1
|
Sreelekshmi PK, Pooja SK, Vidya N, Sinosh S, Thejaswini V. Integrative Investigation of Flavonoids Targeting YBX1 Protein-Protein Interaction Network in Breast Cancer: From Computational Analysis to Experimental Validation. Mol Biotechnol 2024:10.1007/s12033-024-01311-6. [PMID: 39565541 DOI: 10.1007/s12033-024-01311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024]
Abstract
Y-box-binding protein 1 (YBX1) is a multifunctional oncoprotein with its nuclear localization contributing to chemo-resistance in breast cancer. Through its interactions with various proteins and lncRNAs, YBX1 promotes cancer cell migration, invasion, and metastasis. Despite its significant role in cancer progression, studies on YBX1's protein-protein interactions (PPIs) remain limited. Flavonoids are natural compounds with anticancer properties that inhibit metastasis, modulate immunity, and induce apoptosis, with minimal systemic toxicity, making them strong candidates for cancer therapy. Targeting PPIs offers a promising approach for cancer therapy and flavonoids, with their anticancer properties, may modulate these interactions. Our study focused on the YBX1 PPI network, specifically targeting HSPA1A, IGF2BP1, MECP2, G3BP1, EWSR1, PURA, and SYNCRIP. We selected four flavonoids Quercetin, Fisetin, Rutin, and Myricitrin based on literature and conducted 26 docking sessions. Further ADMET analysis indicated Quercetin and Fisetin as more favorable for drug-likeness parameters than Rutin and Myricitrin, which was underscored by MD simulation data. In vitro studies showed that Quercetin and Fisetin downregulated YBX1 expression in a dose-dependent manner (50 μM to 150 μM) in MCF-7 cells. Our study provides a preliminary understanding of YBX1 PPI and the potential of flavonoids to disrupt these interactions. This study investigates the potential of flavonoids to target YBX1 PPIs, providing insights into novel therapeutic strategies for YBX1-driven cancers.
Collapse
Affiliation(s)
- Presanna Kumar Sreelekshmi
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasargod, Kerala, 671320, India
| | - Suresh Kumar Pooja
- Department of Biotechnology, RV College of Engineering 560059, Affiliated to Visvesvaraya Technological University, Belagavi, 590018, Karnataka, India
| | - Niranjan Vidya
- Department of Biotechnology, RV College of Engineering 560059, Affiliated to Visvesvaraya Technological University, Belagavi, 590018, Karnataka, India
| | - Skariyachan Sinosh
- Department of Microbiology, St. Pius X College, Rajapuram, Kasargod, Kerala, India
| | - Venkatesh Thejaswini
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasargod, Kerala, 671320, India.
| |
Collapse
|
2
|
Wu F, Li D. YB1 and its role in osteosarcoma: a review. Front Oncol 2024; 14:1452661. [PMID: 39497723 PMCID: PMC11532169 DOI: 10.3389/fonc.2024.1452661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
YB1 (Y box binding protein 1), a multifunctional protein capable of binding to DNA/RNA, is present in most cells and acts as a splicing factor. It is involved in numerous cellular processes such as transcription, translation, and DNA repair, significantly affecting cell proliferation, differentiation, and apoptosis. Abnormal expression of this protein is closely linked to the formation of various malignancies (osteosarcoma, nasopharyngeal carcinoma, breast cancer, etc.). This review examines the multifaceted functions of YB1 and its critical role in osteosarcoma progression, providing new perspectives for potential therapeutic strategies.
Collapse
Affiliation(s)
| | - Dapeng Li
- Affiliated Hospital of Jiangsu University, Zhenjiang,
Jiangsu, China
| |
Collapse
|
3
|
Nikhil K, Shah K. The significant others of aurora kinase a in cancer: combination is the key. Biomark Res 2024; 12:109. [PMID: 39334449 PMCID: PMC11438406 DOI: 10.1186/s40364-024-00651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
AURKA is predominantly famous as an essential mitotic kinase. Recent findings have also established its critical role in a plethora of other biological processes including ciliogenesis, mitochondrial dynamics, neuronal outgrowth, DNA replication and cell cycle progression. AURKA overexpression in numerous cancers is strongly associated with poor prognosis and survival. Still no AURKA-targeted drug has been approved yet, partially because of the associated collateral toxicity and partly due to its limited efficacy as a single agent in a wide range of tumors. Mechanistically, AURKA overexpression allows it to phosphorylate numerous pathological substrates promoting highly aggressive oncogenic phenotypes. Our review examines the most recent advances in AURKA regulation and focuses on 33 such direct cancer-specific targets of AURKA and their associated oncogenic signaling cascades. One of the common themes that emerge is that AURKA is often involved in a feedback loop with its substrates, which could be the decisive factor causing its sustained upregulation and hyperactivation in cancer cells, an Achilles heel not exploited before. This dynamic interplay between AURKA and its substrates offers potential opportunities for targeted therapeutic interventions. By targeting these substrates, it may be possible to disrupt this feedback loop to effectively reverse AURKA levels, thereby providing a promising avenue for developing safer AURKA-targeted therapeutics. Additionally, exploring the synergistic effects of AURKA inhibition with its other oncogenic and/or tumor-suppressor targets could provide further opportunities for developing effective combination therapies against AURKA-driven cancers, thereby maximizing its potential as a critical drug target.
