allison Hall
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mary Scott Soo
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Marianne Lee
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Philip Hughes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
26
|
Daoud A, Gopal U, Kaur J, Isaacs JS. Molecular and functional crosstalk between extracellular Hsp90 and ephrin A1 signaling. Oncotarget 2017; 8:106807-106819. [PMID: 29290990 PMCID: PMC5739775 DOI: 10.18632/oncotarget.22370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/30/2017] [Indexed: 12/28/2022] Open
Abstract
The Eph receptor tyrosine kinase family member EphA2 plays a pivotal role in modulating cytoskeletal dynamics to control cancer cell motility and invasion. EphA2 is frequently upregulated in diverse solid tumors and has emerged as a viable druggable target. We previously reported that extracellular Hsp90 (eHsp90), a known pro-motility and invasive factor, collaborates with EphA2 to regulate tumor invasion in the absence of its cognate ephrin ligand. Here, we aimed to further define the molecular and functional relationship between EphA2 and eHsp90. Ligand dependent ephrin A1 signaling promotes RhoA activation and altered cell morphology to favor transient cell rounding, retraction, and diminished adhesion. Exposure of EphA2-expressing cancer cells to ligand herein revealed a unique role for eHsp90 as an effector of cytoskeletal remodeling. Notably, blockade of eHsp90 via either neutralizing antibodies or administration of cell-impermeable Hsp90-targeted small molecules significantly attenuated ligand dependent cell rounding in diverse tumor types. Although eHsp90 blockade did not appear to influence receptor internalization, downstream signaling events were augmented. In particular, eHsp90 activated a Src-RhoA axis to enhance ligand dependent cell rounding, retraction, and ECM detachment. Moreover, eHsp90 signaling via this axis stimulated activation of the myosin pathway, culminating in formation of an EphA2-myosin complex. Inhibition of either eHsp90 or Src was sufficient to impair ephrin A1 mediated Rho activation, activation of myosin intermediates, and EphA2-myosin complex formation. Collectively, our data support a paradigm whereby eHsp90 and EphA2 exhibit molecular crosstalk and functional cooperation within a ligand dependent context to orchestrate cytoskeletal events controlling cell morphology and attachment.
Collapse
Affiliation(s)
- Abdelkader Daoud
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA
| | - Udhayakumar Gopal
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA.,Current address: Department of Pathology, Duke University School of Medicine, NC, 27708, Durham, USA
| | - Jasmine Kaur
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA
| | - Jennifer S Isaacs
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA
| |
Collapse
|
27
|
Woodford MR, Sager RA, Marris E, Dunn DM, Blanden AR, Murphy RL, Rensing N, Shapiro O, Panaretou B, Prodromou C, Loh SN, Gutmann DH, Bourboulia D, Bratslavsky G, Wong M, Mollapour M. Tumor suppressor Tsc1 is a new Hsp90 co-chaperone that facilitates folding of kinase and non-kinase clients. EMBO J 2017; 36:3650-3665. [PMID: 29127155 PMCID: PMC5730846 DOI: 10.15252/embj.201796700] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 12/29/2022] Open
Abstract
The tumor suppressors Tsc1 and Tsc2 form the tuberous sclerosis complex (TSC), a regulator of mTOR activity. Tsc1 stabilizes Tsc2; however, the precise mechanism involved remains elusive. The molecular chaperone heat‐shock protein 90 (Hsp90) is an essential component of the cellular homeostatic machinery in eukaryotes. Here, we show that Tsc1 is a new co‐chaperone for Hsp90 that inhibits its ATPase activity. The C‐terminal domain of Tsc1 (998–1,164 aa) forms a homodimer and binds to both protomers of the Hsp90 middle domain. This ensures inhibition of both subunits of the Hsp90 dimer and prevents the activating co‐chaperone Aha1 from binding the middle domain of Hsp90. Conversely, phosphorylation of Aha1‐Y223 increases its affinity for Hsp90 and displaces Tsc1, thereby providing a mechanism for equilibrium between binding of these two co‐chaperones to Hsp90. Our findings establish an active role for Tsc1 as a facilitator of Hsp90‐mediated folding of kinase and non‐kinase clients—including Tsc2—thereby preventing their ubiquitination and proteasomal degradation.
