1
|
Freed, Jr S, Hanson ND. AmpC induction by imipenem in Pseudomonas aeruginosa occurs in the absence of OprD and impacts imipenem/relebactam susceptibility. Microbiol Spectr 2024; 12:e0014224. [PMID: 39315808 PMCID: PMC11537110 DOI: 10.1128/spectrum.00142-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
In the United States, carbapenem resistance in Pseudomonas aeruginosa is linked to the regulation of chromosomal resistance determinants, AmpC and OprD. The β-lactamase AmpC requires overexpression and genetic modifications to be capable of inhibiting imipenem activity. The outer membrane porin OprD can be downregulated or undergo genetic modifications that strongly correlate with imipenem non-susceptibility. Co-administration of imipenem and the β-lactamase inhibitor, relebactam, can lower imipenem minimal inhibitory concentrations and restore susceptibility. However, it is not understood how this occurs in P. aeruginosa isolates that do not overproduce AmpC or produce a functional OprD for imipenem entry. Therefore, we investigated whether imipenem could enter P. aeruginosa in the absence of OprD and whether any of the chromosomal β-lactamases (AmpC, OXA-50, and PIB-1) contributed to imipenem and/or imipenem/relebactam non-susceptibility. This investigation evaluated 17 imipenem non-susceptible clinical isolates and three laboratory strains of PAO1, two of which were porin transposon mutants for either oprD or opdP. Expression of OXA-50 and PIB-1 RNA was similar to PAO1. However, all 20 isolates exhibited blaampC induction under sublethal exposure to imipenem. This occurred in the absence of detectable OprD protein in 18 isolates. Collectively, our data identify that (i) OprD was not the only channel required for imipenem entry and (ii) imipenem susceptibility can be restored by imipenem/relebactam due to the interaction between relebactam and blaampC overexpression due to imipenem induction.IMPORTANCEInfections caused by Pseudomonas aeruginosa are associated with high mortality and worsened clinical outcomes. The carbapenem, imipenem, has been combined with the β-lactamase inhibitor relebactam to treat carbapenem-resistant P. aeruginosa. Downregulation of the outer membrane porin, OprD is the major mechanism of imipenem resistance; however, relebactam inhibits the chromosomally encoded AmpC β-lactamase. We investigated how relebactam was able to reduce P. aeruginosa imipenem minimal inhibitory concentrations (MICs) in isolates in which OprD was downregulated. Our data show that imipenem is capable of entering the cell in the absence of OprD and capable of inducing the AmpC β-lactamase. The induction of AmpC provides a substrate for relebactam, impacting the imipenem MIC. The data presented support the use of an alternative porin(s) for entry of imipenem. This study provides the basis for further investigation into modifications of imipenem or similar molecules that would increase the affinity for other porins in isolates resistant to imipenem.
Collapse
Affiliation(s)
- Shawn Freed, Jr
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
- Creighton Center for Antimicrobial Resistance and Epidemiology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Nancy D. Hanson
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
- Creighton Center for Antimicrobial Resistance and Epidemiology, Creighton University School of Medicine, Omaha, Nebraska, USA
| |
Collapse
|
2
|
Abstract
Gram-negative bacteria are intrinsically resistant to many antibiotics, due in large part to the permeability barrier formed by their cell envelope. The complex and synergistic interplay of the two Gram-negative membranes and active efflux prevents the accumulation of a diverse range of compounds that are effective against Gram-positive bacteria. A lack of detailed information on how components of the cell envelope contribute to this has been identified as a key barrier to the rational development of new antibiotics with efficacy against Gram-negative species. This review describes the current understanding of the role of the different components of the Gram-negative cell envelope in preventing compound accumulation and the state of efforts to describe properties that allow compounds to overcome this barrier and apply them to the development of new broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Claire Maher
- College of Engineering, Science and Environment, University of Newcastle, Newcastle, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Karl A. Hassan
- College of Engineering, Science and Environment, University of Newcastle, Newcastle, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
3
|
Domingues S, Lima T, Saavedra MJ, Da Silva GJ. An Overview of Cefiderocol's Therapeutic Potential and Underlying Resistance Mechanisms. Life (Basel) 2023; 13:1427. [PMID: 37511802 PMCID: PMC10382032 DOI: 10.3390/life13071427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance continues to increase globally and treatment of difficult-to-treat (DTT) infections, mostly associated with carbapenem-resistant (CR) Pseudomonas aeruginosa, CR Acinetobacter baumannii, and CR- and third-generation-cephalosporins-resistant Enterobacterales remains a challenge for the clinician. The recent approval of cefiderocol has broaden the armamentarium for the treatment of patients with DTT infections. Cefiderocol is a siderophore cephalosporin that has shown excellent antibacterial activity, in part due to its innovative way of cell permeation. It is relatively stable compared to most commonly found carbapenamases. However, some resistant mechanisms to cefiderocol have already been identified and reduced susceptibility has developed during patient treatment, highlighting that the clinical use of cefiderocol must be rational. In this review, we summarize the current available treatments against the former resistant bacteria, and we revise and discuss the mechanism of action of cefiderocol, underlying the biological function of siderophores, the therapeutic potential of cefiderocol, and the mechanisms of resistance reported so far.
Collapse
Affiliation(s)
- Sara Domingues
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Tiago Lima
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria José Saavedra
- CITAB-Inov4Agro, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-AL4AnimalS, Animal and Veterinary Research Center, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Gabriela Jorge Da Silva
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
4
|
Functional Diversity of Gram-Negative Permeability Barriers Reflected in Antibacterial Activities and Intracellular Accumulation of Antibiotics. Antimicrob Agents Chemother 2023; 67:e0137722. [PMID: 36715507 PMCID: PMC9933635 DOI: 10.1128/aac.01377-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gram-negative bacteria are notoriously more resistant to antibiotics than Gram-positive bacteria, primarily due to the presence of the outer membrane and a plethora of active efflux pumps. However, the potency of antibiotics also varies dramatically between different Gram-negative pathogens, suggesting major mechanistic differences in how antibiotics penetrate permeability barriers. Two approaches are used broadly to analyze how permeability barriers affect intracellular accumulation of antibiotics. One compares the antibacterial activities of compounds, while the other measures the total intracellular concentrations of compounds in nongrowing cells, with both approaches using strains harboring wild-type or genetically modified efflux systems and permeability barriers. Whether the two assays provide similar mechanistic insights remains unclear. In this study, we analyzed the intracellular accumulation and antibacterial activities of antibiotics representative of major clinical classes in three Gram-negative pathogens of high clinical importance, Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter baumannii. We found that both assays are informative about properties of permeability barriers, but there is no quantitative agreement between the assays. Our results show that the three pathogens differ dramatically in their permeability barriers, with the outer membrane playing the dominant role in E. coli and P. aeruginosa but efflux dominating in A. baumannii. However, even compounds of the same chemotype may use different permeation pathways depending on small chemical modifications. Accordingly, a classification analysis revealed limited conservation of molecular properties that define compound penetration into the three bacteria.
Collapse
|
5
|
Salvà-Serra F, Jaén-Luchoro D, Marathe NP, Adlerberth I, Moore ERB, Karlsson R. Responses of carbapenemase-producing and non-producing carbapenem-resistant Pseudomonas aeruginosa strains to meropenem revealed by quantitative tandem mass spectrometry proteomics. Front Microbiol 2023; 13:1089140. [PMID: 36845973 PMCID: PMC9948630 DOI: 10.3389/fmicb.2022.1089140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with increasing incidence of multidrug-resistant strains, including resistance to last-resort antibiotics, such as carbapenems. Resistances are often due to complex interplays of natural and acquired resistance mechanisms that are enhanced by its large regulatory network. This study describes the proteomic responses of two carbapenem-resistant P. aeruginosa strains of high-risk clones ST235 and ST395 to subminimal inhibitory concentrations (sub-MICs) of meropenem by identifying differentially regulated proteins and pathways. Strain CCUG 51971 carries a VIM-4 metallo-β-lactamase or 'classical' carbapenemase; strain CCUG 70744 carries no known acquired carbapenem-resistance genes and exhibits 'non-classical' carbapenem-resistance. Strains were cultivated with different sub-MICs of meropenem and analyzed, using quantitative shotgun proteomics based on tandem mass tag (TMT) isobaric labeling, nano-liquid chromatography tandem-mass spectrometry and complete genome sequences. Exposure of strains to sub-MICs of meropenem resulted in hundreds of differentially regulated proteins, including β-lactamases, proteins associated with transport, peptidoglycan metabolism, cell wall organization, and regulatory proteins. Strain CCUG 51971 showed upregulation of intrinsic β-lactamases and VIM-4 carbapenemase, while CCUG 70744 exhibited a combination of upregulated intrinsic β-lactamases, efflux pumps, penicillin-binding proteins and downregulation of porins. All components of the H1 type VI secretion system were upregulated in strain CCUG 51971. Multiple metabolic pathways were affected in both strains. Sub-MICs of meropenem cause marked changes in the proteomes of carbapenem-resistant strains of P. aeruginosa exhibiting different resistance mechanisms, involving a wide range of proteins, many uncharacterized, which might play a role in the susceptibility of P. aeruginosa to meropenem.