Collapse
Affiliation(s)
- Kumar Nikhil
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India.
| | - Kavita Shah
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Murakami Y, Katsuchi D, Matsumoto T, Kanazawa K, Shibata T, Kawahara A, Akiba J, Yanaihara N, Okamoto A, Itamochi H, Sugiyama T, Terada A, Nishio S, Tsuda N, Kato K, Ono M, Kuwano M. Y-box binding protein 1/cyclin A1 axis specifically promotes cell cycle progression at G 2/M phase in ovarian cancer. Sci Rep 2024; 14:21701. [PMID: 39289424 PMCID: PMC11408696 DOI: 10.1038/s41598-024-72174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Y-box binding protein 1 (YBX1) promotes oncogenic transformation and tumor growth. YBX1 plays a role in regulation of cell cycle promotion via upregulation of cell cycle-related genes. In ovarian cancer, YBX1 also promotes tumor growth, but the mechanisms of YBX1 in cell growth and cell cycle in ovarian cancer remain not to be fully understood. Here, we investigated whether YBX1-dependent cancer cell proliferation was specifically associated with expression of cell cycle related genes in ovarian cancer. Protein and mRNA expression levels of YBX1 and cell cycle-related genes in ovarian cancer cell lines and tissues were determined by western blot analysis, immunohistochemical analysis and reverse transcription-quantitative PCR. Cell cycle analysis was performed by flow cytometry. Luciferase assay and Chromatin immunoprecipitation assay were used to investigate a transcriptional function of YBX1. YBX1 silencing induced marked growth suppression in 4 cell lines (group A), moderate suppression in 5 cell lines (group B), and no suppression in 3 cell lines (group C) among 12 ovarian cancer cell lines in culture. The YBX1 silencing induced cell cycle arrest at G2/M phase and suppressed expression of cyclin A1 gene in group A and B cell lines, but not in group C cell lines. Cyclin A1 silencing specifically suppressed cell proliferation in group A cell lines and partially in group B cell lines, but not at all in group C cell lines. YBX1 mRNA levels were significantly correlated with cyclin A1 mRNA levels in patients with high-grade serous carcinoma. Augmented YBX1 expression plays a key role in tumor growth promotion in ovarian cancer in its close association with cyclin A1.
Collapse
Affiliation(s)
- Yuichi Murakami
- Basic Medical Research Unit, St. Mary's Research Center, 422 Tsubukuhon-Machi, Kurume, Fukuoka, 830-8543, Japan.
| | - Daisuke Katsuchi
- Basic Medical Research Unit, St. Mary's Research Center, 422 Tsubukuhon-Machi, Kurume, Fukuoka, 830-8543, Japan
| | - Taichi Matsumoto
- Basic Medical Research Unit, St. Mary's Research Center, 422 Tsubukuhon-Machi, Kurume, Fukuoka, 830-8543, Japan
| | - Kuon Kanazawa
- Basic Medical Research Unit, St. Mary's Research Center, 422 Tsubukuhon-Machi, Kurume, Fukuoka, 830-8543, Japan
| | - Tomohiro Shibata
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, 830-0011, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, 830-0011, Japan
| | - Nozomu Yanaihara
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Hiroaki Itamochi
- Department of Clinical Oncology, Iwate Medical University School of Medicine, Yahaba-Cho, 028-3694, Japan
| | - Toru Sugiyama
- Department of Obstetrics and Gynecology, St. Mary's Hospital, Kurume, 830-8543, Japan
| | - Atsumu Terada
- Department of Obstetrics and Gynecology, St. Mary's Hospital, Kurume, 830-8543, Japan
| | - Shin Nishio
- Department of Obstetrics and Gynecology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Naotake Tsuda
- Department of Obstetrics and Gynecology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Mayumi Ono
- Basic Medical Research Unit, St. Mary's Research Center, 422 Tsubukuhon-Machi, Kurume, Fukuoka, 830-8543, Japan
| | - Michihiko Kuwano
- Basic Medical Research Unit, St. Mary's Research Center, 422 Tsubukuhon-Machi, Kurume, Fukuoka, 830-8543, Japan
| |
Collapse
|
5
|
Li F, Li W. Readers of RNA Modification in Cancer and Their Anticancer Inhibitors. Biomolecules 2024; 14:881. [PMID: 39062595 PMCID: PMC11275166 DOI: 10.3390/biom14070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer treatment has always been a challenge for humanity. The inadequacies of current technologies underscore the limitations of our efforts against this disease. Nevertheless, the advent of targeted therapy has introduced a promising avenue, furnishing us with more efficacious tools. Consequently, researchers have turned their attention toward epigenetics, offering a novel perspective in this realm. The investigation of epigenetics has brought RNA readers to the forefront, as they play pivotal roles in recognizing and regulating RNA functions. Recently, the development of inhibitors targeting these RNA readers has emerged as a focal point in research and holds promise for further strides in targeted therapy. In this review, we comprehensively summarize various types of inhibitors targeting RNA readers, including non-coding RNA (ncRNA) inhibitors, small-molecule inhibitors, and other potential inhibitors. We systematically elucidate their mechanisms in suppressing cancer progression by inhibiting readers, aiming to present inhibitors of readers at the current stage and provide more insights into the development of anticancer drugs.
Collapse
Affiliation(s)
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
6
|
Li ZL, Xie Y, Xie Y, Chen H, Zhou X, Liu M, Zhang XL. HCV 5-Methylcytosine Enhances Viral RNA Replication through Interaction with m5C Reader YBX1. ACS Chem Biol 2024; 19:1648-1660. [PMID: 38954741 DOI: 10.1021/acschembio.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Hepatitis C virus (HCV) is a positive-stranded RNA virus that mainly causes chronic hepatitis, cirrhosis and hepatocellular carcinoma. Recently we confirmed m5C modifications within NS5A gene of HCV RNA genome. However, the roles of the m5C modification and its interaction with host proteins in regulating HCV's life cycle, remain unexplored. Here, we demonstrate that HCV infection enhances the expression of the host m5C reader YBX1 through the transcription factor MAX. YBX1 acts as an m5C reader, recognizing the m5C-modified NS5A C7525 site in the HCV RNA genome and significantly enhancing HCV RNA stability. This m5C-modification is also required for YBX1 colocalization with lipid droplets and HCV Core protein. Moreover, YBX1 facilitates HCV RNA replication, as well as viral assembly/budding. The tryptophan residue at position 65 (W65) of YBX1 is critical for these functions. Knockout of YBX1 or the application of YBX1 inhibitor SU056 suppresses HCV RNA replication and viral protein translation. To our knowledge, this is the first report demonstrating that the interaction between host m5C reader YBX1 and HCV RNA m5C methylation facilitates viral replication. Therefore, hepatic-YBX1 knockdown holds promise as a potential host-directed strategy for HCV therapy.
