1
|
T Ishida C, Kubota CS, Carlyle E, Tsukamoto T, Espenshade PJ. A High-Throughput Screening Platform Identifies FDA-Approved Drugs That Inhibit SREBP Pathway Activation. ACS Chem Biol 2024; 19:1695-1704. [PMID: 39106256 DOI: 10.1021/acschembio.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Sterol regulatory element-binding protein (SREBP) transcription factors are central regulators of lipid homeostasis and are essential for lipid metabolic reprogramming that supports tumor growth in multiple cancers. SREBP pathway inhibitors have been identified, but bioavailable compounds are lacking. To address this need, we designed a novel approach for screening a collection of 4,474 FDA-approved drugs. SREBPs are conditionally essential and required under low lipid conditions. Leveraging this property, we screened for drugs that inhibited pancreatic cancer cell growth in lipid-poor, but not lipid-rich, medium. The primary screen identified 83 drugs that inhibited cell growth in a lipid-dependent manner. Secondary assays examining SREBP target gene expression, SREBP proteolytic cleavage, and effects on human breast cancer cells identified 13 FDA-approved drugs that inhibit SREBP pathway activation. Taken together, we demonstrated that our screening approach can identify SREBP inhibitors from a small library of compounds. This high-throughput screening platform enables screening of large compound collections to discover novel small molecule SREBP inhibitors.
Collapse
Affiliation(s)
- Chiaki T Ishida
- Department of Cell Biology, Johns Hopkins University, Baltimore, Maryland 21205 United States
| | - Casie S Kubota
- Department of Cell Biology, Johns Hopkins University, Baltimore, Maryland 21205 United States
| | - Evan Carlyle
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205 United States
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205 United States
| | - Peter J Espenshade
- Department of Cell Biology, Johns Hopkins University, Baltimore, Maryland 21205 United States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University,Baltimore, Maryland 21205 United States
- Giovanis Institute for Translational Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 United States
| |
Collapse
|
2
|
Kubota CS, Myers SL, Seppälä TT, Burkhart RA, Espenshade PJ. In vivo CRISPR screening identifies geranylgeranyl diphosphate as a pancreatic cancer tumor growth dependency. Mol Metab 2024; 85:101964. [PMID: 38823776 PMCID: PMC11217740 DOI: 10.1016/j.molmet.2024.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/04/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
OBJECTIVE Cancer cells must maintain lipid supplies for their proliferation and do so by upregulating lipogenic gene programs. The sterol regulatory element-binding proteins (SREBPs) act as modulators of lipid homeostasis by acting as transcriptional activators of genes required for fatty acid and cholesterol synthesis and uptake. SREBPs have been recognized as chemotherapeutic targets in multiple cancers, however it is not well understood which SREBP target genes are essential for tumorigenesis. In this study, we examined the requirement of SREBP target genes for pancreatic ductal adenocarcinoma (PDAC) tumor growth. METHODS Here we constructed a custom CRISPR knockout library containing known SREBP target genes and performed in vitro 2D culture and in vivo orthotopic xenograft CRISPR screens using a patient-derived PDAC cell line. In vitro, we grew cells in medium supplemented with 10% fetal bovine serum (FBS) or 10% lipoprotein-deficient serum (LPDS) to examine differences in gene essentiality in different lipid environments. In vivo, we injected cells into the pancreata of nude mice and collected tumors after 4 weeks. RESULTS We identified terpenoid backbone biosynthesis genes as essential for PDAC tumor development. Specifically, we identified the non-sterol isoprenoid product of the mevalonate pathway, geranylgeranyl diphosphate (GGPP), as an essential lipid for tumor growth. Mechanistically, we observed that restricting mevalonate pathway activity using statins and SREBP inhibitors synergistically induced apoptosis and caused disruptions in small G protein prenylation that have pleiotropic effects on cellular signaling pathways. Finally, we demonstrated that geranylgeranyl diphosphate synthase 1 (GGPS1) knockdown significantly reduces tumor burden in an orthotopic xenograft mouse model. CONCLUSIONS These findings indicate that PDAC tumors selectively require GGPP over other lipids such as cholesterol and fatty acids and that this is a targetable vulnerability of pancreatic cancer cells.
Collapse
Affiliation(s)
- Casie S Kubota
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephanie L Myers
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular & Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Toni T Seppälä
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard A Burkhart
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peter J Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Giovanis Institute for Translational Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Cheng Y, He J, Zuo B, He Y. Role of lipid metabolism in hepatocellular carcinoma. Discov Oncol 2024; 15:206. [PMID: 38833109 DOI: 10.1007/s12672-024-01069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC), an aggressive malignancy with a dismal prognosis, poses a significant public health challenge. Recent research has highlighted the crucial role of lipid metabolism in HCC development, with enhanced lipid synthesis and uptake contributing to the rapid proliferation and tumorigenesis of cancer cells. Lipids, primarily synthesized and utilized in the liver, play a critical role in the pathological progression of various cancers, particularly HCC. Cancer cells undergo metabolic reprogramming, an essential adaptation to the tumor microenvironment (TME), with fatty acid metabolism emerging as a key player in this process. This review delves into intricate interplay between HCC and lipid metabolism, focusing on four key areas: de novo lipogenesis, fatty acid oxidation, dysregulated lipid metabolism of immune cells in the TME, and therapeutic strategies targeting fatty acid metabolism for HCC treatment.