Collapse
Affiliation(s)
- Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden,Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain,*Correspondence: Francisco Salvà-Serra, ✉
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | | | - Ingegerd Adlerberth
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden,Nanoxis Consulting AB, Gothenburg, Sweden,Roger Karlsson, ✉
| |
Collapse
|
6
|
Walesch S, Birkelbach J, Jézéquel G, Haeckl FPJ, Hegemann JD, Hesterkamp T, Hirsch AKH, Hammann P, Müller R. Fighting antibiotic resistance-strategies and (pre)clinical developments to find new antibacterials. EMBO Rep 2022; 24:e56033. [PMID: 36533629 PMCID: PMC9827564 DOI: 10.15252/embr.202256033] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Antibacterial resistance is one of the greatest threats to human health. The development of new therapeutics against bacterial pathogens has slowed drastically since the approvals of the first antibiotics in the early and mid-20th century. Most of the currently investigated drug leads are modifications of approved antibacterials, many of which are derived from natural products. In this review, we highlight the challenges, advancements and current standing of the clinical and preclinical antibacterial research pipeline. Additionally, we present novel strategies for rejuvenating the discovery process and advocate for renewed and enthusiastic investment in the antibacterial discovery pipeline.
Collapse
Affiliation(s)
- Sebastian Walesch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Joy Birkelbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Thomas Hesterkamp
- Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| | - Peter Hammann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| |
Collapse
|
7
|
Moniruzzaman M, Cooper CJ, Uddin MR, Walker JK, Parks JM, Zgurskaya HI. Analysis of Orthogonal Efflux and Permeation Properties of Compounds Leads to the Discovery of New Efflux Pump Inhibitors. ACS Infect Dis 2022; 8:2149-2160. [PMID: 36070489 PMCID: PMC9942517 DOI: 10.1021/acsinfecdis.2c00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Optimization of compound permeation into Gram-negative bacteria is one of the most challenging tasks in the development of antibacterial agents. Two permeability barriers─the passive diffusion barrier of the outer membrane (OM) and active drug efflux─act synergistically to protect cells from the antibacterial action of compounds. In Escherichia coli (E. coli) and relatives, these two barriers sieve compounds based on different physicochemical properties that are defined by their interactions with OM porins and efflux pumps, respectively. In this study, we critically tested the hypothesis that the best substrates and inhibitors of efflux pumps are compounds that can effectively permeate the OM and are available at relatively high concentrations in the periplasm. For this purpose, we filtered a large subset of the ZINC15 database of commercially available compounds for compounds containing a primary amine, a chemical feature known to facilitate the uptake through E. coli general porins. The assembled library was screened by ensemble docking to AcrA, the periplasmic component of the AcrAB-TolC efflux pump, followed by experimental testing of the top predicted binders for antibacterial activities, efflux recognition, and inhibition. We found that the filtered primary amine library is a rich source of compounds with efflux-inhibiting activities and identified efflux pump inhibitors with novel chemical scaffolds effective against E. coli AcrAB-TolC and efflux pumps of multidrug-resistant clinical isolates of Acinetobacter baumannii. However, primary amines are not required for the recognition of compounds by efflux pumps and their efflux-inhibitory activities.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Connor J Cooper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Muhammad R Uddin
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - John K Walker
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63110, United States
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| |
Collapse
|
8
|
β-lactam Resistance in Pseudomonas aeruginosa: Current Status, Future Prospects. Pathogens 2021; 10:pathogens10121638. [PMID: 34959593 PMCID: PMC8706265 DOI: 10.3390/pathogens10121638] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a major opportunistic pathogen, causing a wide range of acute and chronic infections. β-lactam antibiotics including penicillins, carbapenems, monobactams, and cephalosporins play a key role in the treatment of P. aeruginosa infections. However, a significant number of isolates of these bacteria are resistant to β-lactams, complicating treatment of infections and leading to worse outcomes for patients. In this review, we summarize studies demonstrating the health and economic impacts associated with β-lactam-resistant P. aeruginosa. We then describe how β-lactams bind to and inhibit P. aeruginosa penicillin-binding proteins that are required for synthesis and remodelling of peptidoglycan. Resistance to β-lactams is multifactorial and can involve changes to a key target protein, penicillin-binding protein 3, that is essential for cell division; reduced uptake or increased efflux of β-lactams; degradation of β-lactam antibiotics by increased expression or altered substrate specificity of an AmpC β-lactamase, or by the acquisition of β-lactamases through horizontal gene transfer; and changes to biofilm formation and metabolism. The current understanding of these mechanisms is discussed. Lastly, important knowledge gaps are identified, and possible strategies for enhancing the effectiveness of β-lactam antibiotics in treating P. aeruginosa infections are considered.
Collapse
|
9
|
Interplay of OpdP Porin and Chromosomal Carbapenemases in the Determination of Carbapenem Resistance/Susceptibility in Pseudomonas aeruginosa. Microbiol Spectr 2021; 9:e0118621. [PMID: 34585948 PMCID: PMC8557820 DOI: 10.1128/spectrum.01186-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carbapenem resistance in Pseudomonas aeruginosa strains responsible for chronic lung infections in cystic fibrosis (CF) patients is mainly due to loss of the OprD protein and, limited to meropenem and doripenem, to overexpression of efflux pumps. However, recent reports of isolates showing inconsistent genotype-phenotype combinations (e.g., susceptibility in the presence of resistance determinants and vice versa) suggest the involvement of additional factors whose role is not yet fully elucidated. Among them, the OpdP porin as an alternative route of entry for carbapenems other than OprD and the overexpression of two chromosomal carbapenemases, the Pseudomonas-derived cephalosporinase (PDC) and the PoxB oxacillinase, have recently been reconsidered and studied in specific model strains. Here, the contribution of these factors was investigated by comparing different phenotypic variants of three strains collected from the sputum of colonized CF patients. Carbapenem uptake through OpdP was investigated both at the functional level, by assessing the competition exerted by glycine-glutamate, the OpdP’s natural substrate, against imipenem uptake, and at the molecular level, by comparing the expression levels of opdP genes by quantitative real-time PCR (qRT-PCR). Moreover, overexpression of the chromosomal carbapenemases in some of the isolates was also investigated by qRT-PCR. The results showed that, even if OprD inactivation remains the most important determinant of carbapenem resistance in strains infecting the CF lung, the interplay of other determinants might have a nonnegligible impact on bacterial susceptibility, being able to modify the phenotype of part of the population and consequently complicating the choice of an appropriate therapy. IMPORTANCE This study examines the interplay of multiple factors in determining a pattern of resistance or susceptibility to carbapenems in clinical isolates of Pseudomonas aeruginosa, focusing on the role of previously poorly understood determinants. In particular, the impact of carbapenem permeability through OprD and OpdP porins was analyzed, as well as the activity of the chromosomal carbapenemases AmpC and PoxB, going beyond the simple identification of resistance determinants encoded by each isolate. Indeed, analysis of the expression levels of these determinants provides a new approach to determine the contribution of each factor, both individually and in coexistence with the other factors. The study contributes to understanding some phenotype-genotype discordances closely related to the heteroresistance frequently detected in P. aeruginosa isolates responsible for pulmonary infections in cystic fibrosis patients, which complicates the choice of an appropriate patient-specific therapy.
Collapse
|
10
|
D’Cunha N, Moniruzzaman M, Haynes K, Malloci G, Cooper CJ, Margiotta E, Vargiu AV, Uddin MR, Leus IV, Cao F, Parks JM, Rybenkov VV, Ruggerone P, Zgurskaya HI, Walker JK. Mechanistic Duality of Bacterial Efflux Substrates and Inhibitors: Example of Simple Substituted Cinnamoyl and Naphthyl Amides. ACS Infect Dis 2021; 7:2650-2665. [PMID: 34379382 DOI: 10.1021/acsinfecdis.1c00100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibiotic resistance poses an immediate and growing threat to human health. Multidrug efflux pumps are promising targets for overcoming antibiotic resistance with small-molecule therapeutics. Previously, we identified a diaminoquinoline acrylamide, NSC-33353, as a potent inhibitor of the AcrAB-TolC efflux pump in Escherichia coli. This inhibitor potentiates the antibacterial activities of novobiocin and erythromycin upon binding to the membrane fusion protein AcrA. It is also a substrate for efflux and lacks appreciable intrinsic antibacterial activity of its own in wild-type cells. Here, we have modified the substituents of the cinnamoyl group of NSC-33353, giving rise to analogs that retain the ability to inhibit efflux, lost the features of the efflux substrates, and gained antibacterial activity in wild-type cells. The replacement of the cinnamoyl group with naphthyl isosteres generated compounds that lack antibacterial activity but are both excellent efflux pump inhibitors and substrates. Surprisingly, these inhibitors potentiate the antibacterial activity of novobiocin but not erythromycin. Surface plasmon resonance experiments and molecular docking suggest that the replacement of the cinnamoyl group with naphthyl shifts the affinity of the compounds away from AcrA to the AcrB transporter, making them better efflux substrates and changing their mechanism of inhibition. These results provide new insights into the duality of efflux substrate/inhibitor features in chemical scaffolds that will facilitate the development of new efflux pump inhibitors.