Collapse
Affiliation(s)
- Zhu-Li Li
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Yuke Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Hongliang Chen
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Xiang Zhou
- Department of Chemistry and Molecular Science, Wuhan University, Wuhan 430070, Hubei Province, China
| | - Min Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan 430071, China
| |
Collapse
|
7
|
Li Z, Lu W, Yin F, Huang A. YBX1 as a prognostic biomarker and potential therapeutic target in hepatocellular carcinoma: A comprehensive investigation through bioinformatics analysis and in vitro study. Transl Oncol 2024; 45:101965. [PMID: 38688048 PMCID: PMC11070759 DOI: 10.1016/j.tranon.2024.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/08/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUNDS Y-box binding protein 1 (YBX1) is a DNA/RNA binding protein known to contribute to the progression of various malignancies, however, a comprehensive pan-cancer analysis to investigate YBX1 across a broad spectrum of cancer types has not yet been conducted. METHODS We utilized the TIMER database for a comprehensive pan-cancer analysis and assessed YBX-1 expression via the TCGA and GEO databases. The relationship between YBX-1 expression and tumor-infiltrating cells was examined using TIMER and the R programming language. To evaluate the prognostic value of YBX1, we performed Kaplan-Meier plots and Cox regression analyses. Through LinkedOmics, we identified genes significantly correlated with YBX-1. The WEB-based Gene SeT AnaLysis Toolkit was used for KEGG pathway enrichment analysis. Additionally, using shRNA-mediated knockdown, we explored the potential role of YBX1 in tumor cell biology. RESULTS Our study identifies pronounced overexpression of YBX-1 across multiple cancer types, correlating with adverse outcomes, notably in liver hepatocellular carcinoma (LIHC). A distinct association between elevated YBX-1 expression and heightened immune cell infiltration suggests YBX-1's potential role in reshaping the tumor microenvironment. Intriguingly, our KEGG pathway analysis indicated a tight nexus between YBX-1 expression and lipid metabolism. Moreover, the suppression of YBX-1 via shRNA revealed diminished cellular proliferation and marked reductions in crucial molecules steering the fatty acid synthesis pathway, implicating YBX-1's potential regulatory role in lipid metabolism within LIHC. CONCLUSIONS YBX-1 serves as a favorable prognostic indicator in various cancers, particularly in liver hepatocellular carcinoma. Targeting YBX1 in HCC offers potential therapeutic strategies. This work paves the way for fresh insights into targeted therapeutic approaches for cancers, especially benefiting liver hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Zizhen Li
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510000, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou 510000, China
| | - Feng Yin
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou 510000, China
| | - Amin Huang
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510000, China.
| |
Collapse
|
8
|
Dheeraj A, Garcia Marques FJ, Tailor D, Bermudez A, Resendez A, Pandrala M, Grau B, Kumar P, Haley CB, Honkala A, Kujur P, Jeffrey SS, Pitteri S, Malhotra SV. Inhibition of protein translational machinery in triple-negative breast cancer as a promising therapeutic strategy. Cell Rep Med 2024; 5:101552. [PMID: 38729158 PMCID: PMC11148772 DOI: 10.1016/j.xcrm.2024.101552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 07/11/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024]
Abstract
Y-box binding protein-1 (YB-1) is a proto-oncogenic protein associated with protein translation regulation. It plays a crucial role in the development and progression of triple-negative breast cancer (TNBC). In this study, we describe a promising approach to inhibit YB-1 using SU056, a small-molecule inhibitor. SU056 physically interacts with YB-1 and reduces its expression, which helps to restrain the progression of TNBC. Proteome profiling analysis indicates that the inhibition of YB-1 by SU056 can alter the proteins that regulate protein translation, an essential process for cancer cell growth. Preclinical studies on human cells, mice, and patient-derived xenograft tumor models show the effectiveness of SU056. Moreover, toxicological studies have shown that SU056 treatment and dosing are well tolerated without any adverse effects. Overall, our study provides a strong foundation for the further development of SU056 as a potential treatment option for patients with TNBC by targeting YB-1.
Collapse
Affiliation(s)
- Arpit Dheeraj
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Fernando Jose Garcia Marques
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Dhanir Tailor
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Abel Bermudez
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Angel Resendez
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mallesh Pandrala
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Benedikt Grau
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Praveen Kumar
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Carrsyn B Haley
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Alexander Honkala
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Praveen Kujur
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sharon Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sanjay V Malhotra
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
9
|
Shi X, Hu Z, Bai S, Zong C, Xue H, Li Y, Li F, Chen L, Xuan J, Xia Y, Wei L, Shen F, Wang K. YBX1 promotes stemness and cisplatin insensitivity in intrahepatic cholangiocarcinoma via the AKT/β-catenin axis. J Gene Med 2024; 26:e3689. [PMID: 38676365 DOI: 10.1002/jgm.3689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive malignancy characterized by a poor prognosis and closely linked to tumor stemness. However, the key molecules that regulate ICC stemness remain elusive. Although Y-box binding protein 1 (YBX1) negatively affects prognosis in various cancers by enhancing stemness and chemoresistance, its effect on stemness and cisplatin sensitivity in ICC remains unclear. METHODS Three bulk and single-cell RNA-seq datasets were analyzed to investigate YBX1 expression in ICC and its association with stemness. Clinical samples and colony/sphere formation assays validated the role of YBX1 in stemness and sensitivity to cisplatin. AZD5363 and KYA1979K explored the interaction of YBX1 with the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) and WNT/β-catenin pathways. RESULTS YBX1 was significantly upregulated in ICC, correlated with worse overall survival and shorter postoperative recurrence time, and was higher in chemotherapy-non-responsive ICC tissues. The YBX1-high group exhibited significantly elevated stemness scores, and genes linked to YBX1 upregulation were enriched in multiple stemness-related pathways. Moreover, YBX1 expression is significantly correlated with several stemness-related genes (SOX9, OCT4, CD133, CD44 and EPCAM). Additionally, YBX1 overexpression significantly enhanced the colony- and spheroid-forming abilities of ICC cells, accelerated tumor growth in vivo and reduced their sensitivity to cisplatin. Conversely, the downregulation of YBX1 exerted the opposite effect. The transcriptomic analysis highlighted the link between YBX1 and the PI3K/AKT and WNT/β-catenin pathways. Further, AZD5363 and KYA1979K were used to clarify that YBX1 promoted ICC stemness through the regulation of the AKT/β-catenin axis. CONCLUSIONS YBX1 is upregulated in ICC and promotes stemness and cisplatin insensitivity via the AKT/β-catenin axis. Our study describes a novel potential therapeutic target for improving ICC prognosis.
