1
|
Sajko S, Skeens E, Schinagl A, Ferhat M, Mirkina I, Mayer J, Rossmueller G, Thiele M, Lisi GP. Redox-dependent plasticity of oxMIF facilitates its interaction with CD74 and therapeutic antibodies. Redox Biol 2024; 75:103264. [PMID: 38972295 PMCID: PMC11263951 DOI: 10.1016/j.redox.2024.103264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024] Open
Abstract
MIF is a ubiquitous protein involved in proinflammatory processes, which undergoes an oxidation-driven conformational change to oxidized (ox)MIF. We demonstrate that hypochlorous acid, produced by neutrophil-released myeloperoxidase (MPO) under inflammatory conditions, effectively oxidizes MIF into the oxMIF isoform, which is specifically recognized by the anti-oxMIF therapeutic antibody, ON104. NMR investigation of MIF oxidized by the MPO system revealed increased flexibility throughout the MIF structure, including at several catalytic and allosteric sites. Mass spectrometry of MPO-oxMIF revealed methionines as the primary site of oxidation, whereas Pro2 and Tyr99/100 remained almost unmodified. ELISA, SPR and cell-based assays demonstrated that structural changes caused by MPO-driven oxidation promoted binding of oxMIF to its receptor, CD74, which does not occur with native MIF. These data reveal the environment and modifications that facilitate interactions between MIF and its pro-inflammatory receptor, and a route for therapeutic intervention targeting the oxMIF isoform.
Collapse
Affiliation(s)
- Sara Sajko
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Erin Skeens
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, USA
| | | | - Maroua Ferhat
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Irina Mirkina
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Julia Mayer
- OncoOne Research and Development GmbH, Vienna, Austria
| | | | | | - George P Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, USA
| |
Collapse
|
2
|
Parkins A, Pilien AVR, Wolff AM, Argueta C, Vargas J, Sadeghi S, Franz AH, Thompson MC, Pantouris G. The C-terminal Region of D-DT Regulates Molecular Recognition for Protein-Ligand Complexes. J Med Chem 2024. [PMID: 38670943 DOI: 10.1021/acs.jmedchem.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Systematic analysis of molecular recognition is critical for understanding the biological function of macromolecules. For the immunomodulatory protein D-dopachrome tautomerase (D-DT), the mechanism of protein-ligand interactions is poorly understood. Here, 17 carefully designed protein variants and wild type (WT) D-DT were interrogated with an array of complementary techniques to elucidate the structural basis of ligand recognition. Utilization of a substrate and two selective inhibitors with distinct binding profiles offered previously unseen mechanistic insights into D-DT-ligand interactions. Our results demonstrate that the C-terminal region serves a key role in molecular recognition via regulation of the active site opening, protein-ligand interactions, and conformational flexibility of the pocket's environment. While our study is the first comprehensive analysis of molecular recognition for D-DT, the findings reported herein promote the understanding of protein functionality and enable the design of new structure-based drug discovery projects.
Collapse
Affiliation(s)
- Andrew Parkins
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | | | - Alexander M Wolff
- Department of Chemistry and Biochemistry, University of California, Merced, California 95340, United States
| | - Christopher Argueta
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Jasmine Vargas
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Shahrzad Sadeghi
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Andreas H Franz
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Michael C Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, California 95340, United States
| | - Georgios Pantouris
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| |
Collapse
|
3
|
Breidung D, Megas IF, Freytag DL, Bernhagen J, Grieb G. The Role of Macrophage Migration Inhibitory Factor (MIF) and D-Dopachrome Tautomerase (D-DT/MIF-2) in Infections: A Clinical Perspective. Biomedicines 2023; 12:2. [PMID: 38275363 PMCID: PMC10813530 DOI: 10.3390/biomedicines12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Macrophage migration inhibitory factor (MIF) and its homolog, D-dopachrome tautomerase (D-DT), are cytokines that play critical roles in the immune response to various infectious diseases. This review provides an overview of the complex involvement of MIF and D-DT in bacterial, viral, fungal, and parasitic infections. The role of MIF in different types of infections is controversial, as it has either a protective function or a host damage-enhancing function depending on the pathogen. Depending on the specific role of MIF, different therapeutic options for MIF-targeting drugs arise. Human MIF-neutralizing antibodies, anti-parasite MIF antibodies, small molecule MIF inhibitors or MIF-blocking peptides, as well as the administration of exogenous MIF or MIF activity-augmenting small molecules have potential therapeutic applications and need to be further explored in the future. In addition, MIF has been shown to be a potential biomarker and therapeutic target in sepsis. Further research is needed to unravel the complexity of MIF and D-DT in infectious diseases and to develop personalized therapeutic approaches targeting these cytokines. Overall, a comprehensive understanding of the role of MIF and D-DT in infections could lead to new strategies for the diagnosis, treatment, and management of infectious diseases.
