1
|
Manh HD, Kido T, Takasuga T, Yamashita M, Giang LM, Nakagawa H. The Relationship of Dioxin Levels in Serum of 9-Year-Old Vietnamese Children and Their Mothers’ Breast Milk. TOXICS 2022; 10:toxics10040155. [PMID: 35448416 PMCID: PMC9030040 DOI: 10.3390/toxics10040155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023]
Abstract
In this study, we measured the concentrations of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in the blood of 9-year-old children living in a dioxin hotspot area and a nonexposed area in Vietnam. Forty-five blood samples were collected in the hotspot area while twelve pooled blood samples were collected in the nonexposed area. We found that the dioxin level of children in the hotspot was significantly higher than that of children in the nonexposed area. The total TEQ of PCDD/Fs in the hotspot and the nonexposed was 10.7 and 3.3 pg TEQ/g fat, respectively. However, TCDD, the maker of Agent Orange, was not detected in the blood of children in the hotspot area. In the hotspot area, four congeners 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, and 1,2,3,4,6,7,8-HpCDF in mothers’ breast milk showed a significantly positive correlation with those in children’s serum although the correlations of 1,2,3,7,8-PeCDD and 2,3,4,7,8-PeCDF were not significant. In addition, the duration of breastfeeding also correlates with dioxins in children. These results suggested that children in the hotspot area were exposed to dioxin through mothers’ milk and other foods or environmental factors. The present study is the first study that shows dioxin levels in Vietnamese children.
Collapse
Affiliation(s)
- Ho Dung Manh
- Faculty of Pharmacy, Lac Hong University, No. 10 Huynh Van Nghe, Buu Long, Bien Hoa 02513, Dong Nai, Vietnam;
| | - Teruhiko Kido
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
- Correspondence: ; Tel.: +81-762652565
| | - Takumi Takasuga
- Shimadzu Techno-Research Inc., 1 Nishinokyo Shimoaicho Nakagyo-ku, Kyoto 604-8436, Japan; (T.T.); (M.Y.)
| | - Michiko Yamashita
- Shimadzu Techno-Research Inc., 1 Nishinokyo Shimoaicho Nakagyo-ku, Kyoto 604-8436, Japan; (T.T.); (M.Y.)
| | - Le Minh Giang
- 10-80 Division, Hanoi Medical University, No. 1 Ton That Tung, Dong Da, Hanoi 116500, Vietnam;
| | - Hideaki Nakagawa
- Department of Hygiene, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0265, Japan;
| |
Collapse
|
2
|
Sargis RM, Heindel JJ, Padmanabhan V. Interventions to Address Environmental Metabolism-Disrupting Chemicals: Changing the Narrative to Empower Action to Restore Metabolic Health. Front Endocrinol (Lausanne) 2019; 10:33. [PMID: 30778334 PMCID: PMC6369180 DOI: 10.3389/fendo.2019.00033] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/16/2019] [Indexed: 12/17/2022] Open
Abstract
Metabolic disease rates have increased dramatically over the last four decades. Classic understanding of metabolic physiology has attributed these global trends to decreased physical activity and caloric excess; however, these traditional risk factors insufficiently explain the magnitude and rapidity of metabolic health deterioration. Recently, the novel contribution of environmental metabolism-disrupting chemicals (MDCs) to various metabolic diseases (including obesity, diabetes, and non-alcoholic fatty liver disease) is becoming recognized. As this burgeoning body of evidence has matured, various organic and inorganic pollutants of human and natural origin have emerged as metabolic disease risk factors based on population-level and experimental data. Recognition of these heretofore underappreciated metabolic stressors now mandates that efforts to mitigate the devastating consequences of metabolic disease include dedicated efforts to address environmental drivers of disease risk; however, there have not been adequate recommendations to reduce exposures or to mitigate the effects of exposures on disease outcomes. To address this knowledge gap and advance the clinical translation of MDC science, herein discussed are behaviors that increase exposures to MDCs, interventional studies to reduce those exposures, and small-scale clinical trials to reduce the body burden of MDCs. Also, we discuss evidence from cell-based and animal studies that provide insights into MDC mechanisms of action, the influence of modifiable dietary factors on MDC toxicity, and factors that modulate MDC transplacental carriage as well as their impact on metabolic homeostasis. A particular emphasis of this discussion is on critical developmental windows during which short-term MDC exposure can elicit long-term disruptions in metabolic health with potential inter- and transgenerational effects. While data gaps remain and further studies are needed, the current state of evidence regarding interventions to address MDC exposures illuminates approaches to address environmental drivers of metabolic disease risk. It is now incumbent on clinicians and public health agencies to incorporate this knowledge into comprehensive strategies to address the metabolic disease pandemic.