Collapse
Affiliation(s)
- Xiaodong Shi
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhiliang Hu
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Shilei Bai
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Chen Zong
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Hui Xue
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yao Li
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Fengwei Li
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Liangrui Chen
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Jianbing Xuan
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yong Xia
- Department of Hepatic Surgery IV, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Feng Shen
- Department of Hepatic Surgery IV, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Kui Wang
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
Wang X, Li X, Niu L, Lv F, Guo T, Gao Y, Ran Y, Huang W, Wang B. FAK-LINC01089 negative regulatory loop controls chemoresistance and progression of small cell lung cancer. Oncogene 2024; 43:1669-1687. [PMID: 38594505 DOI: 10.1038/s41388-024-03027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
The focal adhesion kinase (FAK) tyrosine kinase is activated and upregulated in multiple cancer types including small cell lung cancer (SCLC). However, FAK inhibitors have shown limited efficacy in clinical trials for cancer treatment. With the aim of identifying potential therapeutic strategies to inhibit FAK for cancer treatment, we investigated long non-coding RNAs (lncRNAs) that potentially regulate FAK in SCLC. In this study, we identified a long non-coding RNA LINC01089 that binds and inhibits FAK phosphorylation (activation). Expression analysis revealed that LINC01089 was downregulated in SCLC tissues and negatively correlated with chemoresistance and survival in SCLC patients. Functionally, LINC01089 inhibited chemoresistance and progression of SCLC in vitro and in vivo. Mechanistically, LINC01089 inhibits FAK activation by blocking binding with Src and talin kinases, while FAK negatively regulates LINC01089 transcription by activating the ERK signaling pathway to recruit the REST transcription factor. Furthermore, LINC01089-FAK axis mediates the expression of drug resist-related genes by modulating YBX1 phosphorylation, leading to drug resistance in SCLC. Intriguingly, the FAK-LINC01089 interaction depends on the co-occurrence of the novel FAK variant and the non-conserved region of LINC01089 in primates. In Conclusion, our results indicated that LINC01089 may serve as a novel high-efficiency FAK inhibitor and the FAK-LINC01089 axis represents a valuable prognostic biomarker and potential therapeutic target in SCLC.
Collapse
Affiliation(s)
- Xianteng Wang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xingkai Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liman Niu
- Chongqing Key Laboratory of Sichuan-Chongging Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Lv
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Guo
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuliang Ran
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Weiren Huang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Bing Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Dinh NTM, Nguyen TM, Park MK, Lee CH. Y-Box Binding Protein 1: Unraveling the Multifaceted Role in Cancer Development and Therapeutic Potential. Int J Mol Sci 2024; 25:717. [PMID: 38255791 PMCID: PMC10815159 DOI: 10.3390/ijms25020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Y-box binding protein 1 (YBX1), a member of the Cold Shock Domain protein family, is overexpressed in various human cancers and is recognized as an oncogenic gene associated with poor prognosis. YBX1's functional diversity arises from its capacity to interact with a broad range of DNA and RNA molecules, implicating its involvement in diverse cellular processes. Independent investigations have unveiled specific facets of YBX1's contribution to cancer development. This comprehensive review elucidates YBX1's multifaceted role in cancer across cancer hallmarks, both in cancer cell itself and the tumor microenvironment. Based on this, we proposed YBX1 as a potential target for cancer treatment. Notably, ongoing clinical trials addressing YBX1 as a target in breast cancer and lung cancer have showcased its promise for cancer therapy. The ramp up in in vitro research on targeting YBX1 compounds also underscores its growing appeal. Moreover, the emerging role of YBX1 as a neural input is also proposed where the high level of YBX1 was strongly associated with nerve cancer and neurodegenerative diseases. This review also summarized the up-to-date advanced research on the involvement of YBX1 in pancreatic cancer.
Collapse
Affiliation(s)
- Ngoc Thi Minh Dinh
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| |
Collapse
|
12
|
Khozooei S, Veerappan S, Toulany M. YB-1 activating cascades as potential targets in KRAS-mutated tumors. Strahlenther Onkol 2023; 199:1110-1127. [PMID: 37268766 DOI: 10.1007/s00066-023-02092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 06/04/2023]
Abstract
Y‑box binding protein‑1 (YB-1) is a multifunctional protein that is highly expressed in human solid tumors of various entities. Several cellular processes, e.g. cell cycle progression, cancer stemness and DNA damage signaling that are involved in the response to chemoradiotherapy (CRT) are tightly governed by YB‑1. KRAS gene with about 30% mutations in all cancers, is considered the most commonly mutated oncogene in human cancers. Accumulating evidence indicates that oncogenic KRAS mediates CRT resistance. AKT and p90 ribosomal S6 kinase are downstream of KRAS and are the major kinases that stimulate YB‑1 phosphorylation. Thus, there is a close link between the KRAS mutation status and YB‑1 activity. In this review paper, we highlight the importance of the KRAS/YB‑1 cascade in the response of KRAS-mutated solid tumors to CRT. Likewise, the opportunities to interfere with this pathway to improve CRT outcome are discussed in light of the current literature.