Collapse
Affiliation(s)
- Yulin Cheng
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jun He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Zuo
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yang He
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China.
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
4
|
Göbel A, Pählig S, Motz A, Breining D, Traikov S, Hofbauer LC, Rachner TD. Overcoming statin resistance in prostate cancer cells by targeting the 3-hydroxy-3-methylglutaryl-CoA-reductase. Biochem Biophys Res Commun 2024; 710:149841. [PMID: 38588613 DOI: 10.1016/j.bbrc.2024.149841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Prostate cancer is the most prevalent malignancy in men. While diagnostic and therapeutic interventions have substantially improved in recent years, disease relapse, treatment resistance, and metastasis remain significant contributors to prostate cancer-related mortality. Therefore, novel therapeutic approaches are needed. Statins are inhibitors of the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate pathway which plays an essential role in cholesterol homeostasis. Numerous preclinical studies have provided evidence for the pleiotropic antitumor effects of statins. However, results from clinical studies remain controversial and have shown substantial benefits to even no effects on human malignancies including prostate cancer. Potential statin resistance mechanisms of tumor cells may account for such discrepancies. In our study, we treated human prostate cancer cell lines (PC3, C4-2B, DU-145, LNCaP) with simvastatin, atorvastatin, and rosuvastatin. PC3 cells demonstrated high statin sensitivity, resulting in a significant loss of vitality and clonogenic potential (up to - 70%; p < 0.001) along with an activation of caspases (up to 4-fold; p < 0.001). In contrast, C4-2B and DU-145 cells were statin-resistant. Statin treatment induced a restorative feedback in statin-resistant C4-2B and DU-145 cells through upregulation of the HMGCR gene and protein expression (up to 3-folds; p < 0.01) and its transcription factor sterol-regulatory element binding protein 2 (SREBP-2). This feedback was absent in PC3 cells. Blocking the feedback using HMGCR-specific small-interfering (si)RNA, the SREBP-2 activation inhibitor dipyridamole or the HMGCR degrader SR12813 abolished statin resistance in C4-2B and DU-145 and induced significant activation of caspases by statin treatment (up to 10-fold; p < 0.001). Consistently, long-term treatment with sublethal concentrations of simvastatin established a stable statin resistance of a PC3SIM subclone accompanied by a significant upregulation of both baseline as well as post-statin HMGCR protein (gene expression up to 70-fold; p < 0.001). Importantly, the statin-resistant phenotype of PC3SIM cells was reversible by HMGCR-specific siRNA and dipyridamole. Our investigations reveal a key role of a restorative feedback driven by the HMGCR/SREBP-2 axis in statin resistance mechanisms of prostate cancer cells.
Collapse
Affiliation(s)
- Andy Göbel
- Mildred Scheel Early Career Center, Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Sophie Pählig
- Mildred Scheel Early Career Center, Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Motz
- Mildred Scheel Early Career Center, Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Dorit Breining
- Mildred Scheel Early Career Center, Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Sofia Traikov
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Lorenz C Hofbauer
- Mildred Scheel Early Career Center, Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tilman D Rachner
- Mildred Scheel Early Career Center, Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Kubota CS, Myers SL, Seppälä TT, Burkhart RA, Espenshade PJ. In vivo CRISPR screening identifies geranylgeranyl diphosphate as a pancreatic cancer tumor growth dependency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592368. [PMID: 38746286 PMCID: PMC11092789 DOI: 10.1101/2024.05.03.592368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cancer cells must maintain lipid supplies for their proliferation and do so by upregulating lipogenic gene programs. The sterol regulatory element-binding proteins (SREBPs) act as modulators of lipid homeostasis by acting as transcriptional activators of genes required for fatty acid and cholesterol synthesis and uptake. SREBPs have been recognized as chemotherapeutic targets in multiple cancers, however it is not well understood which SREBP target genes are essential for tumorigenesis. Using parallel in vitro and in vivo CRISPR knockout screens, we identified terpenoid backbone biosynthesis genes as essential for pancreatic ductal adenocarcinoma (PDAC) tumor development. Specifically, we identified the non-sterol isoprenoid product of the mevalonate pathway, geranylgeranyl diphosphate (GGPP), as an essential lipid for tumor growth. Mechanistically, we observed that restricting mevalonate pathway activity using statins and SREBP inhibitors synergistically induced apoptosis and caused disruptions in small G protein prenylation that have pleiotropic effects on cellular signaling pathways. Finally, we demonstrated that geranylgeranyl diphosphate synthase 1 ( GGPS1 ) knockdown significantly reduces tumor burden in an orthotopic xenograft mouse model. These findings indicate that PDAC tumors selectively require GGPP over other lipids such as cholesterol and fatty acids and that this is a targetable vulnerability of pancreatic cancer cells.
