1
|
Beringue A, Queffelec J, Le Lann C, Sulmon C. Sublethal pesticide exposure in non-target terrestrial ecosystems: From known effects on individuals to potential consequences on trophic interactions and network functioning. ENVIRONMENTAL RESEARCH 2024; 260:119620. [PMID: 39032619 DOI: 10.1016/j.envres.2024.119620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Over the last decades, the intensification of agriculture has resulted in an increasing use of pesticides, which has led to widespread contamination of non-target ecosystems in agricultural landscapes. Plants and arthropods inhabiting these systems are therefore chronically exposed to, at least, low levels of pesticides through direct pesticide drift, but also through the contamination of their nutrient sources (e.g. soil water or host/prey tissues). Pesticides (herbicides, acaricides/insecticides and fungicides) are chemical substances used to control pests, such as weeds, phytophagous arthropods and pathogenic microorganisms. These molecules are designed to disturb specific physiological mechanisms and induce mortality in targeted organisms. However, under sublethal exposure, pesticides also affect biological processes including metabolism, development, reproduction or inter-specific interactions even in organisms that do not possess the molecular target of the pesticide. Despite the broad current knowledge on sublethal effects of pesticides on organisms, their adverse effects on trophic interactions are less investigated, especially within terrestrial trophic networks. In this review, we provide an overview of the effects, both target and non-target, of sublethal exposures to pesticides on traits involved in trophic interactions between plants, phytophagous insects and their natural enemies. We also discuss how these effects may impact ecosystem functioning by analyzing studies investigating the responses of Plant-Phytophage-Natural enemy trophic networks to pesticides. Finally, we highlight the current challenges and research prospects in the understanding of the effects of pesticides on trophic interactions and networks in non-target terrestrial ecosystems.
Collapse
Affiliation(s)
- Axel Beringue
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, évolution)], UMR, 6553, Rennes, France
| | | | - Cécile Le Lann
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, évolution)], UMR, 6553, Rennes, France
| | - Cécile Sulmon
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, évolution)], UMR, 6553, Rennes, France.
| |
Collapse
|
2
|
Lucero CT, Lorda GS, Halliday N, Ambrosino ML, Cámara M, Taurian T. Impact of quorum sensing from native peanut phosphate solubilizing Serratia sp. S119 strain on interactions with agronomically important crops. Symbiosis 2022. [DOI: 10.1007/s13199-022-00893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
3
|
Aloo BN, Mbega ER, Makumba BA, Tumuhairwe JB. Effects of agrochemicals on the beneficial plant rhizobacteria in agricultural systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60406-60424. [PMID: 34535866 DOI: 10.1007/s11356-021-16191-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Conventional agriculture relies heavily on chemical pesticides and fertilizers to control plant pests and diseases and improve production. Nevertheless, the intensive and prolonged use of agrochemicals may have undesirable consequences on the structure, diversity, and activities of soil microbiomes, including the beneficial plant rhizobacteria in agricultural systems. Although literature continues to mount regarding the effects of these chemicals on the beneficial plant rhizobacteria in agricultural systems, our understanding of them is still limited, and a proper account is required. With the renewed efforts and focus on agricultural and environmental sustainability, understanding the effects of different agrochemicals on the beneficial plant rhizobacteria in agricultural systems is both urgent and important to deduce practical solutions towards agricultural sustainability. This review critically evaluates the effects of various agrochemicals on the structure, diversity, and functions of the beneficial plant rhizobacteria in agricultural systems and propounds on the prospects and general solutions that can be considered to realize sustainable agricultural systems. This can be useful in understanding the anthropogenic effects of common and constantly applied agrochemicals on symbiotic systems in agricultural soils and shed light on the need for more environmentally friendly and sustainable agricultural practices.