Collapse
Affiliation(s)
- Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Soundaram Veerappan
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
13
|
Li A, Bouhss A, Clément MJ, Bauvais C, Taylor JP, Bollot G, Pastré D. Using the structural diversity of RNA: protein interfaces to selectively target RNA with small molecules in cells: methods and perspectives. Front Mol Biosci 2023; 10:1298441. [PMID: 38033386 PMCID: PMC10687564 DOI: 10.3389/fmolb.2023.1298441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
In recent years, RNA has gained traction both as a therapeutic molecule and as a therapeutic target in several human pathologies. In this review, we consider the approach of targeting RNA using small molecules for both research and therapeutic purposes. Given the primary challenge presented by the low structural diversity of RNA, we discuss the potential for targeting RNA: protein interactions to enhance the structural and sequence specificity of drug candidates. We review available tools and inherent challenges in this approach, ranging from adapted bioinformatics tools to in vitro and cellular high-throughput screening and functional analysis. We further consider two critical steps in targeting RNA/protein interactions: first, the integration of in silico and structural analyses to improve the efficacy of molecules by identifying scaffolds with high affinity, and second, increasing the likelihood of identifying on-target compounds in cells through a combination of high-throughput approaches and functional assays. We anticipate that the development of a new class of molecules targeting RNA: protein interactions to prevent physio-pathological mechanisms could significantly expand the arsenal of effective therapeutic compounds.
Collapse
Affiliation(s)
- Aixiao Li
- Synsight, Genopole Entreprises, Evry, France
| | - Ahmed Bouhss
- Université Paris-Saclay, INSERM U1204, Université d’Évry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry, France
| | - Marie-Jeanne Clément
- Université Paris-Saclay, INSERM U1204, Université d’Évry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry, France
| | | | - J. Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | | | - David Pastré
- Université Paris-Saclay, INSERM U1204, Université d’Évry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry, France
| |
Collapse
|
14
|
Li H, Zhang D, Fu Q, Wang S, Wang Z, Zhang X, Chen X, Zhu X, An N, Chen Y, Zhou L, Lu D, Zhao N. YBX1 as an oncogenic factor in T-cell acute lymphoblastic leukemia. Blood Adv 2023; 7:4874-4885. [PMID: 37339496 PMCID: PMC10469076 DOI: 10.1182/bloodadvances.2022009648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023] Open
Abstract
Y-box-binding protein 1 (YBX1), a member of the RNA-binding protein family, is a critical regulator of cell survival in various solid tumors and acute myeloid leukemia. However, the function of YBX1 in T-cell acute lymphoblastic leukemia (T-ALL) remains elusive. Here, we found that YBX1 was upregulated in patients with T-ALL, T-ALL cell lines, and NOTCH1-induced T-ALL mice. Furthermore, depletion of YBX1 dramatically reduced cell proliferation, induced cell apoptosis, and induced G0/G1 phase arrest in vitro. Moreover, YBX1 depletion significantly decreased the leukemia burden in the human T-ALL xenograft and NOTCH1-induced T-ALL mice model in vivo. Mechanistically, downregulation of YBX1 markedly inhibited the expression of total AKT serine/threonine kinase (AKT), p-AKT, total extracellular signal-regulated kinase (ERK), and p-ERK in T-ALL cells. Taken together, our results uncovered a critical role of YBX1 in the leukemogenesis of T-ALL, which may have great potential as a biomarker and therapeutic target in T-ALL.
Collapse
Affiliation(s)
- Huan Li
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China
| | - Danlan Zhang
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Qiuxia Fu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Shang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Zhongyuan Wang
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xin Zhang
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xin Chen
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Na An
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Yun Chen
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China
| | - Liang Zhou
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Desheng Lu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Na Zhao
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
15
|
Fritzke M, Chen K, Tang W, Stinson S, Pham T, Wang Y, Xu L, Chen EY. The MYC-YBX1 Circuit in Maintaining Stem-like Vincristine-Resistant Cells in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:2788. [PMID: 37345125 DOI: 10.3390/cancers15102788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric soft tissue sarcoma that causes significant devastation, with no effective therapy for relapsed disease. The mechanisms behind treatment failures are poorly understood. Our study showed that treatment of RMS cells with vincristine led to an increase in CD133-positive stem-like resistant cells. Single cell RNAseq analysis revealed that MYC and YBX1 were among the top-scoring transcription factors in CD133-high expressing cells. Targeting MYC and YBX1 using CRISPR/Cas9 reduced stem-like characteristics and viability of the vincristine-resistant cells. MYC and YBX1 showed mutual regulation, with MYC binding to the YBX1 promoter and YBX1 binding to MYC mRNA. The MYC inhibitor MYC361i synergized with vincristine to reduce tumor growth and stem-like cells in a zebrafish model of RMS. MYC and YBX expression showed a positive correlation in RMS patients, and high MYC expression correlated with poor survival. Targeting the MYC-YBX1 axis holds promise for improving survival in RMS patients.
Collapse
Affiliation(s)
- Madeline Fritzke
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weiliang Tang
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Spencer Stinson
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Thao Pham
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
- Astellas US Technologies, Universal Cells, Inc., Seattle, WA 98121, USA
| | - Yadong Wang
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eleanor Y Chen
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
16
|
El Hage K, Babault N, Maciejak O, Desforges B, Craveur P, Steiner E, Rengifo-Gonzalez JC, Henrie H, Clement MJ, Joshi V, Bouhss A, Wang L, Bauvais C, Pastré D. Targeting RNA:protein interactions with an integrative approach leads to the identification of potent YBX1 inhibitors. eLife 2023; 12:e80387. [PMID: 36651723 PMCID: PMC9928419 DOI: 10.7554/elife.80387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
RNA-protein interactions (RPIs) are promising targets for developing new molecules of therapeutic interest. Nevertheless, challenges arise from the lack of methods and feedback between computational and experimental techniques during the drug discovery process. Here, we tackle these challenges by developing a drug screening approach that integrates chemical, structural and cellular data from both advanced computational techniques and a method to score RPIs in cells for the development of small RPI inhibitors; and we demonstrate its robustness by targeting Y-box binding protein 1 (YB-1), a messenger RNA-binding protein involved in cancer progression and resistance to chemotherapy. This approach led to the identification of 22 hits validated by molecular dynamics (MD) simulations and nuclear magnetic resonance (NMR) spectroscopy of which 11 were found to significantly interfere with the binding of messenger RNA (mRNA) to YB-1 in cells. One of our leads is an FDA-approved poly(ADP-ribose) polymerase 1 (PARP-1) inhibitor. This work shows the potential of our integrative approach and paves the way for the rational development of RPI inhibitors.