Collapse
Affiliation(s)
- Robert M. Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jerrold J. Heindel
- Program on Endocrine Disruption Strategies, Commonweal, Bolinas, CA, United States
| | | |
Collapse
|
3
|
Sun XL, Kido T, Okamoto R, Manh HD, Maruzeni S, Nishijo M, Nakagawa H, Honma S, Nakano T, Takasuga T, Nhu DD, Hung NN, Son LK. Relationship between dioxin and steroid hormones in sera of Vietnamese men. Biomarkers 2014; 19:236-40. [DOI: 10.3109/1354750x.2014.899626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Xian Liang Sun
- Division of Health Sciences, Graduate School of Medical Science
| | - Teruniko Kido
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University
KanazawaJapan
| | - Rie Okamoto
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University
KanazawaJapan
| | - Ho Dung Manh
- Division of Health Sciences, Graduate School of Medical Science
| | - Shoko Maruzeni
- Department of Public Health, Kanazawa Medical University
KanazawaJapan
| | - Muneko Nishijo
- Department of Public Health, Kanazawa Medical University
KanazawaJapan
| | - Hideaki Nakagawa
- Department of Public Health, Kanazawa Medical University
KanazawaJapan
| | | | - Takeshi Nakano
- Center for Advanced Science and Innovation, Osaka University
OsakaJapan
| | | | - Dang Duc Nhu
- 10–80 Division, Hanoi Medical University
HanoiVietnam
| | | | - Le Ke Son
- Environment Administration, Ministry of Natural Resources and Environment
HanoiVietnam
| |
Collapse
|
4
|
Manh HD, Kido T, Okamoto R, Xianliang S, Anh LT, Supratman S, Maruzeni S, Nishijo M, Nakagawa H, Honma S, Nakano T, Takasuga T, Nhu DD, Hung NN, Son LK. Serum dioxin levels in Vietnamese men more than 40 years after herbicide spraying. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:3496-503. [PMID: 24552243 DOI: 10.1021/es404853h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recent studies have found elevated dioxin levels inside some U.S. military former air bases in Vietnam, known as hotspots. Many studies of Agent Orange have been done in U.S. veterans; however, there is little known about Vietnamese men. In 2010, we collected blood samples from 97 men in a hotspot and 85 men in an unsprayed area in Northern Vietnam. Serum concentrations of not only TCDD but also other dioxins (PCDDs), furans (PCDFs), and nonortho polychlorinated biphenyls (PCBs) were significantly higher in the hotspot than in the unsprayed area. In the hotspot, three subareas were demarcated, based on their proximity to the air base. The total toxic equivalents (TEQ) of PCDDs/PCDFs+PCBs was 41.7 pg/g lipid in the area closest to the air base, while it was around 29 pg/g lipid in the other two subareas. In the unsprayed area, the dioxin levels were no different between men who went to the South during the Vietnam War and those who remained in the North, with TEQs PCDDs/PCDFs+PCBs of around 13.6 pg/g lipid. Our findings suggested that people living close to the former U.S. air bases might have been exposed to both Agent Orange and other sources of dioxin-like compounds.