Collapse
Affiliation(s)
- Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elijah Marris
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Diana M Dunn
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Adam R Blanden
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ryan L Murphy
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Nicholas Rensing
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Oleg Shapiro
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Barry Panaretou
- Institute of Pharmaceutical Science, King's College London, London, UK
| | | | - Stewart N Loh
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA .,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
28
|
Osada T, Kaneko K, Gwin WR, Morse MA, Hobeika A, Pogue BW, Hartman ZC, Hughes PF, Haystead T, Lyerly HK. In Vivo Detection of HSP90 Identifies Breast Cancers with Aggressive Behavior. Clin Cancer Res 2017; 23:7531-7542. [DOI: 10.1158/1078-0432.ccr-17-1453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/29/2017] [Accepted: 10/03/2017] [Indexed: 11/16/2022]
|
29
|
Totzke J, Gurbani D, Raphemot R, Hughes PF, Bodoor K, Carlson DA, Loiselle DR, Bera AK, Eibschutz LS, Perkins MM, Eubanks AL, Campbell PL, Fox DA, Westover KD, Haystead TAJ, Derbyshire ER. Takinib, a Selective TAK1 Inhibitor, Broadens the Therapeutic Efficacy of TNF-α Inhibition for Cancer and Autoimmune Disease. Cell Chem Biol 2017; 24:1029-1039.e7. [PMID: 28820959 DOI: 10.1016/j.chembiol.2017.07.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/22/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022]
Abstract
Tumor necrosis factor alpha (TNF-α) has both positive and negative roles in human disease. In certain cancers, TNF-α is infused locally to promote tumor regression, but dose-limiting inflammatory effects limit broader utility. In autoimmune disease, anti-TNF-α antibodies control inflammation in most patients, but these benefits are offset during chronic treatment. TAK1 acts as a key mediator between survival and cell death in TNF-α-mediated signaling. Here, we describe Takinib, a potent and selective TAK1 inhibitor that induces apoptosis following TNF-α stimulation in cell models of rheumatoid arthritis and metastatic breast cancer. We demonstrate that Takinib is an inhibitor of autophosphorylated and non-phosphorylated TAK1 that binds within the ATP-binding pocket and inhibits by slowing down the rate-limiting step of TAK1 activation. Overall, Takinib is an attractive starting point for the development of inhibitors that sensitize cells to TNF-α-induced cell death, with general implications for cancer and autoimmune disease treatment.
Collapse
Affiliation(s)
- Juliane Totzke
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Deepak Gurbani
- Departments of Biochemistry and Radiation Oncology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rene Raphemot
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Khaldon Bodoor
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Department of Applied Biology, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan
| | - David A Carlson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Asim K Bera
- Departments of Biochemistry and Radiation Oncology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Liesl S Eibschutz
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | | | - Amber L Eubanks
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Phillip L Campbell
- University of Michigan, Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Ann Arbor, MI 48109, USA
| | - David A Fox
- University of Michigan, Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Ann Arbor, MI 48109, USA
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.