Collapse
Affiliation(s)
- Krystel El Hage
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | | | - Olek Maciejak
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Bénédicte Desforges
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | | | - Emilie Steiner
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Juan Carlos Rengifo-Gonzalez
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Hélène Henrie
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Marie-Jeanne Clement
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Vandana Joshi
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Ahmed Bouhss
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Liya Wang
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | | | - David Pastré
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| |
Collapse
|
17
|
Hnatiuk AP, Bruyneel AA, Tailor D, Pandrala M, Dheeraj A, Li W, Serrano R, Feyen DA, Vu MM, Amatya P, Gupta S, Nakauchi Y, Morgado I, Wiebking V, Liao R, Porteus MH, Majeti R, Malhotra SV, Mercola M. Reengineering Ponatinib to Minimize Cardiovascular Toxicity. Cancer Res 2022; 82:2777-2791. [PMID: 35763671 PMCID: PMC9620869 DOI: 10.1158/0008-5472.can-21-3652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/29/2022] [Accepted: 05/24/2022] [Indexed: 01/07/2023]
Abstract
Small molecule tyrosine kinase inhibitors (TKI) have revolutionized cancer treatment and greatly improved patient survival. However, life-threatening cardiotoxicity of many TKIs has become a major concern. Ponatinib (ICLUSIG) was developed as an inhibitor of the BCR-ABL oncogene and is among the most cardiotoxic of TKIs. Consequently, use of ponatinib is restricted to the treatment of tumors carrying T315I-mutated BCR-ABL, which occurs in chronic myeloid leukemia (CML) and confers resistance to first- and second-generation inhibitors such as imatinib and nilotinib. Through parallel screening of cardiovascular toxicity and antitumor efficacy assays, we engineered safer analogs of ponatinib that retained potency against T315I BCR-ABL kinase activity and suppressed T315I mutant CML tumor growth. The new compounds were substantially less toxic in human cardiac vasculogenesis and cardiomyocyte contractility assays in vitro. The compounds showed a larger therapeutic window in vivo, leading to regression of human T315I mutant CML xenografts without cardiotoxicity. Comparison of the kinase inhibition profiles of ponatinib and the new compounds suggested that ponatinib cardiotoxicity is mediated by a few kinases, some of which were previously unassociated with cardiovascular disease. Overall, the study develops an approach using complex phenotypic assays to reduce the high risk of cardiovascular toxicity that is prevalent among small molecule oncology therapeutics. SIGNIFICANCE Newly developed ponatinib analogs retain antitumor efficacy but elicit significantly decreased cardiotoxicity, representing a therapeutic opportunity for safer CML treatment.
Collapse
MESH Headings
- Antineoplastic Agents/adverse effects
- Cardiotoxicity/drug therapy
- Cardiotoxicity/etiology
- Cardiotoxicity/prevention & control
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imidazoles
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Protein Kinase Inhibitors/adverse effects
- Pyridazines/pharmacology
- Pyridazines/therapeutic use
Collapse
Affiliation(s)
- Anna P. Hnatiuk
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Arne A.N. Bruyneel
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Dhanir Tailor
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Mallesh Pandrala
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Arpit Dheeraj
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Wenqi Li
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Ricardo Serrano
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Dries A.M. Feyen
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Michelle M. Vu
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Prashila Amatya
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Saloni Gupta
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Yusuke Nakauchi
- Division of Hematology Institute for Stem cell Biology and Regenerative Medicine, Stanford School of Medicine, California
| | - Isabel Morgado
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Volker Wiebking
- Department of Pediatrics, Stanford School of Medicine, Stanford, California
| | - Ronglih Liao
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Matthew H. Porteus
- Department of Pediatrics, Stanford School of Medicine, Stanford, California
| | - Ravindra Majeti
- Division of Hematology Institute for Stem cell Biology and Regenerative Medicine, Stanford School of Medicine, California
| | - Sanjay V. Malhotra
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Mark Mercola
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| |
Collapse
|
18
|
YB-1 as an Oncoprotein: Functions, Regulation, Post-Translational Modifications, and Targeted Therapy. Cells 2022; 11:cells11071217. [PMID: 35406781 PMCID: PMC8997642 DOI: 10.3390/cells11071217] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Y box binding protein 1 (YB-1) is a protein with a highly conserved cold shock domain (CSD) that also belongs to the family of DNA- and RNA-binding proteins. YB-1 is present in both the nucleus and cytoplasm and plays versatile roles in gene transcription, RNA splicing, DNA damage repair, cell cycle progression, and immunity. Cumulative evidence suggests that YB-1 promotes the progression of multiple tumor types and serves as a potential tumor biomarker and therapeutic target. This review comprehensively summarizes the emerging functions, mechanisms, and regulation of YB-1 in cancers, and further discusses targeted strategies.