Collapse
|
6
|
Liang C, Zhang LW. Profiling the Gut Microbiota in Obese Children with Formula Feeding in Early Life and Selecting Strains against Obesity. Foods 2024; 13:1379. [PMID: 38731751 PMCID: PMC11083066 DOI: 10.3390/foods13091379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Formula feeding, obesity and the gut microbiota are closely related. The present investigation explored the profiles of the intestinal microbiota in obese children over 5 years old with formula feeding in early life. We identified functional bacteria with anti-obesity potential through in vitro and in vivo experiments, elucidating their mechanisms. The results indicated that, in the group of children over 5 years old who were fed formula in early life, obese children exhibited distinct gut microbiota, which were characterized by diminished species diversity and reduced Bifidobacterium levels compared to normal-weight children. As a result, Lactobacillus acidophilus H-68 (H-68) was isolated from the feces of the N-FF group and recognized as a promising candidate. H-68 demonstrated the ability to stimulate cholecystokinin (CCK) secretion in STC-1 cells and produce bile salt hydrolase. In vivo, H-68 promoted CCK secretion, suppressing food intake, and regulated bile acid enterohepatic circulation, leading to increased deoxycholic acid and lithocholic acid levels in the ileum and liver. This regulation effectively inhibited the diet-induced body weight and body fat gain, along with the liver fat deposition. In conclusion, H-68 was recognized for its prospective anti-obesity impact, signifying an auspicious pathway for forthcoming interventions targeted at averting pediatric obesity in formula-fed children.
Collapse
Affiliation(s)
- Cong Liang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150010, China
| | - Lan-Wei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
7
|
Xu S, Smothers JC, Rye D, Endapally S, Chen H, Li S, Liang G, Kinnebrew M, Rohatgi R, Posner BA, Radhakrishnan A. A cholesterol-binding bacterial toxin provides a strategy for identifying a specific Scap inhibitor that blocks lipid synthesis in animal cells. Proc Natl Acad Sci U S A 2024; 121:e2318024121. [PMID: 38330014 PMCID: PMC10873635 DOI: 10.1073/pnas.2318024121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/15/2023] [Indexed: 02/10/2024] Open
Abstract
Lipid synthesis is regulated by the actions of Scap, a polytopic membrane protein that binds cholesterol in membranes of the endoplasmic reticulum (ER). When ER cholesterol levels are low, Scap activates SREBPs, transcription factors that upregulate genes for synthesis of cholesterol, fatty acids, and triglycerides. When ER cholesterol levels rise, the sterol binds to Scap, triggering conformational changes that prevent activation of SREBPs and halting synthesis of lipids. To achieve a molecular understanding of how cholesterol regulates the Scap/SREBP machine and to identify therapeutics for dysregulated lipid metabolism, cholesterol-mimetic compounds that specifically bind and inhibit Scap are needed. To accomplish this goal, we focused on Anthrolysin O (ALO), a pore-forming bacterial toxin that binds cholesterol with a specificity and sensitivity that is uncannily similar to Scap. We reasoned that a small molecule that would bind and inhibit ALO might also inhibit Scap. High-throughput screening of a ~300,000-compound library for ALO-binding unearthed one molecule, termed UT-59, which binds to Scap's cholesterol-binding site. Upon binding, UT-59 triggers the same conformation changes in Scap as those induced by cholesterol and blocks activation of SREBPs and lipogenesis in cultured cells. UT-59 also inhibits SREBP activation in the mouse liver. Unlike five previously reported inhibitors of SREBP activation, UT-59 is the only one that acts specifically by binding to Scap's cholesterol-binding site. Our approach to identify specific Scap inhibitors such as UT-59 holds great promise in developing therapeutic leads for human diseases stemming from elevated SREBP activation, such as fatty liver and certain cancers.
Collapse
Affiliation(s)
- Shimeng Xu
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jared C. Smothers
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Daphne Rye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Shreya Endapally
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Hong Chen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Shili Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Guosheng Liang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Maia Kinnebrew
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Rajat Rohatgi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Bruce A. Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
8
|
Chandrasekaran P, Weiskirchen R. The Role of SCAP/SREBP as Central Regulators of Lipid Metabolism in Hepatic Steatosis. Int J Mol Sci 2024; 25:1109. [PMID: 38256181 PMCID: PMC10815951 DOI: 10.3390/ijms25021109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing worldwide at an alarming pace, due to an increase in obesity, sedentary and unhealthy lifestyles, and unbalanced dietary habits. MASLD is a unique, multi-factorial condition with several phases of progression including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Sterol element binding protein 1c (SREBP1c) is the main transcription factor involved in regulating hepatic de novo lipogenesis. This transcription factor is synthesized as an inactive precursor, and its proteolytic maturation is initiated in the membrane of the endoplasmic reticulum upon stimulation by insulin. SREBP cleavage activating protein (SCAP) is required as a chaperon protein to escort SREBP from the endoplasmic reticulum and to facilitate the proteolytic release of the N-terminal domain of SREBP into the Golgi. SCAP inhibition prevents activation of SREBP and inhibits the expression of genes involved in triglyceride and fatty acid synthesis, resulting in the inhibition of de novo lipogenesis. In line, previous studies have shown that SCAP inhibition can resolve hepatic steatosis in animal models and intensive research is going on to understand the effects of SCAP in the pathogenesis of human disease. This review focuses on the versatile roles of SCAP/SREBP regulation in de novo lipogenesis and the structure and molecular features of SCAP/SREBP in the progression of hepatic steatosis. In addition, recent studies that attempt to target the SCAP/SREBP axis as a therapeutic option to interfere with MASLD are discussed.