| | | |
Collapse
|
30
|
Crowe LB, Hughes PF, Alcorta DA, Osada T, Smith AP, Totzke J, Loiselle DR, Lutz ID, Gargesha M, Roy D, Roques J, Darr D, Lyerly HK, Spector NL, Haystead TA. A Fluorescent Hsp90 Probe Demonstrates the Unique Association between Extracellular Hsp90 and Malignancy in Vivo. ACS Chem Biol 2017; 12:1047-1055. [PMID: 28103010 DOI: 10.1021/acschembio.7b00006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular expression of heat shock protein 90 (eHsp90) by tumor cells is correlated with malignancy. Development of small molecule probes that can detect eHsp90 in vivo may therefore have utility in the early detection of malignancy. We synthesized a cell impermeable far-red fluorophore-tagged Hsp90 inhibitor to target eHsp90 in vivo. High resolution confocal and lattice light sheet microscopy show that probe-bound eHsp90 accumulates in punctate structures on the plasma membrane of breast tumor cells and is actively internalized. The extent of internalization correlates with tumor cell aggressiveness, and this process can be induced in benign cells by overexpressing p110HER2. Whole body cryoslicing, imaging, and histology of flank and spontaneous tumor-bearing mice strongly suggests that eHsp90 expression and internalization is a phenomenon unique to tumor cells in vivo and may provide an "Achilles heel" for the early diagnosis of metastatic disease and targeted drug delivery.
Collapse
Affiliation(s)
- Lauren B. Crowe
- Department of Cell
Biology, Duke University, Durham, North Carolina 27710, United States
| | - Philip F. Hughes
- Department
of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, United States
| | - David A. Alcorta
- Department of Medicine, Duke University, Durham, North Carolina 27710, United States
| | - Takuya Osada
- Department of Surgery, Duke University, Durham, North Carolina 27710, United States
| | - Aaron P. Smith
- Department
of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, United States
| | - Juliane Totzke
- Department
of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, United States
| | - David R. Loiselle
- Department
of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, United States
| | - Isaac D. Lutz
- Department
of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, United States
| | | | - Debasish Roy
- BioInVision, Inc., Mayfield Village, Ohio 44143, United States
| | - Jose Roques
- Lineberger Comprehensive
Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - David Darr
- Lineberger Comprehensive
Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - H. Kim Lyerly
- Department of Surgery, Duke University, Durham, North Carolina 27710, United States
| | - Neil L. Spector
- Department
of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, United States
| | - Timothy A.J. Haystead
- Department
of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
31
|
Nolan KD, Kaur J, Isaacs JS. Secreted heat shock protein 90 promotes prostate cancer stem cell heterogeneity. Oncotarget 2017; 8:19323-19341. [PMID: 28038472 PMCID: PMC5386687 DOI: 10.18632/oncotarget.14252] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022] Open
Abstract
Heat-shock protein 90 (Hsp90), a highly conserved molecular chaperone, is frequently upregulated in tumors, and remains an attractive anti-cancer target. Hsp90 is also found extracellularly, particularly in tumor models. Although extracellular Hsp90 (eHsp90) action is not well defined, eHsp90 targeting attenuates tumor invasion and metastasis, supporting its unique role in tumor progression. We herein investigated the potential role of eHsp90 as a modulator of cancer stem-like cells (CSCs) in prostate cancer (PCa). We report a novel function for eHsp90 as a facilitator of PCa stemness, determined by its ability to upregulate stem-like markers, promote self-renewal, and enhance prostasphere growth. Moreover, eHsp90 increased the side population typically correlated with the drug-resistant phenotype. Intriguingly, tumor cells with elevated surface eHsp90 exhibited a marked increase in stem-like markers coincident with increased expression of the epithelial to mesenchymal (EMT) effector Snail, indicating that surface eHsp90 may enrich for a unique CSC population. Our analysis of distinct effectors modulating the eHsp90-dependent CSC phenotyperevealed that eHsp90 is a likely facilitator of stem cell heterogeneity. Taken together, our findings provide unique functional insights into eHsp90 as a modulator of PCa plasticity, and provide a framework towards understanding its role as a driver of tumor progression.