Collapse
Affiliation(s)
- Becky Nancy Aloo
- Department of Biological Sciences, University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya.
| | - Ernest Rashid Mbega
- Department of Sustainable Agriculture and Biodiversity Conservation, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Billy Amendi Makumba
- Department of Biological Sciences, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - John Baptist Tumuhairwe
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box, 7062, Kampala, Uganda
| |
Collapse
|
4
|
Lucero CT, Lorda GS, Anzuay MS, Ludueña LM, Taurian T. Peanut Endophytic Phosphate Solubilizing Bacteria Increase Growth and P Content of Soybean and Maize Plants. Curr Microbiol 2021; 78:1961-1972. [PMID: 33839883 DOI: 10.1007/s00284-021-02469-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Phosphorus (P) is a limiting factor of plant development due to its low availability in the soil. The use of endophytic phosphate solubilizing bacteria as a more sustainable alternative to the use of chemical phosphorus fertilizers is proposed in this study. The objectives were to analyze the effect of simple inoculations of native peanut endophytic phosphate solubilizing bacteria on plant growth promotion and P content of soybean and maize and to evaluate their survival and endophytic colonization capacity on these plants. In addition, bacterial plant cell wall degrading enzymes activities in presence or absence of root exudates was determined. Soybean, maize and peanut plants were grown on a microcosm scale and inoculated with Enterobacter sp. J49 or Serratia sp. S119. It was observed that phosphate solubilizing strains promoted the growth of maize and soybean plants and contributed significantly P to their tissues. A significant increase in the phosphate solubilizing capacity of the plant rhizosphere after the end of the assay was observed. The strains showed to survive in plant's growth substrate and in the case of Enterobacter sp. J49, it showed also to colonize endophytically maize and soybean. Root exudates of the three plants showed to produce changes in pectinase and cellulase activities of the strains. The bacterial strains analyzed in this study constitutes potential sources for the formulation of biofertilizers for their application for several crops in agricultural soils with low P content.
Collapse
Affiliation(s)
- Cinthia Tamara Lucero
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Ruta Nacional 35 km 330, CP 6300, Santa Rosa, Provincia de La Pampa, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Buenos Aires, Argentina
| | - Graciela Susana Lorda
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Ruta Nacional 35 km 330, CP 6300, Santa Rosa, Provincia de La Pampa, Argentina
| | - María Soledad Anzuay
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, Agencia Postal 3, 5800, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Buenos Aires, Argentina
- Instituto de Investigaciones Agrobiotecnológicas (INIAB), Río Cuarto, Argentina
| | - Liliana Mercedes Ludueña
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, Agencia Postal 3, 5800, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Buenos Aires, Argentina
- Instituto de Investigaciones Agrobiotecnológicas (INIAB), Río Cuarto, Argentina
| | - Tania Taurian
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, Agencia Postal 3, 5800, Río Cuarto, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Buenos Aires, Argentina.
- Instituto de Investigaciones Agrobiotecnológicas (INIAB), Río Cuarto, Argentina.
| |
Collapse
|
5
|
Ruhil K, Prasad SM. Nostoc muscorum and Phormidium foveolarum differentially respond to butachlor and UV-B stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:841-856. [PMID: 32255944 PMCID: PMC7113359 DOI: 10.1007/s12298-019-00754-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/28/2019] [Accepted: 12/27/2019] [Indexed: 06/11/2023]
Abstract
Present study deals with responses of two cyanobacteria viz. Nostoc muscorum and Phormidium foveolarum against butachlor [2-chloro-2,6-diethyl-N-(butoxymethyl) acetanilide] (low dose; 5 µg mL-1 and high dose; 10 µg mL-1) and UV-B (7.2 kJ m-2) alone, and in combination. Butachlor and UV-B exposure, alone and in combination, suppressed growth of both the cyanobacteria. This was accompanied by inhibitory effect on whole cell oxygen evolution and photosynthetic electron transport activities. Both the stressors induced the oxidative stress as there was significant increase in superoxide radical (O2 ·-) and hydrogen peroxide (H2O2) contents resulting into increased lipid peroxidation and electrolyte leakage. In N. muscorum, low dose of butachlor and UV-B alone increased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), while activity of all these enzymatic antioxidants declined significantly at treatments with high dose of butachlor alone, and with low and high doses of butachlor and UV-B in combination. In P. foveolarum, enhanced activity of SOD, CAT and POD (except POD at high dose of butachlor and UV-B combination) was noticed. Ascorbate level in N. muscorum declined progressively with increasing intensity of stress while in P. foveolarum varied response was noticed. Proline contents increased progressively under tested stress in both the organisms. Overall results suggest that N. muscorum was more sensitive than P. foveolarum against butachlor and UV-B stresses. Hence, P. foveolarum may be preferred in paddy field for sustainable agriculture.