Collapse
Affiliation(s)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
9
|
Wang X, Chen Y, Meng H, Meng F. SREBPs as the potential target for solving the polypharmacy dilemma. Front Physiol 2024; 14:1272540. [PMID: 38269061 PMCID: PMC10806128 DOI: 10.3389/fphys.2023.1272540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
The phenomenon of polypharmacy is a common occurrence among older people with multiple health conditions due to the rapid increase in population aging and the popularization of clinical guidelines. The prevalence of metabolic syndrome is growing quickly, representing a serious threat to both the public and the worldwide healthcare systems. In addition, it enhances the risk of cardiovascular disease as well as mortality and morbidity. Sterol regulatory element binding proteins (SREBPs) are basic helix-loop-helix leucine zipper transcription factors that transcriptionally modulate genes that regulate lipid biosynthesis and uptake, thereby serving an essential role in biological systems regulation. In this article, we have described the structure of SREBPs and explored their activation and regulation of signals. We also reveal that SREBPs are intricately involved in the modulation of metabolic diseases and thus have tremendous potential as the novel target for single-drug therapy for multiple diseases.
Collapse
Affiliation(s)
| | | | | | - Fanbo Meng
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis (Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute), Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Muta Y, Linares JF, Martinez-Ordoñez A, Duran A, Cid-Diaz T, Kinoshita H, Zhang X, Han Q, Nakanishi Y, Nakanishi N, Cordes T, Arora GK, Ruiz-Martinez M, Reina-Campos M, Kasashima H, Yashiro M, Maeda K, Albaladejo-Gonzalez A, Torres-Moreno D, García-Solano J, Conesa-Zamora P, Inghirami G, Metallo CM, Osborne TF, Diaz-Meco MT, Moscat J. Enhanced SREBP2-driven cholesterol biosynthesis by PKCλ/ι deficiency in intestinal epithelial cells promotes aggressive serrated tumorigenesis. Nat Commun 2023; 14:8075. [PMID: 38092754 PMCID: PMC10719313 DOI: 10.1038/s41467-023-43690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
The metabolic and signaling pathways regulating aggressive mesenchymal colorectal cancer (CRC) initiation and progression through the serrated route are largely unknown. Although relatively well characterized as BRAF mutant cancers, their poor response to current targeted therapy, difficult preneoplastic detection, and challenging endoscopic resection make the identification of their metabolic requirements a priority. Here, we demonstrate that the phosphorylation of SCAP by the atypical PKC (aPKC), PKCλ/ι promotes its degradation and inhibits the processing and activation of SREBP2, the master regulator of cholesterol biosynthesis. We show that the upregulation of SREBP2 and cholesterol by reduced aPKC levels is essential for controlling metaplasia and generating the most aggressive cell subpopulation in serrated tumors in mice and humans. Since these alterations are also detected prior to neoplastic transformation, together with the sensitivity of these tumors to cholesterol metabolism inhibitors, our data indicate that targeting cholesterol biosynthesis is a potential mechanism for serrated chemoprevention.