Collapse
Affiliation(s)
- Napoleon D’Cunha
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63110, United States
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Keith Haynes
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63110, United States
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Connor J. Cooper
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Enrico Margiotta
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Attilio V. Vargiu
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Muhammad R. Uddin
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Inga V. Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Feng Cao
- John Cochran Division, Department of Veteran Affairs Medical Center, St. Louis, Missouri 63106, United States
| | - Jerry M. Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Valentin V. Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - John K. Walker
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
11
|
Outer membrane permeability: Antimicrobials and diverse nutrients bypass porins in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2021; 118:2107644118. [PMID: 34326266 PMCID: PMC8346889 DOI: 10.1073/pnas.2107644118] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Novel antibiotics are urgently needed to resolve the current antimicrobial resistance crisis. For critical pathogens, drug entry through the cell envelope is one of the major challenges in the development of effective novel antibiotics. Envelope proteins forming water-filled channels, so-called porins, are commonly thought to be essential for entry of hydrophilic molecules, but we show here for the critical pathogen Pseudomonas aeruginosa that almost all antibiotics and diverse hydrophilic nutrients bypass porins and instead permeate directly through the outer membrane lipid bilayer. However, carboxylate groups hinder bilayer penetration, and Pseudomonas thus needs porins for efficient utilization of carboxylate-containing nutrients such as succinate. The major porin-independent entry route might open opportunities for facilitating drug delivery into bacteria. Gram-negative bacterial pathogens have an outer membrane that restricts entry of molecules into the cell. Water-filled protein channels in the outer membrane, so-called porins, facilitate nutrient uptake and are thought to enable antibiotic entry. Here, we determined the role of porins in a major pathogen, Pseudomonas aeruginosa, by constructing a strain lacking all 40 identifiable porins and 15 strains carrying only a single unique type of porin and characterizing these strains with NMR metabolomics and antimicrobial susceptibility assays. In contrast to common assumptions, all porins were dispensable for Pseudomonas growth in rich medium and consumption of diverse hydrophilic nutrients. However, preferred nutrients with two or more carboxylate groups such as succinate and citrate permeated poorly in the absence of porins. Porins provided efficient translocation pathways for these nutrients with broad and overlapping substrate selectivity while efficiently excluding all tested antibiotics except carbapenems, which partially entered through OprD. Porin-independent permeation of antibiotics through the outer-membrane lipid bilayer was hampered by carboxylate groups, consistent with our nutrient data. Together, these results challenge common assumptions about the role of porins by demonstrating porin-independent permeation of the outer-membrane lipid bilayer as a major pathway for nutrient and drug entry into the bacterial cell.
Collapse
|
12
|
Rybenkov VV, Zgurskaya HI, Ganguly C, Leus IV, Zhang Z, Moniruzzaman M. The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux. Chem Rev 2021; 121:5597-5631. [PMID: 33596653 PMCID: PMC8369882 DOI: 10.1021/acs.chemrev.0c01137] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell envelope plays a dual role in the life of bacteria by simultaneously protecting it from a hostile environment and facilitating access to beneficial molecules. At the heart of this ability lie the restrictive properties of the cellular membrane augmented by efflux transporters, which preclude intracellular penetration of most molecules except with the help of specialized uptake mediators. Recently, kinetic properties of the cell envelope came into focus driven on one hand by the urgent need in new antibiotics and, on the other hand, by experimental and theoretical advances in studies of transmembrane transport. A notable result from these studies is the development of a kinetic formalism that integrates the Michaelis-Menten behavior of individual transporters with transmembrane diffusion and offers a quantitative basis for the analysis of intracellular penetration of bioactive compounds. This review surveys key experimental and computational approaches to the investigation of transport by individual translocators and in whole cells, summarizes key findings from these studies and outlines implications for antibiotic discovery. Special emphasis is placed on Gram-negative bacteria, whose envelope contains two separate membranes. This feature sets these organisms apart from Gram-positive bacteria and eukaryotic cells by providing them with full benefits of the synergy between slow transmembrane diffusion and active efflux.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Inga V Leus
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zhen Zhang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
13
|
Dai Y, Ma H, Wu M, Welsch TA, Vora SR, Ren D, Nangia S. Development of the computational antibiotic screening platform (CLASP) to aid in the discovery of new antibiotics. SOFT MATTER 2021; 17:2725-2736. [PMID: 33533373 DOI: 10.1039/d0sm02035d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial colonization of biotic and abiotic surfaces and antibiotic resistance are grand challenges with paramount societal impacts. However, in the face of increasing bacterial resistance to all known antibiotics, efforts to discover new classes of antibiotics have languished, creating an urgent need to accelerate the antibiotic discovery pipeline. A major deterrent in the discovering of new antibiotics is the limited permeability of molecules across the bacterial envelope. Notably, the Gram-negative bacteria have nutrient specific protein channels (or porins) that restrict the permeability of non-essential molecules, including antibiotics. Here, we have developed the Computational Antibiotic Screening Platform (CLASP) for screening of potential drug molecules through the porins. The CLASP takes advantage of coarse grain (CG) resolution, advanced sampling techniques, and a parallel computing environment to maximize its performance. The CLASP yields comprehensive thermodynamic and kinetic output data of a potential drug molecule within a few hours of wall-clock time. Its output includes the potential of mean force profile, energy barrier, the rate constant, and contact analysis of the molecule with the pore-lining residues, and the orientational analysis of the molecule in the porin channel. In our first CLASP application, we report the transport properties of six carbapenem antibiotics-biapenem, doripenem, ertapenem, imipenem, meropenem, and panipenem-through OccD3, a major channel for carbapenem uptake in Pseudomonas aeruginosa. The CLASP is designed to screen small molecule libraries with a fast turnaround time to yield structure-property relationships to discover antibiotics with high permeability. The CLASP will be freely distributed to enable accelerated antibiotic drug discovery.
Collapse
Affiliation(s)
- Yinghui Dai
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Huilin Ma
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Meishan Wu
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Tory Alane Welsch
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Soor Rajiv Vora
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| |
Collapse
|
14
|
Zhao S, Adamiak JW, Bonifay V, Mehla J, Zgurskaya HI, Tan DS. Defining new chemical space for drug penetration into Gram-negative bacteria. Nat Chem Biol 2020; 16:1293-1302. [PMID: 33199906 PMCID: PMC7897441 DOI: 10.1038/s41589-020-00674-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
We live in the era of antibiotic resistance, and this problem will progressively worsen if no new solutions emerge. In particular, Gram-negative pathogens present both biological and chemical challenges that hinder the discovery of new antibacterial drugs. First, these bacteria are protected from a variety of structurally diverse drugs by a low-permeability barrier composed of two membranes with distinct permeability properties, in addition to active drug efflux, making this cell envelope impermeable to most compounds. Second, chemical libraries currently used in drug discovery contain few compounds that can penetrate Gram-negative bacteria. As a result of these challenges, intensive screening campaigns have led to few successes, highlighting the need for new approaches to identify regions of chemical space that are specifically relevant to antibacterial drug discovery. Herein we provide an overview of emerging insights into this problem and outline a general approach to addressing it using prospective analysis of chemical libraries for the ability of compounds to accumulate in Gram-negative bacteria. The overall goal is to develop robust cheminformatic tools to predict Gram-negative permeation and efflux, which can then be used to guide medicinal chemistry campaigns and the design of antibacterial discovery libraries.
Collapse
Affiliation(s)
- Shibin Zhao
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justyna W Adamiak
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Vincent Bonifay
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Jitender Mehla
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA.