Collapse
Affiliation(s)
- David Breidung
- Department of Plastic, Reconstructive and Hand Surgery, Burn Center for Severe Burn Injuries, Klinikum Nuremberg Hospital, Paracelsus Medical University, Breslauer Str. 201, 90471 Nuremberg, Germany;
| | - Ioannis-Fivos Megas
- Department of Orthopaedic and Trauma Surgery, Center of Plastic Surgery, Hand Surgery and Microsurgery, Evangelisches Waldkrankenhaus Spandau, Stadtrandstr. 555, 13589 Berlin, Germany;
| | - David Lysander Freytag
- Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Kladower Damm 221, 14089 Berlin, Germany;
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), Feodor-Lynenstraße 17, 81377 Munich, Germany;
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynenstraße 17, 81377 Munich, Germany
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Kladower Damm 221, 14089 Berlin, Germany;
- Department of Plastic Surgery and Hand Surgery, Burn Center, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
4
|
Parkins A, Pantouris G. Protocol for purification and enzymatic characterization of members of the human macrophage migration inhibitory factor superfamily. STAR Protoc 2023; 4:102375. [PMID: 37355993 PMCID: PMC10319315 DOI: 10.1016/j.xpro.2023.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/17/2023] [Accepted: 05/23/2023] [Indexed: 06/27/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) and D-dopachrome tautomerase (D-DT or MIF-2) are two proteins serving a key role in the pathogenesis of multiple disorders, including cancer.1 Here, we present a protocol for the purification and enzymatic characterization of MIF and D-DT using keto-enol tautomerase activity. This approach measures enzymatic activity through the formation of an enol-borate complex. We describe steps for expressing and purifying proteins, preparing the 96-well microplate, and assay implementation including monitoring of keto-enol tautomerase activity. For complete details on the use and execution of this protocol, please refer to Parkins et al.2,3.
Collapse
|
5
|
Chen E, Widjaja V, Kyro G, Allen B, Das P, Prahaladan VM, Bhandari V, Lolis EJ, Batista VS, Lisi GP. Mapping N- to C-terminal allosteric coupling through disruption of a putative CD74 activation site in D-dopachrome tautomerase. J Biol Chem 2023; 299:104729. [PMID: 37080391 PMCID: PMC10208890 DOI: 10.1016/j.jbc.2023.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023] Open
Abstract
The macrophage migration inhibitory factor (MIF) protein family consists of MIF and D-dopachrome tautomerase (also known as MIF-2). These homologs share 34% sequence identity while maintaining nearly indistinguishable tertiary and quaternary structure, which is likely a major contributor to their overlapping functions, including the binding and activation of the cluster of differentiation 74 (CD74) receptor to mediate inflammation. Previously, we investigated a novel allosteric site, Tyr99, that modulated N-terminal catalytic activity in MIF through a "pathway" of dynamically coupled residues. In a comparative study, we revealed an analogous allosteric pathway in MIF-2 despite its unique primary sequence. Disruptions of the MIF and MIF-2 N termini also diminished CD74 activation at the C terminus, though the receptor activation site is not fully defined in MIF-2. In this study, we use site-directed mutagenesis, NMR spectroscopy, molecular simulations, in vitro and in vivo biochemistry to explore the putative CD74 activation region of MIF-2 based on homology to MIF. We also confirm its reciprocal structural coupling to the MIF-2 allosteric site and N-terminal enzymatic site. Thus, we provide further insight into the CD74 activation site of MIF-2 and its allosteric coupling for immunoregulation.