Collapse
Affiliation(s)
- Yu Muta
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Juan F Linares
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Anxo Martinez-Ordoñez
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Angeles Duran
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Tania Cid-Diaz
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Hiroto Kinoshita
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xiao Zhang
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Qixiu Han
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Thekla Cordes
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, 38106, Germany
| | - Gurpreet K Arora
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Marc Ruiz-Martinez
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Miguel Reina-Campos
- School of Biological Sciences, Department of Molecular Biology, University of California San Diego, San Diego, CA, USA
| | - Hiroaki Kasashima
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka city, 545-8585, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka city, 545-8585, Japan
| | - Kiyoshi Maeda
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka city, 545-8585, Japan
| | - Ana Albaladejo-Gonzalez
- Department of Histology and Pathology, Faculty of Life Sciences, Universidad Católica de Murcia (UCAM), 30107, Murcia, Spain
- Department of Pathology, Santa Lucía General University Hospital (HGUSL), Calle Mezquita sn, 30202, Cartagena, Spain
| | - Daniel Torres-Moreno
- Department of Histology and Pathology, Faculty of Life Sciences, Universidad Católica de Murcia (UCAM), 30107, Murcia, Spain
- Department of Clinical Analysis, Santa Lucía General University Hospital (HGUSL), Calle Mezquita sn, 30202, Cartagena, Spain
| | - José García-Solano
- Department of Histology and Pathology, Faculty of Life Sciences, Universidad Católica de Murcia (UCAM), 30107, Murcia, Spain
- Department of Pathology, Santa Lucía General University Hospital (HGUSL), Calle Mezquita sn, 30202, Cartagena, Spain
| | - Pablo Conesa-Zamora
- Department of Histology and Pathology, Faculty of Life Sciences, Universidad Católica de Murcia (UCAM), 30107, Murcia, Spain
- Department of Clinical Analysis, Santa Lucía General University Hospital (HGUSL), Calle Mezquita sn, 30202, Cartagena, Spain
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Christian M Metallo
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Timothy F Osborne
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St, Petersburg, FL, USA
| | - Maria T Diaz-Meco
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Jorge Moscat
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Bolshette N, Ezagouri S, Dandavate V, Karavaeva I, Golik M, Wang H, Espenshade PJ, Osborne TF, Han X, Asher G. Carbon dioxide regulates cholesterol levels through SREBP2. PLoS Biol 2023; 21:e3002367. [PMID: 37967106 PMCID: PMC10651039 DOI: 10.1371/journal.pbio.3002367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/06/2023] [Indexed: 11/17/2023] Open
Abstract
In mammals, O2 and CO2 levels are tightly regulated and are altered under various pathological conditions. While the molecular mechanisms that participate in O2 sensing are well characterized, little is known regarding the signaling pathways that participate in CO2 signaling and adaptation. Here, we show that CO2 levels control a distinct cellular transcriptional response that differs from mere pH changes. Unexpectedly, we discovered that CO2 regulates the expression of cholesterogenic genes in a SREBP2-dependent manner and modulates cellular cholesterol accumulation. Molecular dissection of the underlying mechanism suggests that CO2 triggers SREBP2 activation through changes in endoplasmic reticulum (ER) membrane cholesterol levels. Collectively, we propose that SREBP2 participates in CO2 signaling and that cellular cholesterol levels can be modulated by CO2 through SREBP2.
Collapse
Affiliation(s)
- Nityanand Bolshette
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Saar Ezagouri
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Vaishnavi Dandavate
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Iuliia Karavaeva
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Marina Golik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hu Wang
- The Sam & Ann Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Peter J. Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Timothy F. Osborne
- Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, and Medicine in the Division of Endocrinology, Diabetes and Metabolism of the Johns Hopkins University School of Medicine, Petersburg, Florida, United States of America
| | - Xianlin Han
- The Sam & Ann Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Tran GB, Ding J, Ye B, Liu M, Yu Y, Zha Y, Dong Z, Liu K, Sudarshan S, Ding HF. Caffeine Supplementation and FOXM1 Inhibition Enhance the Antitumor Effect of Statins in Neuroblastoma. Cancer Res 2023; 83:2248-2261. [PMID: 37057874 PMCID: PMC10320471 DOI: 10.1158/0008-5472.can-22-3450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/14/2023] [Accepted: 04/12/2023] [Indexed: 04/15/2023]
Abstract
High-risk neuroblastoma exhibits transcriptional activation of the mevalonate pathway that produces cholesterol and nonsterol isoprenoids. A better understanding of how this metabolic reprogramming contributes to neuroblastoma development could help identify potential prevention and treatment strategies. Here, we report that both the cholesterol and nonsterol geranylgeranyl-pyrophosphate branches of the mevalonate pathway are critical to sustain neuroblastoma cell growth. Blocking the mevalonate pathway by simvastatin, a cholesterol-lowering drug, impeded neuroblastoma growth in neuroblastoma cell line xenograft, patient-derived xenograft (PDX), and TH-MYCN transgenic mouse models. Transcriptional profiling revealed that the mevalonate pathway was required to maintain the FOXM1-mediated transcriptional program that drives mitosis. High FOXM1 expression contributed to statin resistance and led to a therapeutic vulnerability to the combination of simvastatin and FOXM1 inhibition. Furthermore, caffeine synergized with simvastatin to inhibit the growth of neuroblastoma cells and PDX tumors by blocking statin-induced feedback activation of the mevalonate pathway. This function of caffeine depended on its activity as an adenosine receptor antagonist, and the A2A adenosine receptor antagonist istradefylline, an add-on drug for Parkinson's disease, could recapitulate the synergistic effect of caffeine with simvastatin. This study reveals that the FOXM1-mediated mitotic program is a molecular statin target in cancer and identifies classes of agents for maximizing the therapeutic efficacy of statins, with implications for treatment of high-risk neuroblastoma. SIGNIFICANCE Caffeine treatment and FOXM1 inhibition can both enhance the antitumor effect of statins by blocking the molecular and metabolic processes that confer statin resistance, indicating potential combination therapeutic strategies for neuroblastoma. See related commentary by Stouth et al., p. 2091.