| | - Derek S Tan
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
15
|
Sonnleitner E, Pusic P, Wolfinger MT, Bläsi U. Distinctive Regulation of Carbapenem Susceptibility in Pseudomonas aeruginosa by Hfq. Front Microbiol 2020; 11:1001. [PMID: 32528439 PMCID: PMC7264166 DOI: 10.3389/fmicb.2020.01001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022] Open
Abstract
Carbapenems are often the antibiotics of choice to combat life threatening infections caused by the opportunistic human pathogen Pseudomonas aeruginosa. The outer membrane porins OprD and OpdP serve as entry ports for carbapenems. Here, we report that the RNA chaperone Hfq governs post-transcriptional regulation of the oprD and opdP genes in a distinctive manner. Hfq together with the recently described small regulatory RNAs (sRNAs) ErsA and Sr0161 is shown to mediate translational repression of oprD, whereas opdP appears not to be regulated by sRNAs. At variance, our data indicate that opdP is translationally repressed by a regulatory complex consisting of Hfq and the catabolite repression protein Crc, an assembly known to be key to carbon catabolite repression in P. aeruginosa. The regulatory RNA CrcZ, which is up-regulated during growth of P. aeruginosa on less preferred carbon sources, is known to sequester Hfq, which relieves Hfq-mediated translational repression of genes. The differential carbapenem susceptibility during growth on different carbon sources can thus be understood in light of Hfq-dependent oprD/opdP regulation and of the antagonizing function of the CrcZ RNA on Hfq regulatory complexes.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna BioCenter (VBC), University of Vienna, Vienna, Austria
| | - Petra Pusic
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna BioCenter (VBC), University of Vienna, Vienna, Austria
| | - Michael T Wolfinger
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.,Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna BioCenter (VBC), University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Kim TH, Tao X, Moya B, Jiao Y, Basso KB, Zhou J, Lang Y, Sutaria DS, Zavascki AP, Barth AL, Reeve SM, Schweizer HP, Deveson Lucas D, Boyce JD, Bonomo RA, Lee RE, Shin BS, Louie A, Drusano GL, Bulitta JB. Novel Cassette Assay To Quantify the Outer Membrane Permeability of Five β-Lactams Simultaneously in Carbapenem-Resistant Klebsiella pneumoniae and Enterobacter cloacae. mBio 2020; 11:e03189-19. [PMID: 32047131 PMCID: PMC7018653 DOI: 10.1128/mbio.03189-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 02/05/2023] Open
Abstract
Poor penetration through the outer membrane (OM) of Gram-negative bacteria is a major barrier of antibiotic development. While β-lactam antibiotics are commonly used against Klebsiella pneumoniae and Enterobacter cloacae, there are limited data on OM permeability especially in K. pneumoniae Here, we developed a novel cassette assay, which can simultaneously quantify the OM permeability to five β-lactams in carbapenem-resistant K. pneumoniae and E. cloacae Both clinical isolates harbored a blaKPC-2 and several other β-lactamases. The OM permeability of each antibiotic was studied separately ("discrete assay") and simultaneously ("cassette assay") by determining the degradation of extracellular β-lactam concentrations via multiplex liquid chromatography-tandem mass spectrometry analyses. Our K. pneumoniae isolate was polymyxin resistant, whereas the E. cloacae was polymyxin susceptible. Imipenem penetrated the OM at least 7-fold faster than meropenem for both isolates. Imipenem penetrated E. cloacae at least 258-fold faster and K. pneumoniae 150-fold faster compared to aztreonam, cefepime, and ceftazidime. For our β-lactams, OM permeability was substantially higher in the E. cloacae compared to the K. pneumoniae isolate (except for aztreonam). This correlated with a higher OmpC porin production in E. cloacae, as determined by proteomics. The cassette and discrete assays showed comparable results, suggesting limited or no competition during influx through OM porins. This cassette assay allowed us, for the first time, to efficiently quantify the OM permeability of multiple β-lactams in carbapenem-resistant K. pneumoniae and E. cloacae Characterizing the OM permeability presents a critical contribution to combating the antimicrobial resistance crisis and enables us to rationally optimize the use of β-lactam antibiotics.IMPORTANCE Antimicrobial resistance is causing a global human health crisis and is affecting all antibiotic classes. While β-lactams have been commonly used against susceptible isolates of Klebsiella pneumoniae and Enterobacter cloacae, carbapenem-resistant isolates are spreading worldwide and pose substantial clinical challenges. Rapid penetration of β-lactams leads to high drug concentrations at their periplasmic target sites, allowing β-lactams to more completely inactivate their target receptors. Despite this, there are limited tangible data on the permeability of β-lactams through the outer membranes of many Gram-negative pathogens. This study presents a novel, cassette assay, which can simultaneously characterize the permeability of five β-lactams in multidrug-resistant clinical isolates. We show that carbapenems, and especially imipenem, penetrate the outer membrane of K. pneumoniae and E. cloacae substantially faster than noncarbapenem β-lactams. The ability to efficiently characterize the outer membrane permeability is critical to optimize the use of β-lactams and combat carbapenem-resistant isolates.
Collapse
Affiliation(s)
- Tae Hwan Kim
- Departments of Pharmaceutics and Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Xun Tao
- Departments of Pharmaceutics and Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Bartolome Moya
- Departments of Pharmaceutics and Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yuanyuan Jiao
- Departments of Pharmaceutics and Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Jieqiang Zhou
- Departments of Pharmaceutics and Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yinzhi Lang
- Departments of Pharmaceutics and Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Dhruvitkumar S Sutaria
- Departments of Pharmaceutics and Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | | | - Afonso L Barth
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Stephanie M Reeve
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Herbert P Schweizer
- Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Deanna Deveson Lucas
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria, Australia
| | - John D Boyce
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria, Australia
| | - Robert A Bonomo
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Beom Soo Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - George L Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Jürgen B Bulitta
- Departments of Pharmaceutics and Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
17
|
Zgurskaya HI, Rybenkov VV. Permeability barriers of Gram-negative pathogens. Ann N Y Acad Sci 2020; 1459:5-18. [PMID: 31165502 PMCID: PMC6940542 DOI: 10.1111/nyas.14134] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Most clinical antibiotics do not have efficacy against Gram-negative pathogens, mainly because these cells are protected by the permeability barrier comprising the two membranes with active efflux. The emergence of multidrug-resistant Gram-negative strains threatens the utility even of last resort therapeutic treatments. Significant efforts at different levels of resolution are currently focused on finding a solution to this nonpermeation problem and developing new approaches to the optimization of drug activities against multidrug-resistant pathogens. The exceptional efficiency of the Gram-negative permeability barrier is the result of a complex interplay between the two opposing fluxes of drugs across the two membranes. In this review, we describe the current state of understanding of the problem and the recent advances in theoretical and empirical approaches to characterization of drug permeation and active efflux in Gram-negative bacteria.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma
| | - Valentin V Rybenkov
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
18
|
Jukič M, Hrast M, Patin D, Ogorevc E, Barreteau H, Gobec S. Virtual screening approach and biochemical evaluation on MurB. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cdc.2019.100276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Geisinger E, Huo W, Hernandez-Bird J, Isberg RR. Acinetobacter baumannii: Envelope Determinants That Control Drug Resistance, Virulence, and Surface Variability. Annu Rev Microbiol 2019; 73:481-506. [DOI: 10.1146/annurev-micro-020518-115714] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acinetobacter baumannii has emerged as an important nosocomial pathogen, particularly for patients in intensive care units and with invasive indwelling devices. The most recent clinical isolates are resistant to several classes of clinically important antibiotics, greatly restricting the ability to effectively treat critically ill patients. The bacterial envelope is an important driver of A. baumannii disease, both at the level of battling against antibiotic therapy and at the level of protecting from host innate immune function. This review provides a comprehensive overview of key features of the envelope that interface with both the host and antimicrobial therapies. Carbohydrate structures that contribute to protecting from the host are detailed, and mutations that alter these structures, resulting in increased antimicrobial resistance, are explored. In addition, protein complexes involved in both intermicrobial and host-microbe interactions are described. Finally we discuss regulatory mechanisms that control the nature of the cell envelope and its impact on host innate immune function.
Collapse
Affiliation(s)
- Edward Geisinger
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Wenwen Huo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Juan Hernandez-Bird
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
20
|
Metadynamics to Enhance Sampling in Biomolecular Simulations. Methods Mol Biol 2019. [PMID: 31396904 DOI: 10.1007/978-1-4939-9608-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Molecular dynamics is a powerful simulation method to provide detailed atomic-scale insight into a range of biological processes including protein folding, biochemical reactions, ligand binding, and many others. Over the last several decades, enhanced sampling methods have been developed to address the large separation in time scales between a molecular dynamics simulation (usually microseconds or shorter) and the time scales of biological processes (often orders of magnitude longer). This chapter specifically focuses on the metadynamics family of methods, which achieves enhanced sampling through the introduction of a history-dependent bias potential that is based on one or more slow degrees of freedom, called collective variables. We introduce the method and its recent variants related to biomolecular studies and then discuss frontier areas of the method. A large part of this chapter is devoted to helping new users of the method understand how to choose metadynamics parameters properly and apply the method to their system of interest.
Collapse
|
21
|
Samsudin F, Khalid S. Movement of Arginine through OprD: The Energetics of Permeation and the Role of Lipopolysaccharide in Directing Arginine to the Protein. J Phys Chem B 2019; 123:2824-2832. [DOI: 10.1021/acs.jpcb.9b00063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Firdaus Samsudin
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| |
Collapse
|
22
|
Bhamidimarri SP, Zahn M, Prajapati JD, Schleberger C, Söderholm S, Hoover J, West J, Kleinekathöfer U, Bumann D, Winterhalter M, van den Berg B. A Multidisciplinary Approach toward Identification of Antibiotic Scaffolds for Acinetobacter baumannii. Structure 2019; 27:268-280.e6. [DOI: 10.1016/j.str.2018.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/19/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022]
|
23
|
Thomas J, Navre M, Rubio A, Coukell A. Shared Platform for Antibiotic Research and Knowledge: A Collaborative Tool to SPARK Antibiotic Discovery. ACS Infect Dis 2018; 4:1536-1539. [PMID: 30240184 DOI: 10.1021/acsinfecdis.8b00193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The discovery of urgently needed antibiotics is hindered by challenges to information sharing. To help address this challenge, The Pew Charitable Trusts launched SPARK: the Shared Platform for Antibiotic Research and Knowledge. SPARK is an online, publicly available, interactive database designed to help scientists build on previous research and generate new insights to advance the field's understanding of Gram-negative permeability. This Viewpoint details how data are selected and integrated into the platform, how scientists can use SPARK to share their data, and the ways the scientific community can access and use these data to develop hypotheses.