Collapse
Affiliation(s)
- Emily Chen
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Vinnie Widjaja
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Gregory Kyro
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Brandon Allen
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Pragnya Das
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, New Jersey, USA
| | - Varsha M Prahaladan
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, New Jersey, USA
| | - Vineet Bhandari
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, New Jersey, USA
| | - Elias J Lolis
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut, USA.
| | - George P Lisi
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
6
|
Parkins A, Chen E, Rangel VM, Singh M, Xue L, Lisi GP, Pantouris G. Ligand-induced conformational changes enable intersubunit communications in D-dopachrome tautomerase. Biophys J 2023; 122:1268-1276. [PMID: 36804669 PMCID: PMC10111345 DOI: 10.1016/j.bpj.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
D-Dopachrome tautomerase (D-DT; or MIF-2) is a multifunctional protein with immunomodulatory properties and a documented pathogenic role in inflammation and cancer that is associated with activation of the cell surface receptor CD74. Alongside D-DT, macrophage migration inhibitory factor (MIF) is also known to activate CD74, promoting pathogenesis. While the role of the MIF/CD74 axis has been extensively studied in various disease models, the late discovery of the D-DT/CD74 axis has led to a poor investigation into the D-DT-induced activation mechanism of CD74. A previous study has identified 4-(3-carboxyphenyl)-2,5-pyridinedicarboxylic acid (4-CPPC) as the first selective and reversible inhibitor of D-DT and reported its potency to block the D-DT-induced activation of CD74 in a cell-based model. In this study, we employ molecular dynamics simulations and nuclear magnetic resonance experiments to study 4-CPPC-induced changes to the dynamic profile of D-DT. We found that binding of the inhibitor remarkably promotes the conformational flexibility of C-terminal without impacting the structural stability of the biological assembly. Consequently, long-range intrasubunit (>11 Å) and intersubunit (>30 Å) communications are enabled between distal regions. Communication across the three subunits is accomplished via 4-CPPC, which serves as a communication bridge after Val113 is displaced from its hydrophobic pocket. This previously unrecognized structural property of D-DT is not shared with its human homolog, MIF, which exhibits an impressive C-terminal rigidity even in the presence of an inhibitor. Considering the previously reported role of MIF's C-terminal in the activation of CD74, our results break new ground for understanding the functionality of D-DT in health and disease.
Collapse
Affiliation(s)
- Andrew Parkins
- Department of Chemistry, University of the Pacific, Stockton, California
| | - Emily Chen
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island
| | - Vanessa M Rangel
- Department of Chemistry, University of the Pacific, Stockton, California
| | - Mandeep Singh
- Department of Chemistry, University of the Pacific, Stockton, California
| | - Liang Xue
- Department of Chemistry, University of the Pacific, Stockton, California
| | - George P Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island
| | - Georgios Pantouris
- Department of Chemistry, University of the Pacific, Stockton, California.
| |
Collapse
|
7
|
Parkins A, Sandin SI, Knittel J, Franz AH, Ren J, de Alba E, Pantouris G. Underrepresented Impurities in 4-Hydroxyphenylpyruvate Affect the Catalytic Activity of Multiple Enzymes. Anal Chem 2023; 95:4957-4965. [PMID: 36877482 DOI: 10.1021/acs.analchem.2c04969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a key immunostimulatory protein with regulatory properties in several disorders, including inflammation and cancer. All the reported inhibitors that target the biological activities of MIF have been discovered by testing against its keto/enol tautomerase activity. While the natural substrate is still unknown, model MIF substrates are used for kinetic experiments. The most extensively used model substrate is 4-hydroxyphenyl pyruvate (4-HPP), a naturally occurring intermediate of tyrosine metabolism. Here, we examine the impact of 4-HPP impurities in the precise and reproducible determination of MIF kinetic data. To provide unbiased evaluation, we utilized 4-HPP powders from five different manufacturers. Biochemical and biophysical analyses showed that the enzymatic activity of MIF is highly influenced by underrepresented impurities found in 4-HPP. Besides providing inconsistent turnover results, the 4-HPP impurities also influence the accurate calculation of ISO-1's inhibition constant, an MIF inhibitor that is broadly used for in vitro and in vivo studies. The macromolecular NMR data show that 4-HPP samples from different manufacturers result in differential chemical shift perturbations of amino acids in MIF's active site. Our MIF-based conclusions were independently evaluated and confirmed by 4-hydroxyphenylpyruvate dioxygenase (HPPD) and D-dopachrome tautomerase (D-DT); two additional enzymes that utilize 4-HPP as a substrate. Collectively, these results explain inconsistencies in previously reported inhibition values, highlight the effect of impurities on the accurate determination of kinetic parameters, and serve as a tool for designing error-free in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Andrew Parkins