Collapse
Affiliation(s)
- Ho Dung Manh
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University , 5-11-80 Kodatsuno, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Effect of chitosan intake on fecal excretion of dioxins and polychlorinated biphenyls in healthy men. Biosci Biotechnol Biochem 2012; 76:1195-200. [PMID: 22790946 DOI: 10.1271/bbb.120067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Six healthy male subjects were treated with 0 g, 1 g, 3 g, and 0 g of chitosan for the first, second, third, and fourth of four weeks, respectively. They were administered chitosan before breakfast on the second, third, and fourth days of the week, and fecal specimens were collected corresponding to the prescribed diet consumed for breakfast on the second day to breakfast on the fourth day. Fecal excretion of dioxins and polychlorinated biphenyls (PCBs) was promoted by intake of 3 g of chitosan (p=0.0589 and p<0.05 respectively), and was positively correlated with that of fat (p<0.01 for both). We found that chitosan intake increased the fecal excretion of dioxins and PCBs, as well as that of fat, suggesting that it might be useful for reducing the adverse effects of lipophilic endocrine-disrupting chemicals.
Collapse
|
6
|
Nemoto H, Ikata K, Arimochi H, Iwasaki T, Ohnishi Y, Kuwahara T, Kataoka K. Effects of fermented brown rice on the intestinal environments in healthy adult. THE JOURNAL OF MEDICAL INVESTIGATION 2012; 58:235-45. [PMID: 21921425 DOI: 10.2152/jmi.58.235] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
PURPOSE The aim of this study is to investigate the prebiotic effects of brown rice fermented by Aspergillus oryzae (FBRA) on the intestinal environment in vitro and in healthy adults. METHODS Fresh fecal slurries from six healthy adults were incubated with FBRA to confirm prebiotic potentials of FBRA. Another thirty-six healthy adults were randomly allocated to 2 groups for the clinical study. Subjects consumed 21.0 g/day of either FBRA or control food for 2 weeks, followed by a 12-week intermission and then 2-week ingestion vice versa. Main outcome measures were bifidobacterial numbers and organic acid concentration in feces. Sub outcome measures were fecal microbiota, fecal environments and bowel function. RESULTS Incubation of fecal slurries with FBRA in vitro resulted in increased organic acids with individual-specific patterns. Bifidobacterial numbers were increased during incubation. In the clinical study, all participants safely completed this study. FBRA had little effect on fecal number of bifidobacteria, concentrations of organic acids or putrefactive metabolites, fecal pH, or fecal microbiota. CONCLUSION FBRA has the potentials as a prebiotic, however, we could not detect its effects on the intestinal environment in vivo. The results in a clinical study indicated that FBRA could be safely used for healthy adults.
Collapse
Affiliation(s)
- Hideyuki Nemoto
- Department of Immunology and Parasitology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Kataoka K, Ogasa S, Kuwahara T, Bando Y, Hagiwara M, Arimochi H, Nakanishi S, Iwasaki T, Ohnishi Y. Inhibitory effects of fermented brown rice on induction of acute colitis by dextran sulfate sodium in rats. Dig Dis Sci 2008; 53:1601-8. [PMID: 17957470 DOI: 10.1007/s10620-007-0063-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 10/04/2007] [Indexed: 02/06/2023]
Abstract
Although the pathogenic mechanisms of inflammatory bowel diseases are not fully understood, colonic microbiota may affect the induction of colonic inflammation, and some probiotics and prebiotics have been reported to suppress colitis. The inhibitory effects of brown rice fermented by Aspergillus oryzae (FBRA), a fiber-rich food, on the induction of acute colitis by dextran sulfate sodium (DSS) were examined. Feeding a 5% and 10% FBRA-containing diet significantly decreased the ulcer and erosion area in the rat colon stained with Alcian blue. In another experiment, 10% FBRA feeding decreased the ulcer index (percentage of the total length of ulcers in the full length of the colon) and colitis score, which were determined by macroscopic observation. It also decreased myeloperoxidase activity in the colonic mucosa. Viable cell numbers of Lactobacillus in the feces decreased after DSS administration and was reversely correlated with severity of colitis, while the cell number of Enterobacteriaceae increased after DSS treatment and was positively correlated with colitis severity. These results indicate that FBRA has a suppressive effect on the induction of colitis by DSS and suggest FBRA-mediated modification of colonic microbiota.