Collapse
Affiliation(s)
- Joe Thomas
- The Pew Charitable Trusts, 901 E Street NW, Washington, D.C. 20004, United States
| | - Marc Navre
- Wemberly Scientific, Inc., 1025 Alameda de las Pulgas, #116, Belmont, California 94002, United States
| | - Aileen Rubio
- Spero Therapeutics, 675 Massachusetts Avenue, 14th Floor, Cambridge, Massachusetts 02139, United States
| | - Allan Coukell
- The Pew Charitable Trusts, 901 E Street NW, Washington, D.C. 20004, United States
| |
Collapse
|
24
|
Samanta S, Bodrenko I, Acosta-Gutiérrez S, D’Agostino T, Pathania M, Ghai I, Schleberger C, Bumann D, Wagner R, Winterhalter M, van den Berg B, Ceccarelli M. Getting Drugs through Small Pores: Exploiting the Porins Pathway in Pseudomonas aeruginosa. ACS Infect Dis 2018; 4:1519-1528. [PMID: 30039960 DOI: 10.1021/acsinfecdis.8b00149] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Understanding molecular properties of outer membrane channels of Gram-negative bacteria is of fundamental significance as they are the entry point of polar antibiotics into bacteria. Outer membrane proteomics revealed OccK8 (OprE) to be among the five most expressed substrate specific channels of the clinically important Pseudomonas aeruginosa. The high-resolution X-ray structure and electrophysiology highlighted a very narrow pore. However, experimental in vitro methods showed the transport of natural amino acids and antibiotics, among them ceftazidime. We used molecular dynamics simulations to reveal the importance of the physicochemical properties of ceftazidime in modulating the translocation through OccK8, proposing a structure-function relationship. As in general porins, the internal electric field favors the translocation of polar molecules by gainful energy compensation in the central constriction region. Importantly, the comparatively narrow OccK8 pore can undergo a substrate-induced expansion to accommodate relatively large-sized substrates.
Collapse
Affiliation(s)
- Susruta Samanta
- Department of Physics, University of Cagliari, SP Monserrato-Sestu Km 0.8, Monserrato, 09042, Italy
- Department of Chemistry, Manipal University Jaipur, VPO Dehmi Kalan, Jaipur, Rajasthan 303007, India
| | - Igor Bodrenko
- Department of Physics, University of Cagliari, SP Monserrato-Sestu Km 0.8, Monserrato, 09042, Italy
| | - Silvia Acosta-Gutiérrez
- Department of Physics, University of Cagliari, SP Monserrato-Sestu Km 0.8, Monserrato, 09042, Italy
| | - Tommaso D’Agostino
- Department of Physics, University of Cagliari, SP Monserrato-Sestu Km 0.8, Monserrato, 09042, Italy
| | - Monisha Pathania
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Ishan Ghai
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28719 Bremen, Germany
| | - Christian Schleberger
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Dirk Bumann
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Richard Wagner
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28719 Bremen, Germany
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28719 Bremen, Germany
| | - Bert van den Berg
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, SP Monserrato-Sestu Km 0.8, Monserrato, 09042, Italy
| |
Collapse
|
25
|
Mutation-Driven Evolution of Pseudomonas aeruginosa in the Presence of either Ceftazidime or Ceftazidime-Avibactam. Antimicrob Agents Chemother 2018; 62:AAC.01379-18. [PMID: 30082283 DOI: 10.1128/aac.01379-18] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/27/2018] [Indexed: 02/04/2023] Open
Abstract
Ceftazidime-avibactam is a combination of β-lactam/β-lactamase inhibitor, the use of which is restricted to some clinical cases, including cystic fibrosis patients infected with multidrug-resistant Pseudomonas aeruginosa, in which mutation is the main driver of resistance. This study aims to predict the mechanisms of mutation-driven resistance that are selected for when P. aeruginosa is challenged with either ceftazidime or ceftazidime-avibactam. For this purpose, P. aeruginosa PA14 was submitted to experimental evolution in the absence of antibiotics and in the presence of increasing concentrations of ceftazidime or ceftazidime-avibactam for 30 consecutive days. Final populations were analyzed by whole-genome sequencing. All evolved populations reached similar levels of ceftazidime resistance. In addition, they were more susceptible to amikacin and produced pyomelanin. A first event in this evolution was the selection of large chromosomal deletions containing hmgA (involved in pyomelanin production), galU (involved in β-lactams resistance), and mexXY-oprM (involved in aminoglycoside resistance). Besides mutations in mpl and dacB that regulate β-lactamase expression, mutations related to MexAB-OprM overexpression were prevalent. Ceftazidime-avibactam challenge selected mutants in the putative efflux pump PA14_45890 and PA14_45910 and in a two-component system (PA14_45870 and PA14_45880), likely regulating its expression. All populations produced pyomelanin and were more susceptible to aminoglycosides, likely due to the selection of large chromosomal deletions. Since pyomelanin-producing mutants presenting similar deletions are regularly isolated from infections, the potential aminoglycoside hypersusceptiblity and reduced β-lactam susceptibility of pyomelanin-producing P. aeruginosa should be taken into consideration for treating infections caused by these isolates.
Collapse
|
26
|
Superoxide dismutase activity confers (p)ppGpp-mediated antibiotic tolerance to stationary-phase Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2018; 115:9797-9802. [PMID: 30201715 PMCID: PMC6166797 DOI: 10.1073/pnas.1804525115] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metabolically quiescent bacteria represent a large proportion of those in natural and host environments, and they are often refractory to antibiotic treatment. Such drug tolerance is also observed in the laboratory during stationary phase, when bacteria face stress and starvation-induced growth arrest. Tolerance requires (p)ppGpp signaling, which mediates the stress and starvation stringent response (SR), but the downstream effectors that confer tolerance are unclear. We previously demonstrated that the SR is linked to increased antioxidant defenses in Pseudomonas aeruginosa We now demonstrate that superoxide dismutase (SOD) activity is a key factor in SR-mediated multidrug tolerance in stationary-phase P. aeruginosa Inactivation of the SR leads to loss of SOD activity and decreased multidrug tolerance during stationary phase. Genetic or chemical complementation of SOD activity of the ΔrelA spoT mutant (ΔSR) is sufficient to restore antibiotic tolerance to WT levels. Remarkably, we observe high membrane permeability and increased drug internalization upon ablation of SOD activity. Combined, our results highlight an unprecedented mode of SR-mediated multidrug tolerance in stationary-phase P. aeruginosa and suggest that inhibition of SOD activity may potentiate current antibiotics.
Collapse
|
27
|
Abstract
Our limited understanding of the molecular basis for compound entry into and efflux out of Gram-negative bacteria is now recognized as a key bottleneck for the rational discovery of novel antibacterial compounds. Traditional, large-scale biochemical or target-agnostic phenotypic antibacterial screening efforts have, as a result, not been very fruitful. A main driver of this knowledge gap has been the historical lack of predictive cellular assays, tools, and models that provide structure-activity relationships to inform optimization of compound accumulation. A variety of recent approaches has recently been described to address this conundrum. This Perspective explores these approaches and considers ways in which their integration could successfully redirect antibacterial drug discovery efforts.
Collapse
Affiliation(s)
- Rubén Tommasi
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ramkumar Iyer
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Alita A. Miller
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
28
|
Iyer R, Moussa SH, Durand-Réville TF, Tommasi R, Miller A. Acinetobacter baumannii OmpA Is a Selective Antibiotic Permeant Porin. ACS Infect Dis 2018; 4:373-381. [PMID: 29260856 DOI: 10.1021/acsinfecdis.7b00168] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OmpAAb is a conserved, abundantly expressed outer membrane porin in Acinetobacter baumannii whose presumed role in antibiotic permeation has not been clearly demonstrated. In this report, we use a titratable heterologous expression system to express OmpAAb in isolation and demonstrate selective passage of small molecule antibiotics through OmpAAb. ETX2514, a recently discovered broad-spectrum β-lactamase inhibitor, in combination with sulbactam, is currently in clinical testing for the treatment of drug-resistant A. baumannii infections. We demonstrate that ETX2514 permeates OmpAAb and potentiates the activity of sulbactam in an OmpAAb-dependent manner. In addition, we show that small modifications in the structure of ETX2514 differentially affect its passage through OmpAAb, revealing unique structure-porin-permeation relationships. Finally, we confirm the contribution of OmpAAb to bacterial fitness using a murine thigh model of A. baumannii infection. These results, combined with the high sequence homology of OmpA across Acinetobacter spp., suggest that optimization of antibiotic entry through OmpAAb may prove to be a feasible medicinal chemistry design strategy for future antibacterial discovery efforts.