Collapse
Affiliation(s)
- Gia-Buu Tran
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- O'Neal Comprehensive Cancer Center, Birmingham, Alabama
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Jane Ding
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- O'Neal Comprehensive Cancer Center, Birmingham, Alabama
| | - Bingwei Ye
- Georgia Prevention Institute, Augusta University, Augusta, Georgia
| | - Mengling Liu
- Institute of Neural Regeneration and Repair and Department of Neurology, The First Hospital of Yichang, Three Gorges University College of Medicine, Yichang, China
| | - Yajie Yu
- Institute of Neural Regeneration and Repair and Department of Neurology, The First Hospital of Yichang, Three Gorges University College of Medicine, Yichang, China
| | - Yunhong Zha
- Institute of Neural Regeneration and Repair and Department of Neurology, The First Hospital of Yichang, Three Gorges University College of Medicine, Yichang, China
| | - Zheng Dong
- Department of Cell Biology and Anatomy, Augusta University, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Sunil Sudarshan
- O'Neal Comprehensive Cancer Center, Birmingham, Alabama
- Department of Urology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Han-Fei Ding
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- O'Neal Comprehensive Cancer Center, Birmingham, Alabama
| |
Collapse
|
13
|
Li Y, Wu S, Zhao X, Hao S, Li F, Wang Y, Liu B, Zhang D, Wang Y, Zhou H. Key events in cancer: Dysregulation of SREBPs. Front Pharmacol 2023; 14:1130747. [PMID: 36969840 PMCID: PMC10030587 DOI: 10.3389/fphar.2023.1130747] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Lipid metabolism reprogramming is an important hallmark of tumor progression. Cancer cells require high levels of lipid synthesis and uptake not only to support their continued replication, invasion, metastasis, and survival but also to participate in the formation of biological membranes and signaling molecules. Sterol regulatory element binding proteins (SREBPs) are core transcription factors that control lipid metabolism and the expression of important genes for lipid synthesis and uptake. A growing number of studies have shown that SREBPs are significantly upregulated in human cancers and serve as intermediaries providing a mechanistic link between lipid metabolism reprogramming and malignancy. Different subcellular localizations, including endoplasmic reticulum, Golgi, and nucleus, play an indispensable role in regulating the cleavage maturation and activity of SREBPs. In this review, we focus on the relationship between aberrant regulation of SREBPs activity in three organelles and tumor progression. Because blocking the regulation of lipid synthesis by SREBPs has gradually become an important part of tumor therapy, this review also summarizes and analyzes several current mainstream strategies.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Shiming Hao
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Difei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Yishu Wang, Honglan Zhou,
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yishu Wang, Honglan Zhou,
| |
Collapse
|
14
|
Transcriptome Analysis Reveals That SREBP Modulates a Large Repertoire of Genes Involved in Key Cellular Functions in Penaeus vannamei, although the Majority of the Dysregulated Genes Are Unannotated. Genes (Basel) 2022; 13:genes13112057. [PMID: 36360293 PMCID: PMC9690432 DOI: 10.3390/genes13112057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs) play vital roles in fatty acid metabolism and other metabolic processes in mammals. However, in penaeid shrimp, the repertoire of genes modulated by SREBP is unknown. Here, RNA interference-mediated knockdown followed by transcriptome sequencing on the Illumina Novaseq 6000 platform was used to explore the genes modulated by SREBP in Penaeus vannamei hepatopancreas. A total of 706 differentially expressed genes (DEGs) were identified, out of which 282 were upregulated and 424 downregulated. Although gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that most of the downregulated DEGs were involved in physiological processes related to immunity, metabolism, and cellular signaling pathways, many of the dysregulated genes have uncharacterized functions. While most of the dysregulated genes were annotated in metabolic processes, such as carbohydrate metabolism, lipid metabolism, signal transduction, and immune system, a large number (42.21%) are uncharacterized. Collectively, our current data revealed that SREBP modulates many genes involved in crucial physiological processes, such as energy metabolism, immune response, and cellular signaling pathways, as well as numerous genes with unannotated functions, in penaeid shrimp. These findings indicated that our knowledge of the repertoire of genes modulated by SREBP in shrimp lags behind that of mammals, probably due to limited research or because the complete genome of P. vannamei has just been sequenced.