Collapse
Affiliation(s)
- Keiko Kataoka
- Department of Molecular Bacteriology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Loganathan BG, Kumar KS, Masunaga S, Sajwan KS. Polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in sediment and mussel samples from Kentucky Lake, USA. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2008; 54:20-30. [PMID: 17786373 DOI: 10.1007/s00244-007-9006-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 06/12/2007] [Indexed: 05/17/2023]
Abstract
Sediment and mussel tissues from the Kentucky Dam Tailwater (KDTW) and Ledbetter Embayment (LE) of Kentucky Lake, Kentucky, USA, were analyzed to examine the presence of 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and non-, mono-, and di-ortho-chlorine-substituted polychlorinated biphenyls. Concentrations of target compounds varied with locations and sample matrices. In general, KDTW sediment samples contained slightly higher amounts of PCDD/DFs (average: 1100, range: 120-2400) than the LE sediments (average: 920, range: 580-1300) on a pg/g dry wt (dw) basis. Dioxin-like PCBs in KDTW were (average: 550, range: 70-2,000) higher than in LE (average: 320, range: 44-1000) on a ng/g dw basis. In contrast, mussel tissues had greater concentrations of PCDD/DFs in LE (average: 6500, range: 2200-13,000) than in KDTW (average: 3500, range: 2500-4800). Dioxin-like PCBs were slightly higher in KDTW (average: 76, range: 18-100) than in LE (average: 49, range: 24-96) on a ng/g fat wt basis. Biota sediment accumulation factors (BSAFs) were calculated using tissue concentrations and sediment concentrations based on dry weight. PCDD/DFs BSAF was in the range of 0.21-25 in LE and 0.093-13 in KDTW. 1,2,3,7,8,9-HxCDF in LE and 2,3,7,8-TCDF in KDTW had a greater BSAF, while BSAF for dioxin-like PCBs ranged from 0.84 to 13 in LE and from 2.3 to 12 in KDTW in which PCB-169 had the greatest BSAF in LE and PCB-167 in KDTW. Toxic equivalency (TEQ) was greatest in mussel from LE (mean: 193 pgTEQ/g fat wt) followed by mussel from KDTW (32 pgTEQ/g fat wt), sediment in KDTW (13 pgTEQ/g dry wt), and sediment in LE (7.6 pgTEQ/g dry wt). In general, PCDD/DF had a greater contribution to toxicity in mussels, while dioxin-like PCBs had a greater contribution to toxicity in sediment at both locations.