Collapse
Affiliation(s)
- Ramkumar Iyer
- Entasis Therapeutics, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Samir H. Moussa
- Entasis Therapeutics, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | | | - Ruben Tommasi
- Entasis Therapeutics, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Alita Miller
- Entasis Therapeutics, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
29
|
Zhang YF, Han K, Chandler CE, Tjaden B, Ernst RK, Lory S. Probing the sRNA regulatory landscape of P. aeruginosa: post-transcriptional control of determinants of pathogenicity and antibiotic susceptibility. Mol Microbiol 2017; 106:919-937. [PMID: 28976035 PMCID: PMC5738928 DOI: 10.1111/mmi.13857] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2017] [Indexed: 01/01/2023]
Abstract
During environmental adaptation bacteria use small regulatory RNAs (sRNAs) to repress or activate expression of a large fraction of their proteome. We extended the use of the in vivo RNA proximity ligation method toward probing global sRNA interactions with their targets in Pseudomonas aeruginosa and verified the method with a known regulon controlled by the PrrF1 sRNA. We also identified two sRNAs (Sr0161 and ErsA) that interact with the mRNA encoding the major porin OprD responsible for the uptake of carbapenem antibiotics. These two sRNAs base pair with the 5' UTR of oprD leading to increase in resistance of the bacteria to meropenem. Additional proximity ligation experiments and enrichment for Sr0161 targets identified the mRNA for the regulator of type III secretion system. Interaction between the exsA mRNA and Sr0161 leads to a block in the synthesis of a component of the T3SS apparatus and an effector. Another sRNA, Sr006, positively regulates, without Hfq, the expression of PagL, an enzyme responsible for deacylation of lipid A, reducing its pro-inflammatory property and resulting in polymyxin resistance. Therefore, an analysis of global sRNA-mRNA interactions can lead to discoveries of novel pathways controlling gene expression that are likely integrated into larger regulatory networks.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Kook Han
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Courtney E. Chandler
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, School of Dentistry, Baltimore, Maryland, USA
| | - Brian Tjaden
- Computer Science Department, Wellesley College, Wellesley, Massachusetts, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, School of Dentistry, Baltimore, Maryland, USA
| | - Stephen Lory
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Somboon K, Niramitranon J, Pongprayoon P. Probing the binding affinities of imipenem and ertapenem for outer membrane carboxylate channel D1 (OccD1) from P. aeruginosa: simulation studies. J Mol Model 2017; 23:227. [DOI: 10.1007/s00894-017-3400-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/26/2017] [Indexed: 01/20/2023]
|
31
|
Soundararajan G, Bhamidimarri SP, Winterhalter M. Understanding Carbapenem Translocation through OccD3 (OpdP) of Pseudomonas aeruginosa. ACS Chem Biol 2017; 12:1656-1664. [PMID: 28440622 DOI: 10.1021/acschembio.6b01150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa utilizes a plethora of substrate specific channels for the uptake of small nutrients. OccD3 (OpdP or PA4501) is an OprD-like arginine uptake channel of P. aeruginosa whose role has been implicated in carbapenem uptake. To understand the mechanism of selective permeation, we reconstituted single OccD3 channels in a planar lipid bilayer and characterized the interaction with Imipenem and Meropenem, analyzing the ion current fluctuation in the presence of substrates. We performed point mutations in the constriction region of OccD3 to understand the binding and translocation of antibiotic in OccD3. By mutating two key residues in the substrate binding sites of OccD3 (located in the internal loop L7 and basic ladder), we emphasize the importance of these residues. We show that carbapenem antibiotics follow a similar path as arginine through the constriction zone and the basic ladder to translocate across OccD3.
Collapse
Affiliation(s)
- Gowrishankar Soundararajan
- Department of Life Sciences
and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | - Mathias Winterhalter
- Department of Life Sciences
and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
32
|
Iyer R, Sylvester MA, Velez-Vega C, Tommasi R, Durand-Reville TF, Miller AA. Whole-Cell-Based Assay To Evaluate Structure Permeation Relationships for Carbapenem Passage through the Pseudomonas aeruginosa Porin OprD. ACS Infect Dis 2017; 3:310-319. [PMID: 28157293 DOI: 10.1021/acsinfecdis.6b00197] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The global emergence of antibiotic resistance, especially in Gram-negative bacteria, is an urgent threat to public health. Discovery of novel classes of antibiotics with activity against these pathogens has been impeded by a fundamental lack of understanding of the molecular drivers underlying small molecule uptake. Although it is well-known that outer membrane porins represent the main route of entry for small, hydrophilic molecules across the Gram-negative cell envelope, the structure-permeation relationship for porin passage has yet to be defined. To address this knowledge gap, we developed a sensitive and specific whole-cell approach in Escherichia coli called titrable outer membrane permeability assay system (TOMAS). We used TOMAS to characterize the structure porin-permeation relationships of a set of novel carbapenem analogues through the Pseudomonas aeruginosa porin OprD. Our results show that small structural modifications, especially the number and nature of charges and their position, have dramatic effects on the ability of these molecules to permeate cells through OprD. This is the first demonstration of a defined relationship between specific molecular changes in a substrate and permeation through an isolated porin. Understanding the molecular mechanisms that impact antibiotic transit through porins should provide valuable insights to antibacterial medicinal chemistry and may ultimately allow for the rational design of porin-mediated uptake of small molecules into Gram-negative bacteria.
Collapse
Affiliation(s)
- Ramkumar Iyer
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Mark A. Sylvester
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Camilo Velez-Vega
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ruben Tommasi
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | | | - Alita A. Miller
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
33
|
Scorciapino MA, Acosta-Gutierrez S, Benkerrou D, D'Agostino T, Malloci G, Samanta S, Bodrenko I, Ceccarelli M. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:113001. [PMID: 28155846 DOI: 10.1088/1361-648x/aa543b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The increasing level of antibiotic resistance in Gram-negative bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a global challenge for modern medicine. The main reason that Gram-negative bacteria are particularly challenging is the presence of an outer cell-protecting membrane, which is not present in Gram-positive species. Such an asymmetric bilayer is a highly effective barrier for polar molecules. Several protein systems are expressed in the outer membrane to control the internal concentration of both nutrients and noxious species, in particular: (i) water-filled channels that modulate the permeation of polar molecules and ions according to concentration gradients, and (ii) efflux pumps to actively expel toxic compounds. Thus, besides expressing specific enzymes for drugs degradation, Gram-negative bacteria can also resist by modulating the influx and efflux of antibiotics, keeping the internal concentration low. However, there are no direct and robust experimental methods capable of measuring the permeability of small molecules, thus severely limiting our knowledge of the molecular mechanisms that ultimately control the permeation of antibiotics through the outer membrane. This is the innovation gap to be filled for Gram-negative bacteria. This review is focused on the permeation of small molecules through porins, considered the main path for the entry of polar antibiotics into Gram-negative bacteria. A fundamental understanding of how these proteins are able to filter small molecules is a prerequisite to design/optimize antibacterials with improved permeation. The level of sophistication of modern molecular modeling algorithms and the advances in new computer hardware has made the simulation of such complex processes possible at the molecular level. In this work we aim to share our experience and perspectives in the context of a multidisciplinary extended collaboration within the IMI-Translocation consortium. The synergistic combination of structural data, in vitro assays and computer simulations has proven to give new insights towards the identification and description of physico-chemical properties modulating permeation. Once similar general rules are identified, we believe that the use of virtual screening techniques will be very helpful in searching for new molecular scaffolds with enhanced permeation, and that molecular modeling will be of fundamental assistance to the optimization stage.
Collapse
Affiliation(s)
- Mariano Andrea Scorciapino
- Department of Biomedical Sciences, Biochemistry Unit, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700-09042 Monserrato (CA), Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
The Acinetobacter Outer Membrane Contains Multiple Specific Channels for Carbapenem β-Lactams as Revealed by Kinetic Characterization Analyses of Imipenem Permeation into Acinetobacter baylyi Cells. Antimicrob Agents Chemother 2017; 61:AAC.01737-16. [PMID: 28069648 DOI: 10.1128/aac.01737-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/28/2016] [Indexed: 12/31/2022] Open
Abstract
The number and type of outer membrane (OM) channels responsible for carbapenem uptake in Acinetobacter are still not well defined. Here, we addressed these questions by using Acinetobacter baylyi as a model species and a combination of methodologies aimed to characterize OM channels in their original membrane environment. Kinetic and competition analyses of imipenem (IPM) uptake by A. baylyi whole cells allowed us to identify different carbapenem-specific OM uptake sites. Comparative analyses of IPM uptake by A. baylyi wild-type (WT) cells and ΔcarO mutants lacking CarO indicated that this OM protein provided a carbapenem uptake site displaying saturable kinetics and common binding sites for basic amino acids compatible with a specific channel. The kinetic analysis uncovered another carbapenem-specific channel displaying a somewhat lower affinity for IPM than that of CarO and, in addition, common binding sites for basic amino acids as determined by competition studies. The use of A. baylyi gene deletion mutants lacking OM proteins proposed to function in carbapenem uptake in Acinetobacter baumannii indicated that CarO and OprD/OccAB1 mutants displayed low but consistent reductions in susceptibility to different carbapenems, including IPM, meropenem, and ertapenem. These two mutants also showed impaired growth on l-Arg but not on other carbon sources, further supporting a role of CarO and OprD/OccAB1 in basic amino acid and carbapenem uptake. A multiple-carbapenem-channel scenario may provide clues to our understanding of the contribution of OM channel loss or mutation to the carbapenem-resistant phenotype evolved by pathogenic members of the Acinetobacter genus.