Collapse
|
19
|
RNA-binding proteins and cancer metastasis. Semin Cancer Biol 2022; 86:748-768. [PMID: 35339667 DOI: 10.1016/j.semcancer.2022.03.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins (RBPs) can regulate gene expression through post-transcriptionally influencing all manner of RNA biology, including alternative splicing (AS), polyadenylation, stability, and translation of mRNAs, as well as microRNAs (miRNAs) and circular RNAs (circRNAs) processing. There is accumulating evidence reinforcing the perception that dysregulation or dysfunction of RBPs can lead to various human diseases, including cancers. RBPs influence diverse cancer-associated cellular phenotypes, such as proliferation, apoptosis, senescence, migration, invasion, and angiogenesis, contributing to the initiation and development of tumors, as well as clinical prognosis. Metastasis is the leading cause of cancer-related recurrence and death. Therefore, it is necessary to elucidate the molecular mechanisms behind tumor metastasis. In fact, a growing body of published research has proved that RBPs play pivotal roles in cancer metastasis. In this review, we will summarize the recent advances for helping us understand the role of RBPs in tumor metastasis, and discuss dysfunctions and dysregulations of RBPs affecting metastasis-associated processes including epithelial-mesenchymal transition (EMT), migration, and invasion of cancer cells. Furthermore, we will discuss emerging RBP-based strategy for the treatment of cancer metastasis.
Collapse
|
20
|
Rice MA, Kumar V, Tailor D, Garcia-Marques FJ, Hsu EC, Liu S, Bermudez A, Kanchustambham V, Shankar V, Inde Z, Alabi BR, Muruganantham A, Shen M, Pandrala M, Nolley R, Aslan M, Ghoochani A, Agarwal A, Buckup M, Kumar M, Going CC, Peehl DM, Dixon SJ, Zare RN, Brooks JD, Pitteri SJ, Malhotra SV, Stoyanova T. SU086, an inhibitor of HSP90, impairs glycolysis and represents a treatment strategy for advanced prostate cancer. Cell Rep Med 2022; 3:100502. [PMID: 35243415 PMCID: PMC8861828 DOI: 10.1016/j.xcrm.2021.100502] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/09/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022]
Abstract
Among men, prostate cancer is the second leading cause of cancer-associated mortality, with advanced disease remaining a major clinical challenge. We describe a small molecule, SU086, as a therapeutic strategy for advanced prostate cancer. We demonstrate that SU086 inhibits the growth of prostate cancer cells in vitro, cell-line and patient-derived xenografts in vivo, and ex vivo prostate cancer patient specimens. Furthermore, SU086 in combination with standard of care second-generation anti-androgen therapies displays increased impairment of prostate cancer cell and tumor growth in vitro and in vivo. Cellular thermal shift assay reveals that SU086 binds to heat shock protein 90 (HSP90) and leads to a decrease in HSP90 levels. Proteomic profiling demonstrates that SU086 binds to and decreases HSP90. Metabolomic profiling reveals that SU086 leads to perturbation of glycolysis. Our study identifies SU086 as a treatment for advanced prostate cancer as a single agent or when combined with second-generation anti-androgens.
Collapse
Affiliation(s)
- Meghan A. Rice
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
| | - Vineet Kumar
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Dhanir Tailor
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Fernando Jose Garcia-Marques
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
| | - En-Chi Hsu
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
| | - Shiqin Liu
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
| | - Abel Bermudez
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
| | | | - Vishnu Shankar
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Zintis Inde
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Busola Ruth Alabi
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
| | - Arvind Muruganantham
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
| | - Michelle Shen
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
| | - Mallesh Pandrala
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rosalie Nolley
- Department of Urology, Stanford University, Stanford, CA 94305, USA
| | - Merve Aslan
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
| | - Ali Ghoochani
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
| | - Arushi Agarwal
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
| | - Mark Buckup
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
| | - Manoj Kumar
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
| | - Catherine C. Going
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
| | - Donna M. Peehl
- Department of Urology, Stanford University, Stanford, CA 94305, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Scott J. Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - James D. Brooks
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
- Department of Urology, Stanford University, Stanford, CA 94305, USA
| | - Sharon J. Pitteri
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
| | - Sanjay V. Malhotra
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tanya Stoyanova
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Hamon L, Budkina K, Pastré D. YB-1 Structure/Function Relationship in the Packaging of mRNPs and Consequences for Translation Regulation and Stress Granule Assembly in Cells. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S20-S93. [PMID: 35501984 DOI: 10.1134/s0006297922140036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/14/2023]
Abstract
From their synthesis in the nucleus to their degradation in the cytoplasm, all mRNAs have the same objective, which is to translate the DNA-stored genetic information into functional proteins at the proper time and location. To this end, many proteins are generally associated with mRNAs as soon as transcription takes place in the nucleus to organize spatiotemporal regulation of the gene expression in cells. Here we reviewed how YB-1 (YBX1 gene), one of the major mRNA-binding proteins in the cytoplasm, packaged mRNAs into either compact or extended linear nucleoprotein mRNPs. Interestingly the structural plasticity of mRNPs coordinated by YB-1 could provide means for the contextual regulation of mRNA translation. Posttranslational modification of YB-1, notably in the long unstructured YB-1 C-terminal domain (CTD), and/or the protein partners of YB-1 may play a key role in activation/inactivation of mRNPs in the cells notably in response to cellular stress.
Collapse
Affiliation(s)
- Loïc Hamon
- SABNP, UnivEvry, INSERM U1204, Université Paris-Saclay, Evry, 91025, France.
| | - Karina Budkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - David Pastré
- SABNP, UnivEvry, INSERM U1204, Université Paris-Saclay, Evry, 91025, France.