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Suzanne I Sandin
- Department of Bioengineering, University of California, Merced, California 95343, United States
- Chemistry and Biochemistry Graduate Program, University of California, Merced, California 95343, United States
| | - Jonathon Knittel
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Andreas H Franz
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Jianhua Ren
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Eva de Alba
- Department of Bioengineering, University of California, Merced, California 95343, United States
| | - Georgios Pantouris
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| |
Collapse
|
8
|
Parkins A, Das P, Prahaladan V, Rangel VM, Xue L, Sankaran B, Bhandari V, Pantouris G. 2,5-Pyridinedicarboxylic acid is a bioactive and highly selective inhibitor of D-dopachrome tautomerase. Structure 2023; 31:355-367.e4. [PMID: 36805127 DOI: 10.1016/j.str.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 02/19/2023]
Abstract
Macrophage migration inhibitory factor (MIF) and D-dopachrome tautomerase (D-DT) are two pleotropic cytokines, which are coexpressed in various cell types to activate the cell surface receptor CD74. Via the MIF/CD74 and D-DT/CD74 axes, the two proteins exhibit either beneficial or deleterious effect on human diseases. In this study, we report the identification of 2,5-pyridinedicarboxylic acid (a.k.a. 1) that effectively blocks the D-DT-induced activation of CD74 and demonstrates an impressive 79-fold selectivity for D-DT over MIF. Crystallographic characterization of D-DT-1 elucidates the binding features of 1 and reveals previously unrecognized differences between the MIF and D-DT active sites that explain the ligand's functional selectivity. The commercial availability, low cost, and high selectivity make 1 the ideal tool for studying the pathophysiological functionality of D-DT in disease models. At the same time, our comprehensive biochemical, computational, and crystallographic analyses serve as a guide for generating highly potent and selective D-DT inhibitors.
Collapse
Affiliation(s)
- Andrew Parkins
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | - Pragnya Das
- Division of Neonatology, Department of Pediatrics, The Children's Regional Hospital at Cooper, Camden, NJ 08103, USA
| | - Varsha Prahaladan
- Division of Neonatology, Department of Pediatrics, The Children's Regional Hospital at Cooper, Camden, NJ 08103, USA
| | - Vanessa M Rangel
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | - Liang Xue
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, 1 Cyclotron Road, Lawrence Berkeley Nat. Lab, Berkeley, CA 94720, USA
| | - Vineet Bhandari
- Division of Neonatology, Department of Pediatrics, The Children's Regional Hospital at Cooper, Camden, NJ 08103, USA
| | - Georgios Pantouris
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA.
| |
Collapse
|
9
|
Khalil RM, Alaa S, Eissa H, Youssef I. Early Prediction of a Pre-Symptomatic Neurodegeneration Disorder by Measuring Macrophage Inhibitory Factor Level in Diabetic Patients. J Alzheimers Dis 2022; 88:1167-1177. [PMID: 35754265 DOI: 10.3233/jad-215561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The relationship between diabetes mellitus and neurodegenerative disorders has been of great interest. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine in which a variety of signaling cascades are activated through it. MIF has been involved in the pathogenesis of several diseases and can predict early pre-symptomatic stages of neurodegeneration in diabetic patients. OBJECTIVE To investigate whether serum MIF could predict brain neurodegeneration at the early pre-symptomatic stages in diabetic patients. METHODS We examined adults with type 2 diabetes mellitus and compared with normal control adults using a short form of the IQCODE and biochemical examination, including assessment of HA1C, fasting blood glucose, lipid profile, and MIF which was measured by ELISA technique. Correlations between parameters were studied. Computational PathLinker bioinformatic tool was used to search for potential pathway reconstructions for the insulin/amyloid-β/MIF signaling. RESULTS We demonstrated that MIF level was increased in the serum at the early pre-symptomatic stages of neurodegenerative disorder in diabetic patients. In addition, network analysis demonstrates that insulin receptor substrate 1 can ameliorate amyloid-β protein precursor through COP9 signalosome complex subunit 5 that enhances MIF elevation. CONCLUSION Diagnosis processes could not be used as routine examinations for still pre-symptomatic neurodegenerative disorders. This may be due to the time constraints and the heavy dependence on the physician's experience. Therefore, serum MIF level could predict brain neurodegeneration at the early pre-symptomatic stages in diabetic patients which may support its potential utility as a clinically useful biomarker.