Collapse
Affiliation(s)
- Kamal Ruhil
- Lab No. 114, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067 India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002 India
| |
Collapse
|
6
|
Ha DD, Nguyen TO. Application of Methylopila sp. DKT for Bensulfuron-methyl Degradation and Peanut Growth Promotion. Curr Microbiol 2020; 77:1466-1475. [PMID: 32219473 DOI: 10.1007/s00284-020-01953-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/13/2020] [Indexed: 11/24/2022]
Abstract
Bensulfuron-methyl is an herbicide widely used for weed control although its residues cause damage to other crops during crop rotations. In this study, the biodegrading activity of bensulfuron-methyl by a plant growth-promoting bacterial strain was carried out. Methylopila sp. DKT isolated from soil was determined for bensulfuron-methyl degradation and phosphate solubilization in the liquid media and soil. Moreover, the effects of the herbicide on peanut development and the role of Methylopila sp. DKT on the growth promotion of peanut were investigated. The results showed that the isolate effectively utilized the compound as a sole carbon source and solubilized low soluble inorganic phosphates. Methylopila sp. DKT also utilized 2-amino-4,6-dimethoxypyrimidine, a metabolite of bensulfuron-methyl degradation, as a sole carbon and energy source, and released ammonium and nitrate. The supplementation with Methylopila sp. DKT in soil increased the peanut biomass and the phosphorus content in the plant. In addition, the inoculation with Methylopila sp. DKT in soil and peanut cultivation increased the bensulfuron-methyl degradation by 57.7% for 1 month, which suggests that both plants and the bacterial isolate play a key role in herbicide degradation. These results indicate that the studied strain has a high potential for soil remediation and peanut growth promotion.
Collapse
Affiliation(s)
- Danh Duc Ha
- Dong Thap University, Pham Huu Lau Str., Cao Lanh City, 870000, Dong Thap Province, Viet Nam.
| | - Thị Oanh Nguyen
- Dong Thap University, Pham Huu Lau Str., Cao Lanh City, 870000, Dong Thap Province, Viet Nam
| |
Collapse
|
7
|
Sun T, Li M, Saleem M, Zhang X, Zhang Q. The fungicide "fluopyram" promotes pepper growth by increasing the abundance of P-solubilizing and N-fixing bacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109947. [PMID: 31744624 DOI: 10.1016/j.ecoenv.2019.109947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Fluopyram, as a reasonably good fungicide and nematicide, is widely used to control agricultural pests worldwide. However, its effects on soil microbial communities and plant growth remain controversial. Therefore, in this study, we investigated the effects of three concentrations (0.5, 1.5, and 5.0 mg/kg) of the fluopyram (Lufuda 41.7% a.i., suspension concentrate, SC) on the pepper rhizosphere microorganisms and pepper seedlings growth in a plant growth room. Moreover, we also investigated the dissipation of fluopyram in the soil, pepper roots, and leaves across a time interval of 45 days. The results showed that fluopyram application increased the number of pepper rhizosphere phosphate (P)-solubilizing bacteria, the abundance of nitrogen (N)-fixing nifH genes, and the pepper seedling growth. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis demonstrated that fluopyram did not alter rhizosphere bacterial community structure and diversity. However, fluopyram did increase the relative abundances of 138 bp and 400 bp T-RFs closely representing Bacillus and Rhizobium genera that were known as efficient plant growth promoting bacteria with P-solubilization and N-fixation properties. Corresponding to the increase of plant growth and beneficial microbes, the half-lives of fluopyram in soil and plant tissues also decreased that nevertheless suggested the role of plant-microbe interactions in the faster removal of fluopyram after application. Our results suggest that short-lived and easily degradable pesticides may have less toxicological effects on soil health while their judicious use may reshape plant-microbe interactions in favor of the plant growth.