| |
Collapse
|
22
|
Zheng P, Li N, Zhan X. Ovarian cancer subtypes based on the regulatory genes of RNA modifications: Novel prediction model of prognosis. Front Endocrinol (Lausanne) 2022; 13:972341. [PMID: 36545327 PMCID: PMC9760687 DOI: 10.3389/fendo.2022.972341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a female reproductive system tumor. RNA modifications play key roles in gene expression regulation. The growing evidence demonstrates that RNA methylation is critical for various biological functions, and that its dysregulation is related to the progression of cancer in human. METHOD OC samples were classified into different subtypes (Clusters 1 and 2) based on various RNA-modification regulatory genes (RRGs) in the process of RNA modifications (m1A, m6A, m6Am, m5C, m7G, ac4C, m3C, and Ψ) by nonnegative matrix factorization method (NMF). Based on differently expressed RRGs (DERRGs) between clusters, a pathologically specific RNA-modification regulatory gene signature was constructed with Lasso regression. Kaplan-Meier analysis and receiver operating characteristic (ROC) curves were used to evaluate the prognostic ability of the identified model. The correlations of clinicopathological features, immune subtypes, immune scores, immune cells, and tumor mutation burden (TMB) were also estimated between different NMF clusters and riskscore groups. RESULTS In this study, 59 RRGs in the process of RNA modifications (m1A, m6A, m6Am, m5C, m7G, ac4C, m3C, and Ψ) were obtained from TCGA database. These RRGs were interactional, and sample clusters based on these regulators were significantly correlated with survival rate, clinical characteristics (involving survival status and pathologic stage), drug sensibility, and immune microenvironment. Furthermore, Lasso regression based on these 21 DERRGs between clusters 1 and 2 constructed a four-DERRG signature (ALYREF, ZC3H13, WTAP, and METTL1). Based on this signature, 307 OC patients were classified into high- and low-risk groups based on median value of riskscores from lasso regression. This identified signature was significantly associated with overall survival, radiation therapy, age, clinical stage, cancer status, and immune cells (involving CD4+ memory resting T cells, plasma cells, and Macrophages M1) of ovarian cancer patients. Further, GSEA revealed that multiple biological behaviors were significantly enriched in different groups. CONCLUSIONS OC patients were classified into two subtypes per these RRGs. This study identified four-DERRG signature (ALYREF, ZC3H13, WTAP, and METTL1) in OC, which was an independent prognostic model for patient stratification, prognostic evaluation, and prediction of response to immunotherapy in ovarian cancer by classifying OC patients into high- and low-risk groups.
Collapse
Affiliation(s)
- Peixian Zheng
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Na Li
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
- *Correspondence: Xianquan Zhan, ; Na Li,
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
- *Correspondence: Xianquan Zhan, ; Na Li,
| |
Collapse
|
23
|
The Role of ATRA, Natural Ligand of Retinoic Acid Receptors, on EMT-Related Proteins in Breast Cancer: Minireview. Int J Mol Sci 2021; 22:ijms222413345. [PMID: 34948142 PMCID: PMC8705994 DOI: 10.3390/ijms222413345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
The knowledge of the structure, function, and abundance of specific proteins related to the EMT process is essential for developing effective diagnostic approaches to cancer with the perspective of diagnosis and therapy of malignancies. The success of all-trans retinoic acid (ATRA) differentiation therapy in acute promyelocytic leukemia has stimulated studies in the treatment of other tumors with ATRA. This review will discuss the impact of ATRA use, emphasizing epithelial-mesenchymal transition (EMT) proteins in breast cancer, of which metastasis and recurrence are major causes of death.
Collapse
|
24
|
YBX1 mediates translation of oncogenic transcripts to control cell competition in AML. Leukemia 2021; 36:426-437. [PMID: 34465866 PMCID: PMC8807392 DOI: 10.1038/s41375-021-01393-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022]
Abstract
Persistence of malignant clones is a major determinant of adverse outcome in patients with hematologic malignancies. Despite the fact that the majority of patients with acute myeloid leukemia (AML) achieve complete remission after chemotherapy, a large proportion of them relapse as a result of residual malignant cells. These persistent clones have a competitive advantage and can re-establish disease. Therefore, targeting strategies that specifically diminish cell competition of malignant cells while leaving normal cells unaffected are clearly warranted. Recently, our group identified YBX1 as a mediator of disease persistence in JAK2-mutated myeloproliferative neoplasms. The role of YBX1 in AML, however, remained so far elusive. Here, inactivation of YBX1 confirms its role as an essential driver of leukemia development and maintenance. We identify its ability to amplify the translation of oncogenic transcripts, including MYC, by recruitment to polysomal chains. Genetic inactivation of YBX1 disrupts this regulatory circuit and displaces oncogenic drivers from polysomes, with subsequent depletion of protein levels. As a consequence, leukemia cells show reduced proliferation and are out-competed in vitro and in vivo, while normal cells remain largely unaffected. Collectively, these data establish YBX1 as a specific dependency and therapeutic target in AML that is essential for oncogenic protein expression.
Collapse
|
25
|
Shah A, Lindquist JA, Rosendahl L, Schmitz I, Mertens PR. Novel Insights into YB-1 Signaling and Cell Death Decisions. Cancers (Basel) 2021; 13:3306. [PMID: 34282755 PMCID: PMC8269159 DOI: 10.3390/cancers13133306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
YB-1 belongs to the evolutionarily conserved cold-shock domain protein family of RNA binding proteins. YB-1 is a well-known transcriptional and translational regulator, involved in cell cycle progression, DNA damage repair, RNA splicing, and stress responses. Cell stress occurs in many forms, e.g., radiation, hyperthermia, lipopolysaccharide (LPS) produced by bacteria, and interferons released in response to viral infection. Binding of the latter factors to their receptors induces kinase activation, which results in the phosphorylation of YB-1. These pathways also activate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a well-known transcription factor. NF-κB is upregulated following cellular stress and orchestrates inflammatory responses, cell proliferation, and differentiation. Inflammation and cancer are known to share common mechanisms, such as the recruitment of infiltrating macrophages and development of an inflammatory microenvironment. Several recent papers elaborate the role of YB-1 in activating NF-κB and signaling cell survival. Depleting YB-1 may tip the balance from survival to enhanced apoptosis. Therefore, strategies that target YB-1 might be a viable therapeutic option to treat inflammatory diseases and improve tumor therapy.
Collapse
Affiliation(s)
- Aneri Shah
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (A.S.); (L.R.); (P.R.M.)
| | - Jonathan A. Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (A.S.); (L.R.); (P.R.M.)
| | - Lars Rosendahl
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (A.S.); (L.R.); (P.R.M.)
| | - Ingo Schmitz
- Department of Molecular Immunology, ZKF2, Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Peter R. Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (A.S.); (L.R.); (P.R.M.)
| |
Collapse
|