Collapse
Affiliation(s)
- Rania M Khalil
- Biochemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Shereen Alaa
- Pharmacology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hanan Eissa
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
10
|
Brandhofer M, Bernhagen J. Cytokine aerobics: Oxidation controls cytokine dynamics and function. Structure 2022; 30:787-790. [PMID: 35660241 DOI: 10.1016/j.str.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this issue of Structure, Skeens et al. provide insights into the structure and dynamics of an oxidized form of the atypical cytokine macrophage migration-inhibitory factor (MIF). The study unveils a surprising conformational susceptibility of MIF to ambient redox alterations and identifies redox-sensitive residues and latent allostery sites with functional relevance.
Collapse
Affiliation(s)
- Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; Munich Heart Alliance, 80802 Munich, Germany.
| |
Collapse
|
11
|
Skeens E, Gadzuk-Shea M, Shah D, Bhandari V, Schweppe DK, Berlow RB, Lisi GP. Redox-dependent structure and dynamics of macrophage migration inhibitory factor reveal sites of latent allostery. Structure 2022; 30:840-850.e6. [PMID: 35381187 DOI: 10.1016/j.str.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 01/01/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a multifunctional immunoregulatory protein that is a key player in the innate immune response. Given its overexpression at sites of inflammation and in diseases marked by increasingly oxidative environments, a comprehensive understanding of how cellular redox conditions impact the structure and function of MIF is necessary. We used NMR spectroscopy and mass spectrometry to investigate biophysical signatures of MIF under varied solution redox conditions. Our results indicate that the MIF structure is modified and becomes increasingly dynamic in an oxidative environment, which may be a means to alter the MIF conformation and functional response in a redox-dependent manner. We identified latent allosteric sites within MIF through mutational analysis of redox-sensitive residues, revealing that a loss of redox-responsive residues attenuates CD74 receptor activation. Leveraging sites of redox sensitivity as targets for structure-based drug design therefore reveals an avenue to modulate MIF function in its "disease state."
Collapse
Affiliation(s)
- Erin Skeens
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI 02903, USA
| | - Meagan Gadzuk-Shea
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dilip Shah
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ 08103, USA
| | - Vineet Bhandari
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ 08103, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Rebecca B Berlow
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - George P Lisi
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI 02903, USA.
| |
Collapse
|
12
|
Skeens E, Pantouris G, Shah D, Manjula R, Ombrello MJ, Maluf NK, Bhandari V, Lisi GP, Lolis EJ. A Cysteine Variant at an Allosteric Site Alters MIF Dynamics and Biological Function in Homo- and Heterotrimeric Assemblies. Front Mol Biosci 2022; 9:783669. [PMID: 35252348 PMCID: PMC8893199 DOI: 10.3389/fmolb.2022.783669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/12/2022] [Indexed: 11/15/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an inflammatory protein with various non-overlapping functions. It is not only conserved in mammals, but it is found in parasites, fish, and plants. Human MIF is a homotrimer with an enzymatic cavity between two subunits with Pro1 as a catalytic base, activates the receptors CD74, CXCR2, and CXCR4, has functional interactions in the cytosol, and is reported to be a nuclease. There is a solvent channel down its 3-fold axis with a recently identified gating residue as an allosteric site important for regulating, to different extents, the enzymatic activity and CD74 binding and signaling. In this study we explore the consequence of converting the allosteric residue Tyr99 to cysteine (Y99C) and characterize its crystallographic structure, NMR dynamics, stability, CD74 function, and enzymatic activity. In addition to the homotrimeric variant, we develop strategies for expressing and purifying a heterotrimeric variant consisting of mixed wild type and Y99C for characterization of the allosteric site to provide more insight.