Collapse
|
15
|
Kou Y, Geng F, Guo D. Lipid Metabolism in Glioblastoma: From De Novo Synthesis to Storage. Biomedicines 2022; 10:1943. [PMID: 36009491 PMCID: PMC9405736 DOI: 10.3390/biomedicines10081943] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor. With limited therapeutic options, novel therapies are desperately needed. Recent studies have shown that GBM acquires large amounts of lipids for rapid growth through activation of sterol regulatory element-binding protein 1 (SREBP-1), a master transcription factor that regulates fatty acid and cholesterol synthesis, and cholesterol uptake. Interestingly, GBM cells divert substantial quantities of lipids into lipid droplets (LDs), a specific storage organelle for neutral lipids, to prevent lipotoxicity by increasing the expression of diacylglycerol acyltransferase 1 (DGAT1) and sterol-O-acyltransferase 1 (SOAT1), which convert excess fatty acids and cholesterol to triacylglycerol and cholesteryl esters, respectively. In this review, we will summarize recent progress on our understanding of lipid metabolism regulation in GBM to promote tumor growth and discuss novel strategies to specifically induce lipotoxicity to tumor cells through disrupting lipid storage, a promising new avenue for treating GBM.
Collapse
Affiliation(s)
- Yongjun Kou
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, College of Medicine at The Ohio State University, Columbus, OH 43012, USA
| | - Feng Geng
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, College of Medicine at The Ohio State University, Columbus, OH 43012, USA
| | - Deliang Guo
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, College of Medicine at The Ohio State University, Columbus, OH 43012, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Miyata S, Kodaka M, Kikuchi A, Matsunaga Y, Shoji K, Kuan YC, Iwase M, Takeda K, Katsuta R, Ishigami K, Matsumoto Y, Suzuki T, Yamamoto Y, Sato R, Inoue J. Sulforaphane suppresses the activity of sterol regulatory element-binding proteins (SREBPs) by promoting SREBP precursor degradation. Sci Rep 2022; 12:8715. [PMID: 35610278 PMCID: PMC9130306 DOI: 10.1038/s41598-022-12347-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/09/2022] [Indexed: 12/26/2022] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate various genes involved in cholesterol and fatty acid synthesis. In this study, we describe that naturally occurring isothiocyanate sulforaphane (SFaN) impairs fatty acid synthase promoter activity and reduces SREBP target gene (e.g., fatty acid synthase and acetyl-CoA carboxylase 1) expression in human hepatoma Huh-7 cells. SFaN reduced SREBP proteins by promoting the degradation of the SREBP precursor. Amino acids 595–784 of SREBP-1a were essential for SFaN-mediated SREBP-1a degradation. We also found that such SREBP-1 degradation occurs independently of the SREBP cleavage-activating protein and the Keap1-Nrf2 pathway. This study identifies SFaN as an SREBP inhibitor and provides evidence that SFaN could have major potential as a pharmaceutical preparation against hepatic steatosis and obesity.
Collapse
Affiliation(s)
- Shingo Miyata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Manami Kodaka
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Akito Kikuchi
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Yuki Matsunaga
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Kenta Shoji
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Yen-Chou Kuan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.,Department of Horticulture and Landscape Architecture, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Masamori Iwase
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Keita Takeda
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Ryo Katsuta
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Ken Ishigami
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Yu Matsumoto
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Tsukasa Suzuki
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Yuji Yamamoto
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Ryuichiro Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
| | - Jun Inoue
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan.
| |
Collapse
|
17
|
Repurposing Dipyridamole in Niemann Pick Type C Disease: A Proof of Concept Study. Int J Mol Sci 2022; 23:ijms23073456. [PMID: 35408815 PMCID: PMC8999038 DOI: 10.3390/ijms23073456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/10/2022] Open
Abstract
Niemann Pick type C disease (NPC) is a rare disorder characterized by lysosomal lipid accumulation that damages peripheral organs and the central nervous system. Currently, only miglustat is authorized for NPC treatment in Europe, and thus the identification of new therapies is necessary. The hypothesis addressed in this study is that increasing adenosine levels may represent a new therapeutic approach for NPC. In fact, a reduced level of adenosine has been shown in the brain of animal models of NPC; moreover, the compound T1-11, which is able to weakly stimulate A2A receptor and to increase adenosine levels by blocking the equilibrative nucleoside transporter ENT1, significantly ameliorated the pathological phenotype and extended the survival in a mouse model of the disease. To test our hypothesis, fibroblasts from NPC1 patients were treated with dipyridamole, a clinically-approved drug with inhibitory activity towards ENT1. Dipyridamole significantly reduced cholesterol accumulation in fibroblasts and rescued mitochondrial deficits; the mechanism elicited by dipyridamole relies on activation of the adenosine A2AR subtype subsequent to the increased levels of extracellular adenosine due to the inhibition of ENT1. In conclusion, our results provide the proof of concept that targeting adenosine tone could be beneficial in NPC.