Collapse
Affiliation(s)
- Krystal D. Nolan
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC, USA
| | - Jasmine Kaur
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC, USA
| | - Jennifer S. Isaacs
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC, USA
| |
Collapse
|
32
|
Shrestha L, Patel HJ, Chiosis G. Chemical Tools to Investigate Mechanisms Associated with HSP90 and HSP70 in Disease. Cell Chem Biol 2016; 23:158-172. [PMID: 26933742 DOI: 10.1016/j.chembiol.2015.12.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 01/22/2023]
Abstract
The chaperome is a large and diverse protein machinery composed of chaperone proteins and a variety of helpers, such as the co-chaperones, folding enzymes, and scaffolding and adapter proteins. Heat shock protein 90s and 70s (HSP90s and HSP70s), the most abundant chaperome members in human cells, are also the most complex. As we have learned to appreciate, their functions are context dependent and manifested through a variety of conformations that each recruit a subset of co-chaperone, scaffolding, and folding proteins and which are further diversified by the posttranslational modifications each carry, making their study through classic genetic and biochemical techniques quite a challenge. Chemical biology tools and techniques have been developed over the years to help decipher the complexities of the HSPs and this review provides an overview of such efforts with focus on HSP90 and HSP70.
Collapse
Affiliation(s)
- Liza Shrestha
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Hardik J Patel
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Gabriela Chiosis
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
33
|
Woodford MR, Dunn DM, Blanden AR, Capriotti D, Loiselle D, Prodromou C, Panaretou B, Hughes PF, Smith A, Ackerman W, Haystead TA, Loh SN, Bourboulia D, Schmidt LS, Marston Linehan W, Bratslavsky G, Mollapour M. The FNIP co-chaperones decelerate the Hsp90 chaperone cycle and enhance drug binding. Nat Commun 2016; 7:12037. [PMID: 27353360 PMCID: PMC4931344 DOI: 10.1038/ncomms12037] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/24/2016] [Indexed: 12/24/2022] Open
Abstract
Heat shock protein-90 (Hsp90) is an essential molecular chaperone in eukaryotes involved in maintaining the stability and activity of numerous signalling proteins, also known as clients. Hsp90 ATPase activity is essential for its chaperone function and it is regulated by co-chaperones. Here we show that the tumour suppressor FLCN is an Hsp90 client protein and its binding partners FNIP1/FNIP2 function as co-chaperones. FNIPs decelerate the chaperone cycle, facilitating FLCN interaction with Hsp90, consequently ensuring FLCN stability. FNIPs compete with the activating co-chaperone Aha1 for binding to Hsp90, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins. Lastly, downregulation of FNIPs desensitizes cancer cells to Hsp90 inhibitors, whereas FNIPs overexpression in renal tumours compared with adjacent normal tissues correlates with enhanced binding of Hsp90 to its inhibitors. Our findings suggest that FNIPs expression can potentially serve as a predictive indicator of tumour response to Hsp90 inhibitors.
Collapse
Affiliation(s)
- Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
- Cancer Research Institute, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Diana M. Dunn
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
- Cancer Research Institute, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Adam R. Blanden
- Cancer Research Institute, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Dante Capriotti
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
- Cancer Research Institute, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - David Loiselle
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | - Barry Panaretou
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, UK
| | - Philip F. Hughes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Aaron Smith
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Wendi Ackerman
- Health Sciences Library, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Timothy A. Haystead
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Stewart N. Loh
- Cancer Research Institute, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
- Cancer Research Institute, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Laura S. Schmidt
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
- Cancer Research Institute, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
- Cancer Research Institute, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| |
Collapse
|
34
|
Howe MK, Speer BL, Hughes PF, Loiselle DR, Vasudevan S, Haystead TAJ. An inducible heat shock protein 70 small molecule inhibitor demonstrates anti-dengue virus activity, validating Hsp70 as a host antiviral target. Antiviral Res 2016; 130:81-92. [PMID: 27058774 DOI: 10.1016/j.antiviral.2016.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 12/27/2022]
Abstract
An estimated three billion people are at risk of Dengue virus (DENV) infection worldwide and there are currently no approved therapeutic interventions for DENV infection. Due to the relatively small size of the DENV genome, DENV is reliant on host factors throughout the viral life cycle. The inducible form of Heat Shock Protein 70 (Hsp70i) has been implicated as a host factor in DENV pathogenesis, however the complete role remains to be elucidated. Here we further illustrate the importance of Hsp70i in dengue virus pathogenesis and describe the antiviral activity of the allosteric small molecule inhibitor that is selective for Hsp70i, called HS-72. In monocytes, Hsp70i is expressed at low levels preceding DENV infection, but Hsp70i expression is induced upon DENV infection. Targeting Hsp70i with HS-72, results in a dose dependent reduction in DENV infected monocytes, while cell viability was maintained. HS-72 works to reduce DENV infection by inhibiting the entry stage of the viral life cycle, through disrupting the association of Hsp70i with the DENV receptor complex. This work highlights Hsp70i as an antiviral target and HS-72 as a potential anti-DENV therapeutic agent.