Collapse
Affiliation(s)
- Erin Skeens
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Georgios Pantouris
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Department of Chemistry, University of the Pacific, Stockton, CA, United States
| | - Dilip Shah
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ, United States
| | - Ramu Manjula
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Michael J. Ombrello
- Translational Genetics and Genomic Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States
| | | | - Vineet Bhandari
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ, United States
| | - George P. Lisi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
- *Correspondence: George P. Lisi, ; Elias J. Lolis,
| | - Elias J. Lolis
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: George P. Lisi, ; Elias J. Lolis,
| |
Collapse
|
13
|
Xiao Z, Osipyan A, Song S, Chen D, Schut RA, van Merkerk R, van der Wouden PE, Cool RH, Quax WJ, Melgert BN, Poelarends GJ, Dekker FJ. Thieno[2,3- d]pyrimidine-2,4(1 H,3 H)-dione Derivative Inhibits d-Dopachrome Tautomerase Activity and Suppresses the Proliferation of Non-Small Cell Lung Cancer Cells. J Med Chem 2022; 65:2059-2077. [PMID: 35041425 PMCID: PMC8842245 DOI: 10.1021/acs.jmedchem.1c01598] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The homologous cytokines macrophage migration inhibitory factor (MIF) and d-dopachrome tautomerase (d-DT or MIF2) play key roles in cancers. Molecules binding to the MIF tautomerase active site interfere with its biological activity. In contrast, the lack of potent MIF2 inhibitors hinders the exploration of MIF2 as a drug target. In this work, screening of a focused compound collection enabled the identification of a MIF2 tautomerase inhibitor R110. Subsequent optimization provided inhibitor 5d with an IC50 of 1.0 μM for MIF2 tautomerase activity and a high selectivity over MIF. 5d suppressed the proliferation of non-small cell lung cancer cells in two-dimensional (2D) and three-dimensional (3D) cell cultures, which can be explained by the induction of cell cycle arrest via deactivation of the mitogen-activated protein kinase (MAPK) pathway. Thus, we discovered and characterized MIF2 inhibitors (5d) with improved antiproliferative activity in cellular models systems, which indicates the potential of targeting MIF2 in cancer treatment.
Collapse
Affiliation(s)
- Zhangping Xiao
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Angelina Osipyan
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Shanshan Song
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Deng Chen
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Reinder A Schut
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ronald van Merkerk
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Petra E van der Wouden
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Robbert H Cool
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wim J Quax
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Barbro N Melgert
- Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.,University Medical Center Groningen, Groningen Research Institute of Asthma and COPD, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Gerrit J Poelarends
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Frank J Dekker
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
14
|
Zheng L, Feng Z, Tao S, Gao J, Lin Y, Wei X, Zheng B, Huang B, Zheng Z, Zhang X, Liu J, Shan Z, Chen Y, Chen J, Zhao F. Destabilization of macrophage migration inhibitory factor by 4-IPP reduces NF-κB/P-TEFb complex-mediated c-Myb transcription to suppress osteosarcoma tumourigenesis. Clin Transl Med 2022; 12:e652. [PMID: 35060345 PMCID: PMC8777168 DOI: 10.1002/ctm2.652] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND As an inflammatory factor and oncogenic driver protein, the pleiotropic cytokine macrophage migration inhibitory factor (MIF) plays a crucial role in the osteosarcoma microenvironment. Although 4-iodo-6-phenylpyrimidine (4-IPP) can inactivate MIF biological functions, its anti-osteosarcoma effect and molecular mechanisms have not been investigated. In this study, we identified the MIF inhibitor 4-IPP as a specific double-effector drug for osteosarcoma with both anti-tumour and anti-osteoclastogenic functions. METHODS The anti-cancer effects of 4-IPP were evaluated by wound healing assay, cell cycle analysis, colony formation assay, CCK-8 assay, apoptosis analysis, and Transwell migration/invasion assays. Through the application of a luciferase reporter, chromatin immunoprecipitation assays, and immunofluorescence and coimmunoprecipitation analyses, the transcriptional regulation of the NF-κB/P-TEFb complex on c-Myb- and STUB1-mediated proteasome-dependent MIF protein degradation was confirmed. The effect of 4-IPP on tumour growth and metastasis was assessed using an HOS-derived tail vein metastasis model and subcutaneous and orthotopic xenograft tumour models. RESULTS In vitro, 4-IPP significantly reduced the proliferation and metastasis of osteosarcoma cells by suppressing the NF-κB pathway. 4-IPP hindered the binding between MIF and CD74 as well as p65. Moreover, 4-IPP inhibited MIF to interrupt the formation of downstream NF-κB/P-TEFb complexes, leading to the down-regulation of c-Myb transcription. Interestingly, the implementation of 4-IPP can mediate small molecule-induced MIF protein proteasomal degradation via the STUB1 E3 ligand. However, 4-IPP still interrupted MIF-mediated communication between osteosarcoma cells and osteoclasts, thus promoting osteoclastogenesis. Remarkably, 4-IPP strongly reduced HOS-derived xenograft osteosarcoma tumourigenesis and metastasis in an in vivo mouse model. CONCLUSIONS Our findings demonstrate that the small molecule 4-IPP targeting the MIF protein exerts an anti-osteosarcoma effect by simultaneously inactivating the biological functions of MIF and promoting its proteasomal degradation. Direct destabilization of the MIF protein with 4-IPP may be a promising therapeutic strategy for treating osteosarcoma.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Zhenhua Feng