Collapse
|
35
|
De Schutter JW, Morrison JP, Morrison MJ, Ciulli A, Imperiali B. Targeting Bacillosamine Biosynthesis in Bacterial Pathogens: Development of Inhibitors to a Bacterial Amino-Sugar Acetyltransferase from Campylobacter jejuni. J Med Chem 2017; 60:2099-2118. [PMID: 28182413 DOI: 10.1021/acs.jmedchem.6b01869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The glycoproteins of selected microbial pathogens often include highly modified carbohydrates such as 2,4-diacetamidobacillosamine (diNAcBac). These glycoconjugates are involved in host-cell interactions and may be associated with the virulence of medically significant Gram-negative bacteria. In light of genetic studies demonstrating the attenuated virulence of bacterial strains in which modified carbohydrate biosynthesis enzymes have been knocked out, we are developing small molecule inhibitors of selected enzymes as tools to evaluate whether such compounds modulate virulence. We performed fragment-based and high-throughput screens against an amino-sugar acetyltransferase enzyme, PglD, involved in biosynthesis of UDP-diNAcBac in Campylobacter jejuni. Herein we report optimization of the hits into potent small molecule inhibitors (IC50 < 300 nM). Biophysical characterization shows that the best inhibitors are competitive with acetyl coenzyme A and an X-ray cocrystal structure reveals that binding is biased toward occupation of the adenine subpocket of the AcCoA binding site by an aromatic ring.
Collapse
Affiliation(s)
- Joris W De Schutter
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - James P Morrison
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael J Morrison
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , DD1 5EH Dundee, Scotland
| | - Barbara Imperiali
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Department of Biology, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
36
|
Acosta Gutiérrez S, Bodrenko I, Scorciapino MA, Ceccarelli M. Macroscopic electric field inside water-filled biological nanopores. Phys Chem Chem Phys 2017; 18:8855-64. [PMID: 26931352 DOI: 10.1039/c5cp07902k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multi-drug resistance bacteria are a challenging problem of contemporary medicine. This is particularly critical for Gram-negative bacteria, where antibiotics are hindered by the outer membrane to reach internal targets. Here more polar antibiotics make use of nanometric water-filled channels to permeate inside. We present in this work a computational all-atom approach, using water as a probe, for the calculation of the macroscopic electric field inside water-filled channels. The method allows one to compare not only different systems but also the same system under different conditions, such as pH and ion concentration. This provides a detailed picture of electrostatics in biological nanopores shedding more light on how the charged residues of proteins determine the electric field inside, and also how medium can tune it. These details are central to unveil the filtering mechanism behind the permeation of small polar molecules through nanometric water-filled channels.
Collapse
Affiliation(s)
- Silvia Acosta Gutiérrez
- Department of Physics, University of Cagliari, Cittadella universitaria di Monserrato, S.P.8 - km 0.700, 09042 Monserrato (CA), Italy.
| | - Igor Bodrenko
- Department of Physics, University of Cagliari, Cittadella universitaria di Monserrato, S.P.8 - km 0.700, 09042 Monserrato (CA), Italy.
| | - Mariano Andrea Scorciapino
- Department of Biomedical Sciences, Biochemistry Unit, University of Cagliari, Cittadella universitaria di Monserrato, S.P.8 - km 0.700, 09042 Monserrato (CA), Italy
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, Cittadella universitaria di Monserrato, S.P.8 - km 0.700, 09042 Monserrato (CA), Italy.
| |
Collapse
|
37
|
Chalhoub H, Sáenz Y, Rodriguez-Villalobos H, Denis O, Kahl BC, Tulkens PM, Van Bambeke F. High-level resistance to meropenem in clinical isolates of Pseudomonas aeruginosa in the absence of carbapenemases: role of active efflux and porin alterations. Int J Antimicrob Agents 2016; 48:740-743. [PMID: 28128097 DOI: 10.1016/j.ijantimicag.2016.09.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/25/2016] [Accepted: 09/12/2016] [Indexed: 11/29/2022]
Abstract
High-level carbapenem resistance is worryingly increasing in clinical isolates and is often attributed to carbapenemase expression. This study aimed to determine the mechanisms leading to high-level meropenem resistance in six carbapenemase-negative Pseudomonas aeruginosa isolated from cystic fibrosis (CF) patients and seven carbapenemase-positive isolates from patients suffering from hospital-acquired pneumonia (HAP). MICs were determined in the absence or presence of l-arginine or glycine-glutamate as competitive substrates for OprD (OccD1) or OpdP (OccD3), respectively, or the efflux pump inhibitor Phe-Arg β-naphthylamide (PAβN). β-Lactamases were screened by phenotypic tests and/or PCR. The oprD gene and its promoter were sequenced; protein expression was evidenced by SDS-PAGE. mexA, mexX, mexC and mexE transcripts were evaluated by real-time and semiquantitative PCR. Meropenem/imipenem MICs were 64-128/16-32 mg/L and 128/128-256 mg/L in CF and HAP isolates, respectively; PAβN reduced meropenem MICs to 4-16 mg/L only and specifically in CF isolates; porin competitors had no effect on MICs. All isolates showed an increase in transcription levels of mexA, mexX and/or mexC and mutations in oprD leading to production of truncated proteins. AmpC-type cephalosporinases were overexpressed in CF isolates and VIM-2 was expressed in HAP isolates. Antibiotic exclusion from bacteria by concomitant efflux and reduced uptake is sufficient to confer high-level resistance to meropenem in isolates overexpressing AmpC-type cephalosporinases. As efflux is preponderant in these isolates, it confers a paradoxical phenotype where meropenem is less active than imipenem. Concomitant susceptibility testing of both carbapenems and rapid elucidation of the most probable resistance mechanisms is thus warranted.
Collapse
Affiliation(s)
- Hussein Chalhoub
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Yolanda Sáenz
- Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | | | - Olivier Denis
- Laboratoire de microbiologie, Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
| | | | - Paul M Tulkens
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
38
|
Exploiting the porin pathway for polar compound delivery into Gram-negative bacteria. Future Med Chem 2016; 8:1047-62. [PMID: 27303954 DOI: 10.4155/fmc-2016-0038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In Gram-negative bacteria, the outer-membrane represents an additional barrier for antibiotics to permeate inside pathogens. Our inability to come up with novel effective antibiotics mostly relies upon insufficient understanding of the molecular basis behind outer-membrane penetration. RESULTS Polar antibiotics can permeate through water-filled porins, such as OmpF and OmpC from Escherichia coli. Through molecular modeling, permeation of imipenem and meropenem was found to be strongly dependent upon capability of drugs to properly align their electric dipole to the internal electric field in the restricted region of the pore. Electrostatics differences between OmpF and OmpC, and modifications along a series of OmpC mutants from E. coli-resistant clinical strains identify a 'preorientation' region, which dramatically affects antibiotic pathway. CONCLUSION A novel perspective is presented, suggesting new molecular properties to be included in drug design.
Collapse
|
39
|
Ebejer JP, Charlton MH, Finn PW. Are the physicochemical properties of antibacterial compounds really different from other drugs? J Cheminform 2016; 8:30. [PMID: 27274770 PMCID: PMC4891840 DOI: 10.1186/s13321-016-0143-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/25/2016] [Indexed: 01/12/2023] Open
Abstract
Background It is now widely recognized that there is an urgent need for new antibacterial drugs, with novel mechanisms of action, to combat the rise of multi-drug resistant bacteria. However, few new compounds are reaching the market. Antibacterial drug discovery projects often succeed in identifying potent molecules in biochemical assays but have been beset by difficulties in obtaining antibacterial activity. A commonly held view, based on analysis of marketed antibacterial compounds, is that antibacterial drugs possess very different physicochemical properties to other drugs, and that this profile is required for antibacterial activity. Results We have re-examined this issue by performing a cheminformatics analysis of the literature data available in the ChEMBL database. The physicochemical properties of compounds with a recorded activity in an antibacterial assay were calculated and compared to two other datasets extracted from ChEMBL, marketed antibacterials and drugs marketed for other therapeutic indications. The chemical class of the compounds and Gram-negative/Gram-positive profile were also investigated. This analysis shows that compounds with antibacterial activity have physicochemical property profiles very similar to other drug classes. Conclusions The observation that many current antibacterial drugs lie in regions of physicochemical property space far from conventional small molecule therapeutics is correct. However, the inference that a compound must lie in one of these “outlier” regions in order to possess antibacterial activity is not supported by our analysis. Electronic supplementary material The online version of this article (doi:10.1186/s13321-016-0143-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean-Paul Ebejer
- InhibOx Limited, Oxford Centre for Innovation, New Road, Oxford, OX1 1BY UK ; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, MSD 2080 Malta
| | - Michael H Charlton
- InhibOx Limited, Oxford Centre for Innovation, New Road, Oxford, OX1 1BY UK
| | - Paul W Finn
- InhibOx Limited, Oxford Centre for Innovation, New Road, Oxford, OX1 1BY UK ; University of Buckingham, Hunter Street, Buckingham, MK18 1EG UK
| |
Collapse
|
40
|
Brown DG. Drug discovery strategies to outer membrane targets in Gram-negative pathogens. Bioorg Med Chem 2016; 24:6320-6331. [PMID: 27178386 DOI: 10.1016/j.bmc.2016.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/22/2016] [Accepted: 05/03/2016] [Indexed: 11/26/2022]
Abstract
This review will cover selected recent examples of drug discovery strategies which target the outer membrane (OM) of Gram-negative bacteria either by disruption of outer membrane function or by inhibition of essential gene products necessary for outer membrane assembly. Significant advances in pathway elucidation, structural biology and molecular inhibitor designs have created new opportunities for drug discovery within this target-class space.
