1
|
Chen PHB, Li XL, Baskin JM. Synthetic Lipid Biology. Chem Rev 2025. [PMID: 39805091 DOI: 10.1021/acs.chemrev.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions. Motivated by this daunting complexity, researchers across disciplines are bringing order to the seeming chaos of biological lipids and membranes. Here, we formalize these efforts as "synthetic lipid biology". Inspired by the idea, central to synthetic biology, that our abilities to understand and build biological systems are intimately connected, we organize studies and approaches across numerous fields to create, manipulate, and analyze lipids and biomembranes. These include construction of lipids and membranes from scratch using chemical and chemoenzymatic synthesis, editing of pre-existing membranes using optogenetics and protein engineering, detection of lipid metabolism and transport using bioorthogonal chemistry, and probing of lipid-protein interactions and membrane biophysical properties. What emerges is a portrait of an incipient field where chemists, biologists, physicists, and engineers work together in proximity─like lipids themselves─to build a clearer description of the properties, behaviors, and functions of lipids and membranes.
Collapse
Affiliation(s)
- Po-Hsun Brian Chen
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiang-Ling Li
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Uematsu M, Baskin JM. Chemical Approaches for Measuring and Manipulating Lipids at the Organelle Level. Cold Spring Harb Perspect Biol 2023; 15:a041407. [PMID: 37604586 PMCID: PMC10691496 DOI: 10.1101/cshperspect.a041407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
As the products of complex and often redundant metabolic pathways, lipids are challenging to measure and perturb using genetic tools. Yet by virtue of being the major constituents of cellular membranes, lipids are highly regulated in space and time. Chemists have stepped into this methodological void, developing an array of techniques for the precise quantification and manipulation of lipids at the subcellular, organelle level. Here, we survey the landscape of these methods. For measuring lipids, we summarize the use of metabolic labeling and click chemistry tagging, photoaffinity labeling, isotopic tagging for Raman microscopy, and chemoenzymatic labeling for tracking lipid production and interorganelle transport. For perturbing lipids, we describe synthetic photocaged lipids and membrane editing approaches using optogenetic enzymes for precise manipulation of lipid signaling. Collectively, these chemical and biochemical tools are revealing phenomena and mechanisms underlying lipid functions at the subcellular level.
Collapse
Affiliation(s)
- Masaaki Uematsu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
3
|
Abstract
Lipids are key components of all organisms. We are well educated in their use as fuel and their essential role to form membranes. We also know much about their biosynthesis and metabolism. We are also aware that most lipids have signaling character meaning that a change in their concentration or location constitutes a signal that helps a living cell to respond to changes in the environment or to fulfill its specific function ranging from secretion to cell division. What is much less understood is how lipids change location in cells over time and what other biomolecules they interact with at each stage of their lifetime. Due to the large number of often quite similar lipid species and the sometimes very short lifetime of signaling lipids, we need highly specific tools to manipulate and visualize lipids and lipid-protein interactions. If successfully applied, these tools provide fabulous opportunities for discovery.In this Account, I summarize the development of synthetic tools from our lab that were designed to address crucial properties that allow them to function as tools in live cell experiments. Techniques to change the concentration of lipids by adding a small molecule or by light are described and complemented by examples of biological findings made when applying the tools. This ranges from chemical dimerizer-based systems to synthetic "caged" lipid derivatives. Furthermore, I discuss the problem of locating a lipid in an intact cell. Synthetic molecular probes are described that help to unravel the lipid location and to determine their binding proteins. These location studies require in-cell lipid tagging by click chemistry, photo-cross-linking to prevent further movement and the "caging" groups to avoid premature metabolism. The combination of these many technical features in a single tool allows for the analysis of not only lipid fluxes through metabolism but also lipid transport from one membrane to another as well as revealing the lipid interactome in a cell-dependent manner. This latter point is crucial because with these multifunctional tools in combination with lipidomics we can now address differences in healthy versus diseased cells and ultimately find the changes that are essential for disease development and new therapeutics that prevent these changes.