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Siyue Tao
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Jiawei Gao
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Ye Lin
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Xiaoan Wei
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Bingjie Zheng
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Bao Huang
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Zeyu Zheng
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Xuyang Zhang
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Junhui Liu
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Zhi Shan
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Yilei Chen
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Jian Chen
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Fengdong Zhao
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| |
Collapse
|
15
|
Cui JY, Lisi GP. Molecular Level Insights Into the Structural and Dynamic Factors Driving Cytokine Function. Front Mol Biosci 2021; 8:773252. [PMID: 34760929 PMCID: PMC8573031 DOI: 10.3389/fmolb.2021.773252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Cytokines are key mediators of cellular communication and regulators of biological advents. The timing, quantity and localization of cytokines are key features in producing specific biological outcomes, and thus have been thoroughly studied and reviewed while continuing to be a focus of the cytokine biology community. Due to the complexity of cellular signaling and multitude of factors that can affect signaling outcomes, systemic level studies of cytokines are ongoing. Despite their small size, cytokines can exhibit structurally promiscuous and dynamic behavior that plays an equally important role in biological activity. In this review using case studies, we highlight the recent insight gained from observing cytokines through a molecular lens and how this may complement a system-level understanding of cytokine biology, explain diversity of downstream signaling events, and inform therapeutic and experimental development.
Collapse
Affiliation(s)
- Jennifer Y Cui
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - George P Lisi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| |
Collapse
|
16
|
Parkins A, Skeens E, McCallum CM, Lisi GP, Pantouris G. The N-terminus of MIF regulates the dynamic profile of residues involved in CD74 activation. Biophys J 2021; 120:3893-3900. [PMID: 34437846 DOI: 10.1016/j.bpj.2021.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an immunomodulatory protein with a pathogenic activity in various inflammatory disorders, autoimmune diseases, and cancer. The majority of MIF-triggered pathological conditions are associated with activation of the cell surface receptor CD74. In the absence of small molecule antagonists that directly target CD74, MIF variants and MIF-ligand complexes have served as modulators of CD74 activity. These molecules have been reported to have either antagonistic or agonistic effects against the receptor, although the mechanistic parameters that distinguish the two groups are largely unknown. Through molecular dynamics simulations and NMR experiments, we explored the relationship between MIF's catalytically active N-terminus and the surface residues important for the activation of CD74. We found that the two sites are connected via backbone dynamics that are propagated to the CD74 activation surface of MIF, from the β2 and β4 strands. Our results also provide mechanistic evidence that explain the functional characteristics of MIF variants, serving as CD74 agonists or antagonists. Such findings are of high importance for understanding the MIF-induced activation of CD74 as well as for the development of highly potent CD74 therapeutics.
Collapse
Affiliation(s)
- Andrew Parkins
- Department of Chemistry, University of the Pacific, Stockton, California
| | - Erin Skeens
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island
| | - C Michael McCallum
- Department of Chemistry, University of the Pacific, Stockton, California
| | - George P Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island.
| | - Georgios Pantouris
- Department of Chemistry, University of the Pacific, Stockton, California.
| |
Collapse
|
17
|
Yang L, Guo D, Fan C. Identification and Structure-Activity Relationships of Dietary Flavonoids as Human Macrophage Migration Inhibitory Factor (MIF) Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10138-10150. [PMID: 34459191 DOI: 10.1021/acs.jafc.1c03367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dietary flavonoids are known to have anti-inflammatory and anticancer effects, but their influences on human macrophage migration inhibitory factor (MIF), a vital proinflammatory cytokine recognized as a therapeutic target for infectious diseases and cancers, have been rarely reported. Here, we identified 24 dietary flavonoids that could inhibit the tautomerase activity of MIF, five of which exerted IC50 values lower than the positive control ISO-1 in the micromolar range: morin (IC50 = 11.01 ± 0.45 μM) and amentoflavone (IC50 = 13.32 ± 0.64 μM) exhibited the most potent efficacy followed by apigenin (IC50 = 42.74 ± 4.20 μM), naringin (IC50 = 51.38 ± 2.12 μM), and fisetin (IC50 = 51.99 ± 0.63 μM). X-ray crystallography, molecular docking, and cellular experiments were utilized to illustrate the molecular binding details and structure-activity relationships. Scaffold modifications of flavonoids significantly influenced the potency. What stands out for morin is the unique 2'-OH substitution. In addition, amentoflavone situated at the MIF trimer pore may impact MIF-CD74 signaling. The results also showed that flavonoids could suppress cell chemotaxis and nitric oxide production in RAW264.7 cells. Our results elucidate the molecular mechanism of flavonoids acting on MIF and shed light on developing lead compounds against MIF-involved diseases.