Collapse
Affiliation(s)
- Dean G Brown
- AstraZeneca Neurosciences, Innovative Medicines and Early Development Unit, 141 Portland St., 10th Floor, Cambridge, MA 02139, USA.
| |
Collapse
|
41
|
Kos VN, McLaughlin RE, Gardner HA. Identification of unique in-frame deletions in OprD among clinical isolates of Pseudomonas aeruginosa. Pathog Dis 2016; 74:ftw031. [PMID: 27073254 DOI: 10.1093/femspd/ftw031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2016] [Indexed: 12/21/2022] Open
Abstract
A large percentage of Pseudomonas aeruginosa clinical isolates have been noted to be resistant to carbapenems due to loss of function of the OprD porin, the primary mechanism of entry for carbapenems. Such modifications also substantially abolish the organism's ability to transport arginine. Here we report the identification of an in-frame deletion in oprD which confers carbapenem resistance but is expressed and retains the ability to transport arginine.
Collapse
Affiliation(s)
- Veronica N Kos
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Robert E McLaughlin
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Humphrey A Gardner
- Early Clinical Development Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, MA 02451, USA
| |
Collapse
|
42
|
Zahn M, Bhamidimarri SP, Baslé A, Winterhalter M, van den Berg B. Structural Insights into Outer Membrane Permeability of Acinetobacter baumannii. Structure 2016; 24:221-31. [PMID: 26805524 DOI: 10.1016/j.str.2015.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 12/26/2022]
Abstract
Bacterial resistance against antibiotics is an increasing global health problem. In Gram-negative bacteria the low permeability of the outer membrane (OM) is a major factor contributing to resistance, making it important to understand channel-mediated small-molecule passage of the OM. Acinetobacter baumannii has five Occ (OM carboxylate channel) proteins, which collectively are of major importance for the entry of small molecules. To improve our understanding of the OM permeability of A. baumannii, we present here the X-ray crystal structures of four Occ proteins, renamed OccAB1 to OccAB4. In addition we have carried out a biochemical and biophysical characterization using electrophysiology and liposome swelling experiments, providing information on substrate specificities. We identify OccAB1 as having the largest pore of the Occ proteins with corresponding high rates of small-molecule uptake, and we suggest that the future design of efficient antibiotics should focus on scaffolds that can permeate efficiently through the OccAB1 channel.
Collapse
Affiliation(s)
- Michael Zahn
- Institute for Cellular and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Arnaud Baslé
- Institute for Cellular and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Mathias Winterhalter
- School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany
| | - Bert van den Berg
- Institute for Cellular and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
43
|
Pothula KR, Solano CJF, Kleinekathöfer U. Simulations of outer membrane channels and their permeability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:1760-71. [PMID: 26721326 DOI: 10.1016/j.bbamem.2015.12.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 12/25/2022]
Abstract
Channels in the outer membrane of Gram-negative bacteria provide essential pathways for the controlled and unidirectional transport of ions, nutrients and metabolites into the cell. At the same time the outer membrane serves as a physical barrier for the penetration of noxious substances such as antibiotics into the bacteria. Most antibiotics have to pass through these membrane channels to either reach cytoplasmic bound targets or to further cross the hydrophobic inner membrane. Considering the pharmaceutical significance of antibiotics, understanding the functional role and mechanism of these channels is of fundamental importance in developing strategies to design new drugs with enhanced permeation abilities. Due to the biological complexity of membrane channels and experimental limitations, computer simulations have proven to be a powerful tool to investigate the structure, dynamics and interactions of membrane channels. Considerable progress has been made in computer simulations of membrane channels during the last decade. The goal of this review is to provide an overview of the computational techniques and their roles in modeling the transport across outer membrane channels. A special emphasis is put on all-atom molecular dynamics simulations employed to better understand the transport of molecules. Moreover, recent molecular simulations of ion, substrate and antibiotics translocation through membrane pores are briefly summarized. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Karunakar R Pothula
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Carlos J F Solano
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
44
|
Bajaj H, Scorciapino MA, Moynié L, Page MGP, Naismith JH, Ceccarelli M, Winterhalter M. Molecular Basis of Filtering Carbapenems by Porins from β-Lactam-resistant Clinical Strains of Escherichia coli. J Biol Chem 2015; 291:2837-47. [PMID: 26645688 DOI: 10.1074/jbc.m115.690156] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 11/06/2022] Open
Abstract
Integral membrane proteins known as porins are the major pathway by which hydrophilic antibiotics cross the outer membrane of Gram-negative bacteria. Single point mutations in porins can decrease the permeability of an antibiotic, either by reduction of channel size or modification of electrostatics in the channel, and thereby confer clinical resistance. Here, we investigate four mutant OmpC proteins from four different clinical isolates of Escherichia coli obtained sequentially from a single patient during a course of antimicrobial chemotherapy. OmpC porin from the first isolate (OmpC20) undergoes three consecutive and additive substitutions giving rise to OmpC26, OmpC28, and finally OmpC33. The permeability of two zwitterionic carbapenems, imipenem and meropenem, measured using liposome permeation assays and single channel electrophysiology differs significantly between OmpC20 and OmpC33. Molecular dynamic simulations show that the antibiotics must pass through the constriction zone of porins with a specific orientation, where the antibiotic dipole is aligned along the electric field inside the porin. We identify that changes in the vector of the electric field in the mutated porin, OmpC33, create an additional barrier by "trapping" the antibiotic in an unfavorable orientation in the constriction zone that suffers steric hindrance for the reorientation needed for its onward translocation. Identification and understanding the underlying molecular details of such a barrier to translocation will aid in the design of new antibiotics with improved permeation properties in Gram-negative bacteria.
Collapse
Affiliation(s)
- Harsha Bajaj
- From the School of Engineering and Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Mariano A Scorciapino
- the Department of Physics, University of Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato, CA, Italy
| | - Lucile Moynié
- the Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife, United Kingdom, and
| | - Malcolm G P Page
- the Basilea Pharmaceutica International Ltd., Grenzacherstr. 487, CH-4058 Basel, Switzerland
| | - James H Naismith
- the Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife, United Kingdom, and
| | - Matteo Ceccarelli
- the Department of Physics, University of Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato, CA, Italy,
| | - Mathias Winterhalter
- From the School of Engineering and Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany,
| |
Collapse
|
45
|
Zgurskaya HI, López CA, Gnanakaran S. Permeability Barrier of Gram-Negative Cell Envelopes and Approaches To Bypass It. ACS Infect Dis 2015; 1:512-522. [PMID: 26925460 DOI: 10.1021/acsinfecdis.5b00097] [Citation(s) in RCA: 388] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gram-negative bacteria are intrinsically resistant to many antibiotics. Species that have acquired multidrug resistance and cause infections that are effectively untreatable present a serious threat to public health. The problem is broadly recognized and tackled at both the fundamental and applied levels. This paper summarizes current advances in understanding the molecular bases of the low permeability barrier of Gram-negative pathogens, which is the major obstacle in discovery and development of antibiotics effective against such pathogens. Gaps in knowledge and specific strategies to break this barrier and to achieve potent activities against difficult Gram-negative bacteria are also discussed.
Collapse
Affiliation(s)
- Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Cesar A. López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
46
|
Tommasi R, Brown DG, Walkup GK, Manchester JI, Miller AA. ESKAPEing the labyrinth of antibacterial discovery. Nat Rev Drug Discov 2015; 14:529-42. [DOI: 10.1038/nrd4572] [Citation(s) in RCA: 379] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Samanta S, Scorciapino MA, Ceccarelli M. Molecular basis of substrate translocation through the outer membrane channel OprD of Pseudomonas aeruginosa. Phys Chem Chem Phys 2015; 17:23867-76. [DOI: 10.1039/c5cp02844b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The dynamics and interplay of internal and external loops create two alternative paths for the permeation of substrates through the specific outer membrane channel OprD.
Collapse
Affiliation(s)
- Susruta Samanta
- Department of Physics
- University of Cagliari
- I-09042 Monserrato
- Italy
| | | | | |
Collapse
|