Collapse
Affiliation(s)
- Matthew K Howe
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Brittany L Speer
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Subhash Vasudevan
- Emerging Infectious Diseases Program, Duke-NUS Graduate and Medical School, Singapore
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
35
|
Abstract
Heat shock protein 90 (Hsp90) is a highly expressed chaperone that modulates the function and stability of hundreds of cellular client proteins. In this capacity, Hsp90 impacts human health in myriad ways and it is accordingly a high-interest molecular target in the oncology setting. This interest has led to a large number of clinical trials to evaluate the potential benefit of Hsp90 inhibitors in cancer treatment and, more recently, in combination with chemotherapeutic agents. Although these studies are still ongoing, some issues have arisen, such as toxicity effects associated with administration of these agents. We and others have identified a novel role for Hsp90 outside of cancer cells. This extracellular Hsp90 (eHsp90) was shown to be critical for the regulation of tumor invasiveness and metastasis, central processes associated with cancer lethality. Since these initial papers, a considerable cohort of studies has expanded upon this role, implicating eHsp90 in the activation of a number of proteins that support tumor cell invasion. As eHsp90 is preferentially detected on the surface of tumor cells, and within their surrounding microenvironment, it is possible that drugs capable of selectively targeting eHsp90 may exploit this differential expression. This selectivity may, in turn, enable treatment regimens with reduced target-related toxicity. This review will focus on our current understanding of eHsp90, particularly in cancer, and we will discuss the relevance of eHsp90 as a biomarker for invasive cancer and its potential as a drug target.
Collapse
Affiliation(s)
- Daniel Senh Wong
- Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Daniel G Jay
- Department of Developmental, Molecular, and Chemical Biology, School of Medicine, Tufts University, Boston, Massachusetts, USA.
| |
Collapse
|
36
|
Targeting the heat shock response in combination with radiotherapy: Sensitizing cancer cells to irradiation-induced cell death and heating up their immunogenicity. Cancer Lett 2015; 368:209-29. [DOI: 10.1016/j.canlet.2015.02.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/22/2015] [Accepted: 02/26/2015] [Indexed: 12/16/2022]
|
37
|
Proia DA, Smith DL, Zhang J, Jimenez JP, Sang J, Ogawa LS, Sequeira M, Acquaviva J, He S, Zhang C, Khazak V, Astsaturov I, Inoue T, Tatsuta N, Osman S, Bates RC, Chimmanamada D, Ying W. HSP90 Inhibitor–SN-38 Conjugate Strategy for Targeted Delivery of Topoisomerase I Inhibitor to Tumors. Mol Cancer Ther 2015; 14:2422-32. [DOI: 10.1158/1535-7163.mct-15-0455] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/07/2015] [Indexed: 11/16/2022]
|
38
|
Stangl S, Varga J, Freysoldt B, Trajkovic-Arsic M, Siveke JT, Greten FR, Ntziachristos V, Multhoff G. Selective in vivo imaging of syngeneic, spontaneous, and xenograft tumors using a novel tumor cell-specific hsp70 peptide-based probe. Cancer Res 2014; 74:6903-12. [PMID: 25300920 DOI: 10.1158/0008-5472.can-14-0413] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although in vivo targeting of tumors using fluorescently labeled probes has greatly gained in importance over the last few years, most of the clinically applied reagents lack tumor cell specificity. Our novel tumor cell-penetrating peptide-based probe (TPP) recognizes an epitope of Hsp70 that is exclusively present on the cell surface of a broad variety of human and mouse tumors and metastases, but not on normal