Collapse
Affiliation(s)
- Carsten Schultz
- Department of Chemical Physiology and
Biochemistry, Oregon Health & Science
University, Portland, Oregon 97239, United States
| |
Collapse
|
4
|
Simon C, Feng S, Riezman H. Chemical Biology Tools to Study Lipids and their Metabolism with Increased Spatial and Temporal Resolution. Chimia (Aarau) 2021; 75:1012-1016. [PMID: 34920769 DOI: 10.2533/chimia.2021.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lipids are important cellular components providing many essential functions. To fulfill these various functions evolution has selected for a diverse set of lipids and this diversity is seen at the organismal, cellular and subcellular level. Understanding how cells maintain this complex lipid organization is a very challenging problem, which for lipids, is not easily addressed using biochemical and genetic techniques. Therefore, chemical tools have an important role to play in our quest to understand the complexities of lipid metabolism. Here we discuss new chemical tools to study lipids, their distribution and metabolism with increased spatial and temporal resolution.
Collapse
Affiliation(s)
- Clémence Simon
- NCCR Chemical Biology, University of Geneva, CH-1211 Geneva
| | - Suihan Feng
- NCCR Chemical Biology, University of Geneva, CH-1211 Geneva; Current Address : Center for Microbes, Health and Development (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, China
| | - Howard Riezman
- NCCR Chemical Biology, University of Geneva, CH-1211 Geneva;,
| |
Collapse
|
5
|
Müller R, Kojic A, Citir M, Schultz C. Synthesis and Cellular Labeling of Multifunctional Phosphatidylinositol Bis- and Trisphosphate Derivatives. Angew Chem Int Ed Engl 2021; 60:19759-19765. [PMID: 34075669 PMCID: PMC8390440 DOI: 10.1002/anie.202103599] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/07/2021] [Indexed: 12/15/2022]
Abstract
We synthesized the first multifunctionalized phosphoinositide polyphosphate derivatives featuring a photo-removable protecting group ("cage"), a photo-crosslinkable diazirine group, and a terminal alkyne group useful for click chemistry. We demonstrate that the lipid derivatives readily enter cells. After photo-crosslinking, cell fixation and fluorescent tagging via click chemistry, we determined the intracellular location of the lipid derivatives before and after uncaging of the lipids. We find that there is rapid trafficking of PI(3,4)P2 and PI(3,4,5)P3 derivatives to the plasma membrane, opening the intriguing possibility that there is active transport of these lipids involved. We employed the photo-crosslinking and click chemistry functions to analyze the proteome of PI(3,4,5)P3 -binding proteins. From the latter, we validated by RNAi that the putative lipid binding proteins ATP11A and MPP6 are involved in the transport of PI(3,4,5)P3 to the plasma membrane.