Collapse
|
18
|
Angstadt S, Zhu Q, Jaffee EM, Robinson DN, Anders RA. Pancreatic Ductal Adenocarcinoma Cortical Mechanics and Clinical Implications. Front Oncol 2022; 12:809179. [PMID: 35174086 PMCID: PMC8843014 DOI: 10.3389/fonc.2022.809179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers due to low therapeutic response rates and poor prognoses. Majority of patients present with symptoms post metastatic spread, which contributes to its overall lethality as the 4th leading cause of cancer-related deaths. Therapeutic approaches thus far target only one or two of the cancer specific hallmarks, such as high proliferation rate, apoptotic evasion, or immune evasion. Recent genomic discoveries reveal that genetic heterogeneity, early micrometastases, and an immunosuppressive tumor microenvironment contribute to the inefficacy of current standard treatments and specific molecular-targeted therapies. To effectively combat cancers like PDAC, we need an innovative approach that can simultaneously impact the multiple hallmarks driving cancer progression. Here, we present the mechanical properties generated by the cell’s cortical cytoskeleton, with a spotlight on PDAC, as an ideal therapeutic target that can concurrently attack multiple systems driving cancer. We start with an introduction to cancer cell mechanics and PDAC followed by a compilation of studies connecting the cortical cytoskeleton and mechanical properties to proliferation, metastasis, immune cell interactions, cancer cell stemness, and/or metabolism. We further elaborate on the implications of these findings in disease progression, therapeutic resistance, and clinical relapse. Manipulation of the cancer cell’s mechanical system has already been shown to prevent metastasis in preclinical models, but it has greater potential for target exploration since it is a foundational property of the cell that regulates various oncogenic behaviors.
Collapse
Affiliation(s)
- Shantel Angstadt
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Qingfeng Zhu
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elizabeth M. Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Douglas N. Robinson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Douglas N. Robinson, ; Robert A. Anders,
| | - Robert A. Anders
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Douglas N. Robinson, ; Robert A. Anders,
| |
Collapse
|
19
|
Chipofya M, Tayara H, Chong KT. Drug Therapeutic-Use Class Prediction and Repurposing Using Graph Convolutional Networks. Pharmaceutics 2021; 13:1906. [PMID: 34834320 PMCID: PMC8622176 DOI: 10.3390/pharmaceutics13111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 11/30/2022] Open
Abstract
An important stage in the process of discovering new drugs is when candidate molecules are tested of their efficacy. It is reported that testing drug efficacy empirically costs billions of dollars in the drug discovery pipeline. As a mechanism of expediting this process, researchers have resorted to using computational methods to predict the action of molecules in silico. Here, we present a way of predicting the therapeutic-use class of drugs from chemical structures only using graph convolutional networks. In comparison with existing methods which use fingerprints or images as training samples, our approach has yielded better results in all metrics under consideration. In particular, validation accuracy increased from 83-88% to 86-90% for single label tasks. Similarly, the model achieved an accuracy of over 88% on new test data. Finally, our multi-label classification model made new predictions which indicated that some of the drugs could have other therapeutic uses other than those indicated in the dataset. We performed a literature-based evaluation of these predictions and found evidence that validates them. This renders the model a potential tool to be used in search of drugs that are candidates for repurposing.
Collapse
Affiliation(s)
- Mapopa Chipofya
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Korea;
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Korea;
- Advanced Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
20
|
Liang C, Zhou XH, Gong PM, Niu HY, Lyu LZ, Wu YF, Han X, Zhang LW. Lactiplantibacillus plantarum H-87 prevents high-fat diet-induced obesity by regulating bile acid metabolism in C57BL/6J mice. Food Funct 2021; 12:4315-4324. [PMID: 34031676 DOI: 10.1039/d1fo00260k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bile salt hydrolase (BSH)-producing bacteria are negatively related to the body weight gain and energy storage of the host. We aimed to obtain a novel BSH-producing strain with excellent anti-obesity effect and explained its mechanism. Here, we selected a strain named Lactiplantibacillus plantarum H-87 (H-87) with excellent ability to hydrolyze glycochenodeoxycholic acid (GCDCA) and tauroursodeoxycholic acid (TUDCA) in vitro from 12 lactobacilli, and evaluated its anti-obesity effect in high-fat diet (HFD)-fed C57BL/6J mice. The results suggested that H-87 could inhibit HFD-induced body weight gain, fat accumulation, liver lipogenesis and injury, insulin resistance and dyslipidemia. In addition, H-87 could colonize in the ileum and hydrolyze GCDCA and TUDCA, reflected as changes in the concentrations of GCDCA, TUDCA, CDCA and UDCA in the ileum or liver. Furthermore, the study identified that H-87 reduced TUDCA and GCDCA levels in the ileum, which decreased the GLP-1 secretion by L cells to alleviate insulin resistance in HFD-fed mice. Furthermore, H-87 increased the CDCA level in the ileum and liver to activate FXR signaling pathways to inhibit liver lipogenesis in HFD-fed mice. In addition, the decrease of intestinal conjugated bile acids (TUDCA and GCDCA) also increased fecal lipid content and decreased intestinal lipid digestibility. In conclusion, H-87 could inhibit liver fat deposition, insulin resistance and lipid digestion by changing bile acid enterohepatic circulation, and eventually alleviate HFD-induced obesity.
Collapse
Affiliation(s)
- Cong Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150010, China.
| | | | | | | | | | | | | | | |
Collapse
|