tissues. Because of the rapid turnover rate of membrane Hsp70, fluorescently labeled TPP is continuously internalized into syngeneic, spontaneous, chemically/genetically induced and xenograft tumors following intravenous administration, thereby enabling site-specific labeling of primary tumors and metastases. In contrast with the commercially available nonpeptide small molecule αvβ3-integrin antagonist IntegriSense, TPP exhibits a significantly higher tumor-to-background contrast and stronger tumor-specific signal intensity in all tested tumor models. Moreover, in contrast with IntegriSense, TPP reliably differentiates between tumor cells and cells of the tumor microenvironment, such as tumor-associated macrophages and fibroblasts, which were found to be membrane-Hsp70 negative. Therefore, TPP provides a useful tool for multimodal imaging of tumors and metastases that might help to improve our understanding of tumorigenesis and allow the establishment of improved diagnostic procedures and more accurate therapeutic monitoring. TPP might also be a promising platform for tumor-specific drug delivery and other Hsp70-based targeted therapies.
Collapse
Affiliation(s)
- Stefan Stangl
- Department of Radiation Oncology, Klinikum rechts der Isar, TU München and CCG - "Innate Immunity in Tumor Biology", Helmholtz Zentrum München (HMGU), Munich, Germany
| | - Julia Varga
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Bianca Freysoldt
- Department of Radiation Oncology, Klinikum rechts der Isar, TU München and CCG - "Innate Immunity in Tumor Biology", Helmholtz Zentrum München (HMGU), Munich, Germany
| | | | - Jens T Siveke
- Department of Medicine II, Klinikum rechts der Isar, TU München, Munich, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (HMGU), Munich, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, TU München and CCG - "Innate Immunity in Tumor Biology", Helmholtz Zentrum München (HMGU), Munich, Germany.
| |
Collapse
|
39
|
An Impermeant Ganetespib Analog Inhibits Extracellular Hsp90-Mediated Cancer Cell Migration that Involves Lysyl Oxidase 2-like Protein. Cancers (Basel) 2014; 6:1031-46. [PMID: 24785146 PMCID: PMC4074815 DOI: 10.3390/cancers6021031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/12/2014] [Accepted: 04/08/2014] [Indexed: 12/24/2022] Open
Abstract
Extracellular Hsp90 (eHsp90) activates a number of client proteins outside of cancer cells required for migration and invasion. Therefore, eHsp90 may serve as a novel target for anti-metastatic drugs as its inhibition using impermeant Hsp90 inhibitors would not affect the numerous vital intracellular Hsp90 functions in normal cells. While some eHsp90 clients are known, it is important to establish other proteins that act outside the cell to validate eHsp90 as a drug target to limit cancer spread. Using mass spectrometry we identified two precursor proteins Galectin 3 binding protein (G3BP) and Lysyl oxidase 2-like protein (LOXL2) that associate with eHsp90 in MDA-MB231 breast cancer cell conditioned media and confirmed that LOXL2 binds to eHsp90 in immunoprecipitates. We introduce a novel impermeant Hsp90 inhibitor STA-12-7191 derived from ganetespib and show that it is markedly less toxic to cells and can inhibit cancer cell migration in a dose dependent manner. We used STA-12-7191 to test if LOXL2 and G3BP are potential eHsp90 clients. We showed that while LOXL2 can increase wound healing and compensate for STA-12-7191-mediated inhibition of wound closure, addition of G3BP had no affect on this assay. These findings support of role for LOXL2 in eHsp90 stimulated cancer cell migration and provide preliminary evidence for the use of STA-12-7191 to inhibit eHsp90 to limit cancer invasion.
Collapse
|