Collapse
Affiliation(s)
- Rainer Müller
- European Molecular Biology Laboratory (EMBL)Cell Biology & Biophysics UnitMeyerhofstr. 169117HeidelbergGermany
| | - Ana Kojic
- European Molecular Biology Laboratory (EMBL)Cell Biology & Biophysics UnitMeyerhofstr. 169117HeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint Ph.D. Degree between EMBL and Heidelberg University69117HeidelbergGermany
- Oregon Health & Science UniversityDepartment of Chemical Physiology and Biochemistry3181 SW Sam Jackson Park RdPortlandOR97239-3098USA
| | - Mevlut Citir
- European Molecular Biology Laboratory (EMBL)Cell Biology & Biophysics UnitMeyerhofstr. 169117HeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint Ph.D. Degree between EMBL and Heidelberg University69117HeidelbergGermany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL)Cell Biology & Biophysics UnitMeyerhofstr. 169117HeidelbergGermany
- Oregon Health & Science UniversityDepartment of Chemical Physiology and Biochemistry3181 SW Sam Jackson Park RdPortlandOR97239-3098USA
| |
Collapse
|
6
|
Müller R, Kojic A, Citir M, Schultz C. Synthesis and Cellular Labeling of Multifunctional Phosphatidylinositol Bis‐ and Trisphosphate Derivatives. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Rainer Müller
- European Molecular Biology Laboratory (EMBL) Cell Biology & Biophysics Unit Meyerhofstr. 1 69117 Heidelberg Germany
| | - Ana Kojic
- European Molecular Biology Laboratory (EMBL) Cell Biology & Biophysics Unit Meyerhofstr. 1 69117 Heidelberg Germany
- Faculty of Biosciences Collaboration for Joint Ph.D. Degree between EMBL and Heidelberg University 69117 Heidelberg Germany
- Oregon Health & Science University Department of Chemical Physiology and Biochemistry 3181 SW Sam Jackson Park Rd Portland OR 97239-3098 USA
| | - Mevlut Citir
- European Molecular Biology Laboratory (EMBL) Cell Biology & Biophysics Unit Meyerhofstr. 1 69117 Heidelberg Germany
- Faculty of Biosciences Collaboration for Joint Ph.D. Degree between EMBL and Heidelberg University 69117 Heidelberg Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL) Cell Biology & Biophysics Unit Meyerhofstr. 1 69117 Heidelberg Germany
- Oregon Health & Science University Department of Chemical Physiology and Biochemistry 3181 SW Sam Jackson Park Rd Portland OR 97239-3098 USA
| |
Collapse
|
7
|
Josa‐Culleré L, Llebaria A. In the Search for Photocages Cleavable with Visible Light: An Overview of Recent Advances and Chemical Strategies. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000253] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Laia Josa‐Culleré
- Laboratory of Medicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Amadeu Llebaria
- Laboratory of Medicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| |
Collapse
|
8
|
Yamahira S, Satoh T, Yanagawa F, Tamura M, Takagi T, Nakatani E, Kusama Y, Sumaru K, Sugiura S, Kanamori T. Stepwise construction of dynamic microscale concentration gradients around hydrogel-encapsulated cells in a microfluidic perfusion culture device. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200027. [PMID: 32874617 PMCID: PMC7428233 DOI: 10.1098/rsos.200027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Inside living organisms, concentration gradients dynamically change over time as biological processes progress. Therefore, methods to construct dynamic microscale concentration gradients in a spatially controlled manner are needed to provide more realistic research environments. Here, we report a novel method for the construction of dynamic microscale concentration gradients in a stepwise manner around cells in micropatterned hydrogel. In our method, cells are encapsulated in a photodegradable hydrogel formed inside a microfluidic perfusion culture device, and perfusion microchannels are then fabricated in the hydrogel by micropatterned photodegradation. The cells in the micropatterned hydrogel can then be cultured by perfusing culture medium through the fabricated microchannels. By using this method, we demonstrate the simultaneous construction of two dynamic concentration gradients, which allowed us to expose the cells encapsulated in the hydrogel to a dynamic microenvironment.
Collapse
Affiliation(s)
- Shinya Yamahira
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Taku Satoh
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Fumiki Yanagawa
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Masato Tamura
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Toshiyuki Takagi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Eri Nakatani
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yuta Kusama
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Kimio Sumaru
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Shinji Sugiura
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Toshiyuki Kanamori
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| |
Collapse
|
9
|
Morstein J, Dacheux MA, Norman DD, Shemet A, Donthamsetti PC, Citir M, Frank JA, Schultz C, Isacoff EY, Parrill AL, Tigyi GJ, Trauner D. Optical Control of Lysophosphatidic Acid Signaling. J Am Chem Soc 2020; 142:10612-10616. [PMID: 32469525 DOI: 10.1021/jacs.0c02154] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lysophosphatidic acid (LPA) is a phospholipid that acts as an extracellular signaling molecule and activates the family of lysophosphatidic acid receptors (LPA1-6). These G protein-coupled receptors (GPCRs) are broadly expressed and are particularly important in development as well as in the nervous, cardiovascular, reproductive, gastrointestinal, and pulmonary systems. Here, we report on a photoswitchable analogue of LPA, termed AzoLPA, which contains an azobenzene photoswitch embedded in the acyl chain. AzoLPA enables optical control of LPA receptor activation, shown through its ability to rapidly control LPA-evoked increases in intracellular Ca2+ levels. AzoLPA shows greater activation of LPA receptors in its light-induced cis-form than its dark-adapted (or 460 nm light-induced) trans-form. AzoLPA enabled the optical control of neurite retraction through its activation of the LPA2 receptor.