Collapse
Affiliation(s)
- Bommanna G Loganathan
- Department of Chemistry and Center for Reservoir Research, Murray State University, 456 Blackburn Science Building, Murray, Kentucky 42071-3346, USA
| | | | | | | |
Collapse
|
9
|
Kataoka K, Kibe R, Kuwahara T, Hagiwara M, Arimochi H, Iwasaki T, Benno Y, Ohnishi Y. Modifying effects of fermented brown rice on fecal microbiota in rats. Anaerobe 2007; 13:220-7. [PMID: 17826198 DOI: 10.1016/j.anaerobe.2007.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/19/2007] [Accepted: 07/13/2007] [Indexed: 01/07/2023]
Abstract
Brown rice fermented by Aspergillus oryzae (FBRA) is a fiber-rich food. Effects of dietary administration of FBRA on rat fecal microbiota composition were examined. Male Wistar rats were fed a basal diet or a 5% FBRA- or 10% FBRA-containing diet, and fecal microbiota was analyzed by culture and terminal-restriction fragment length polymorphism (T-RFLP) analysis. The viable cell number of lactobacilli significantly increased after feeding 10% FBRA diet for 3 weeks compared with that in the basal diet group and that in the same group at the beginning of the experiment (day 0). An increase in the viable cell number of lactobacilli was also observed after feeding 10% FBRA for 12 weeks compared with the effect of a basal diet. T-RFLP analysis showed an increase in the percentage of lactobacilli cells in feces of rats fed 10% FBRA for 14 weeks. Lactobacilli strains isolated from rat feces were divided into six types based on their randomly amplified polymorphic DNA (RAPD) patterns, and they were identified as Lactobacillus reuteri, L. intestinalis and lactobacilli species based on homology of the partial sequence of 16S rDNA. FBRA contains lactic acid bacteria, but their RAPD patterns and identified species were different from those in rat feces. These results indicated that dietary FBRA increases the number of lactobacilli species already resident in the rat intestine.
Collapse
Affiliation(s)
- Keiko Kataoka
- Department of Molecular Bacteriology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770 8503, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Maruyama W, Aoki Y. Estimated cancer risk of dioxins to humans using a bioassay and physiologically based pharmacokinetic model. Toxicol Appl Pharmacol 2006; 214:188-98. [PMID: 16443251 DOI: 10.1016/j.taap.2005.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 12/08/2005] [Accepted: 12/12/2005] [Indexed: 11/28/2022]
Abstract
The health risk of dioxins and dioxin-like compounds to humans was analyzed quantitatively using experimental data and mathematical models. To quantify the toxicity of a mixture of three dioxin congeners, we calculated the new relative potencies (REPs) for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PeCDD), and 2,3,4,7,8- pentachlorodibenzofuran (PeCDF), focusing on their tumor promotion activity. We applied a liver foci formation assay to female SD rats after repeated oral administration of dioxins. The REP of dioxin for a rat was determined using dioxin concentration and the number of the foci in rat liver. A physiologically based pharmacokinetic model (PBPK model) was used for interspecies extrapolation targeting on dioxin concentration in liver. Toxic dose for human was determined by back-estimation with a human PBPK model, assuming that the same concentration in the target tissue may cause the same level of effect in rats and humans, and the REP for human was determined by the toxic dose obtained. The calculated REPs for TCDD, PeCDD, and PeCDF were 1.0, 0.34, and 0.05 for rats, respectively, and the REPs for humans were almost the same as those for rats. These values were different from the toxic equivalency factors (TEFs) presented previously (Van den Berg, M., Birnbaum, L., Bosveld, A.T.C., Brunstrom, B., Cook, P., Feeley, M., Giesy, J.P., Hanberg, A., Hasegawa, R., Kennedy, S.W., Kubiak, T., Larsen, J.C., Rolaf van Leeuwen, F.X., Liem, A.K.D., Nolt, C., Peterson, R.E., Poellinger. L., Safe, S., Schrenk, D., Tillitt, D, Tysklind, M., Younes, M., Waern, F., Zacharewski, T., 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ. Health Perspect. 106, 775-792). The relative risk of excess liver cancer for Japanese people in general was 1.7-6.5 x 10(-7) by TCDD only, and 2.9-11 x 10(-7) by the three dioxins at the present level of contamination.
Collapse
Affiliation(s)
- Wakae Maruyama
- Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan.
| | | |
Collapse
|
11
|
Hee S, Park BS, Lee HG. Hypocholesterolemic Action of Fermented Brown Rice Supplement in Cholesterol-Fed Rats: Cholesterol-lowering Action of Fermented Brown Rice. J Food Sci 2005. [DOI: 10.1111/j.1365-2621.2005.tb11529.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|