Collapse
Affiliation(s)
- Liu Yang
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Deyin Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P. R. China
- Center for Infection & Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Chengpeng Fan
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
18
|
Chen E, Reiss K, Shah D, Manjula R, Allen B, Murphy EL, Murphy JW, Batista VS, Bhandari V, Lolis EJ, Lisi GP. A structurally preserved allosteric site in the MIF superfamily affects enzymatic activity and CD74 activation in D-dopachrome tautomerase. J Biol Chem 2021; 297:101061. [PMID: 34384784 PMCID: PMC8405996 DOI: 10.1016/j.jbc.2021.101061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
The macrophage migration inhibitory factor (MIF) family of cytokines contains multiple ligand-binding sites and mediates immunomodulatory processes through an undefined mechanism(s). Previously, we reported a dynamic relay connecting the MIF catalytic site to an allosteric site at its solvent channel. Despite structural and functional similarity, the MIF homolog D-dopachrome tautomerase (also called MIF-2) has low sequence identity (35%), prompting the question of whether this dynamic regulatory network is conserved. Here, we establish the structural basis of an allosteric site in MIF-2, showing with solution NMR that dynamic communication is preserved in MIF-2 despite differences in the primary sequence. X-ray crystallography and NMR detail the structural consequences of perturbing residues in this pathway, which include conformational changes surrounding the allosteric site, despite global preservation of the MIF-2 fold. Molecular simulations reveal MIF-2 to contain a comparable hydrogen bond network to that of MIF, which was previously hypothesized to influence catalytic activity by modulating the strength of allosteric coupling. Disruption of the allosteric relay by mutagenesis also attenuates MIF-2 enzymatic activity in vitro and the activation of the cluster of differentiation 74 receptor in vivo, highlighting a conserved point of control for nonoverlapping functions in the MIF superfamily.
Collapse
Affiliation(s)
- Emily Chen
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Dilip Shah
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, New Jersey, USA
| | - Ramu Manjula
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brandon Allen
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Eva L Murphy
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James W Murphy
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Vineet Bhandari
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, New Jersey, USA
| | - Elias J Lolis
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
| | - George P Lisi
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
19
|
Xiao Z, Chen D, Song S, van der Vlag R, van der Wouden PE, van Merkerk R, Cool RH, Hirsch AKH, Melgert BN, Quax WJ, Poelarends GJ, Dekker FJ. 7-Hydroxycoumarins Are Affinity-Based Fluorescent Probes for Competitive Binding Studies of Macrophage Migration Inhibitory Factor. J Med Chem 2020; 63:11920-11933. [PMID: 32940040 PMCID: PMC7586407 DOI: 10.1021/acs.jmedchem.0c01160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Macrophage
migration inhibitory factor (MIF) is a cytokine with
key roles in inflammation and cancer, which qualifies it as a potential
drug target. Apart from its cytokine activity, MIF also harbors enzyme
activity for keto–enol tautomerization. MIF enzymatic activity
has been used for identification of MIF binding molecules that also
interfere with its biological activity. However, MIF tautomerase activity
assays are troubled by irregularities, thus creating a need for alternative
methods. In this study, we identified a 7-hydroxycoumarin fluorophore
with high affinity for the MIF tautomerase active site (Ki = 18 ± 1 nM) that binds with concomitant quenching
of its fluorescence. This property enabled development of a novel
competition-based assay format to quantify MIF binding. We also demonstrated
that the 7-hydroxycoumarin fluorophore interfered with the MIF–CD74
interaction and inhibited proliferation of A549 cells. Thus, we provide
a high-affinity MIF binder as a novel tool to advance MIF-oriented
research.
Collapse
Affiliation(s)
- Zhangping Xiao
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Deng Chen
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Shanshan Song
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ramon van der Vlag
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Petra E van der Wouden
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ronald van Merkerk
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Robbert H Cool
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anna K H Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.,Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Barbro N Melgert
- Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wim J Quax
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Gerrit J Poelarends
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Frank J Dekker
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|