Collapse
Affiliation(s)
- Johannes Morstein
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Mélanie A Dacheux
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee 39163, United States
| | - Derek D Norman
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee 39163, United States
| | - Andrej Shemet
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Prashant C Donthamsetti
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Mevlut Citir
- European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - James A Frank
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany.,Chemical Physiology & Biochemistry Department, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, United States
| | - Abby L Parrill
- Department of Chemistry, University of Memphis, Memphis, Tennessee 38152, United States
| | - Gabor J Tigyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee 39163, United States
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
10
|
Wagner N, Schuhmacher M, Lohmann A, Nadler A. A Coumarin Triflate Reagent Enables One-Step Synthesis of Photo-Caged Lipid Metabolites for Studying Cell Signaling. Chemistry 2019; 25:15483-15487. [PMID: 31461184 PMCID: PMC6916161 DOI: 10.1002/chem.201903909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/31/2022]
Abstract
Photorelease of caged compounds is among the most powerful experimental approaches for studying cellular functions on fast timescales. However, its full potential has yet to be exploited, as the number of caged small molecules available for cell biological studies has been limited by synthetic challenges. Addressing this problem, a straightforward, one-step procedure for efficiently synthesizing caged compounds was developed. An in situ generated benzylic coumarin triflate reagent was used to specifically functionalize carboxylate and phosphate moieties in the presence of free hydroxy groups, generating various caged lipid metabolites, including a number of GPCR ligands. By combining the photo-caged ligands with the respective receptors, an easily implementable experimental platform for the optical control and analysis of GPCR-mediated signal transduction in living cells was developed. Ultimately, the described synthetic strategy allows rapid generation of photo-caged small molecules and thus greatly facilitates the analysis of their biological roles in live cell microscopy assays.
Collapse
Affiliation(s)
- Nicolai Wagner
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 10801307DresdenGermany
| | - Milena Schuhmacher
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 10801307DresdenGermany
| | - Annett Lohmann
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 10801307DresdenGermany
| | - André Nadler
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 10801307DresdenGermany
| |
Collapse
|
11
|
Dore TM. Light-Activated Chemotaxis. Cell Chem Biol 2019; 23:531-532. [PMID: 27203370 DOI: 10.1016/j.chembiol.2016.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Using light to control cellular processes is one of the attractive areas of research. Here, availability of different, light-responsive caged compounds has played a critical role. In this issue of Cell Chemical Biology, Hövelmann et al. (2016) give us an example of how to design and use caged lipids to guide chemotaxis at the single cell level.
Collapse
Affiliation(s)
- Timothy M Dore
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
12
|
Bumpus TW, Baskin JM. Greasing the Wheels of Lipid Biology with Chemical Tools. Trends Biochem Sci 2018; 43:970-983. [PMID: 30472989 DOI: 10.1016/j.tibs.2018.09.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/31/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
Biological lipids are a structurally diverse and historically vexing group of hydrophobic metabolites. Here, we review recent advances in chemical imaging techniques that reveal changes in lipid biosynthesis, metabolism, dynamics, and interactions. We highlight tools for tagging many lipid classes via metabolic incorporation of bioorthogonally functionalized precursors, detectable via click chemistry, and photocaged, photoswitchable, and photocrosslinkable variants of different lipids. Certain lipid probes can supplant traditional protein-based markers of organelle membranes in super-resolution microscopy, and emerging vibrational imaging methods, such as stimulated Raman spectroscopy (SRS), enable simultaneous imaging of more than a dozen different types of target molecule, including lipids. Collectively, these chemical imaging techniques will illuminate, in living color, previously hidden aspects of lipid biology.
Collapse
Affiliation(s)
- Timothy W Bumpus
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
13
|
Laguerre A, Schultz C. Novel lipid tools and probes for biological investigations. Curr Opin Cell Biol 2018; 53:97-104. [PMID: 30015291 DOI: 10.1016/j.ceb.2018.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
We present the latest advances in lipid tool development for studying cellular membrane trafficking and metabolism. We focus on chemical modifications that are introduced to natural lipid structures. The new functionalities are used to follow and interfere with lipid dynamics in intact cells.
Collapse
Affiliation(s)
- Aurélien Laguerre
- Dept. of Physiology & Pharmacology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Carsten Schultz
- Dept. of Physiology & Pharmacology, Oregon Health and Science University (OHSU), Portland, OR, USA; European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, 69117 Heidelberg, Germany.
| |
Collapse
|
14
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemical Control of Biological Processes in Cells and Animals. Angew Chem Int Ed Engl 2018; 57:2768-2798. [PMID: 28521066 PMCID: PMC6026863 DOI: 10.1002/anie.201700171] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/06/2017] [Indexed: 12/13/2022]
Abstract
Biological processes are naturally regulated with high spatial and temporal control, as is perhaps most evident in metazoan embryogenesis. Chemical tools have been extensively utilized in cell and developmental biology to investigate cellular processes, and conditional control methods have expanded applications of these technologies toward resolving complex biological questions. Light represents an excellent external trigger since it can be controlled with very high spatial and temporal precision. To this end, several optically regulated tools have been developed and applied to living systems. In this review we discuss recent developments of optochemical tools, including small molecules, peptides, proteins, and nucleic acids that can be irreversibly or reversibly controlled through light irradiation, with a focus on applications in cells and animals.
Collapse
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Taylor Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Yuta Naro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
15
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemische Steuerung biologischer Vorgänge in Zellen und Tieren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201700171] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Taylor Courtney
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Yuta Naro
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
16
|
Carmona-Rosas G, Alfonzo-Méndez MA, Hernández-Espinosa DA, Romero-Ávila MT, García-Sáinz JA. A549 cells as a model to study endogenous LPA 1 receptor signaling and regulation. Eur J Pharmacol 2017; 815:258-265. [DOI: 10.1016/j.ejphar.2017.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/29/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022]
|
17
|
Trifunctional lipid probes for comprehensive studies of single lipid species in living cells. Proc Natl Acad Sci U S A 2017; 114:1566-1571. [PMID: 28154130 DOI: 10.1073/pnas.1611096114] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lipid-mediated signaling events regulate many cellular processes. Investigations of the complex underlying mechanisms are difficult because several different methods need to be used under varying conditions. Here we introduce multifunctional lipid derivatives to study lipid metabolism, lipid-protein interactions, and intracellular lipid localization with a single tool per target lipid. The probes are equipped with two photoreactive groups to allow photoliberation (uncaging) and photo-cross-linking in a sequential manner, as well as a click-handle for subsequent functionalization. We demonstrate the versatility of the design for the signaling lipids sphingosine and diacylglycerol; uncaging of the probe for these two species triggered calcium signaling and intracellular protein translocation events, respectively. We performed proteomic screens to map the lipid-interacting proteome for both lipids. Finally, we visualized a sphingosine transport deficiency in patient-derived Niemann-Pick disease type C fibroblasts by fluorescence as well as correlative light and electron microscopy, pointing toward the diagnostic potential of such tools. We envision that this type of probe will become important for analyzing and ultimately understanding lipid signaling events in a comprehensive manner.
Collapse
|