Collapse
Affiliation(s)
- Tong Sun
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Mengyao Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL, 36101, USA
| | - Xinyu Zhang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Qingming Zhang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
8
|
Molecular Biology-Based Analysis of the Interactive Effect of Nickel and Xanthates on Soil Bacterial Community Diversity and Structure. SUSTAINABILITY 2019. [DOI: 10.3390/su11143888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metals and mineral flotation collector’s toxicity to the soil living system greatly compromise the sustainability of mining and ore processing. Their effects on the soil microbial community, the most active soil component, remain less understood and addressed particularly with regards to xanthates and their combination with metals. This study analyzed the interactive effects of Ni and xanthates, potassium ethyl xanthate and sodium isopropyl xanthate, on the soil bacterial community through an efficient molecular biology-based technique, the Miseq (Illumina). Both soil microbial community diversity and structure were more affected by xanthates than by Ni. The five most dominant phyla, representing 96.31% of the whole bacterial community, comprised Proteobacteria (54.16%), Firmicutes (17.51%), Actinobacteria (15.59%), Acidobacteria (4.87%), and Chloroflexi (4.16%). Different soil treatments exhibited greater difference in the species abundance/dominance than in the species numbers. Proteobacteria was the most dominant in the presence of xanthates, individually or in mixtures with nickel, while Firmicutes exhibited its highest proportion in the Ni/xanthate-treated samples. The most abundant and proportionally different bacterial species between different treatments were presented. The most abundant bacterial strains identified should be explored more for their potential application in biomining and for the prediction and biologically-based treatment and remediation of Ni and xanthate-contaminated systems.
Collapse
|
9
|
Singh AK, Singh PP, Tripathi V, Verma H, Singh SK, Srivastava AK, Kumar A. Distribution of cyanobacteria and their interactions with pesticides in paddy field: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 224:361-375. [PMID: 30059934 DOI: 10.1016/j.jenvman.2018.07.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria, also known as blue green algae are one of the important ubiquitous oxygen evolving photosynthetic prokaryotes and ultimate source of nitrogen for paddy fields since decades. In past two decades, indiscriminated use of pesticides led to biomagnification that intensively harm the structure and soil functions of soil microbes including cyanobacteria. Cyanobacterial abundance biomass, short generation, water holding capacity, mineralizing capacity and more importantly nitrogen fixing have enormous potential to abate the negative effects of pesticides. Therefore, investigation of the ecotoxicological effects of pesticides on the structure and function of the tropical paddy field associated cyanobacteria is urgent and need to estimate the fate of interaction of pesticides over nitrogen fixations and other attributes. In this regard, comprehensive survey over cyanobacterial distribution patterns and their interaction with pesticides in Indian context has been deeply reviewed. In addition, the present paper also deals the molecular docking pattern of pesticides with the nitrogen fixing proteins, which helps in revealing the functional interpretation over nitrogen fixation process.
Collapse
Affiliation(s)
| | - Prem Pratap Singh
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vijay Tripathi
- Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Hariom Verma
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sandeep Kumar Singh
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | - Ajay Kumar
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
Abstract
Much of the demand for nitrogen (N) in cereal cropping systems is met by using N fertilisers, but the cost of production is increasing and there are also environmental concerns. This has led to a growing interest in exploring other sources of N such as biological N2fixation. Non-symbiotic N2fixation (by free-living bacteria in soils or associated with the rhizosphere) has the potential to meet some of this need especially in the lower input cropping systems worldwide. There has been considerable research on non-symbiotic N2fixation, but still there is much argument about the amount of N that can potentially be fixed by this process largely due to shortcomings of indirect measurements, however isotope-based direct methods indicate agronomically significant amounts of N2fixation both in annual crop and perennial grass systems. New molecular technologies offer opportunities to increase our understanding of N2-fixing microbial communities (many of them non-culturable) and the molecular mechanisms of non-symbiotic N2fixation. This knowledge should assist the development of new plant-diazotrophic combinations for specific environments and more sustainable exploitation of N2-fixing bacteria as inoculants for agriculture. Whilst the ultimate goal might be to introduce nitrogenase genes into significant non-leguminous crop plants, it may be more realistic in the shorter-term to better synchronise plant-microbe interactions to enhance N2fixation when the N needs of the plant are greatest. The review explores possibilities to maximise potential N inputs from non-symbiotic N2fixation through improved management practices, identification of better performing microbial strains and their successful inoculation in the field, and plant based solutions.
Collapse
|
11
|
Majumder SP, Das AC. Phosphate-solubility and phosphatase activity in Gangetic alluvial soil as influenced by organophosphate insecticide residues. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 126:56-61. [PMID: 26720809 DOI: 10.1016/j.ecoenv.2015.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
An experiment was conducted under laboratory conditions to investigate the effect of four organophosphate insecticides, viz. monocrotophos, profenophos, quinalphos and triazophos at their field application rates (0.75, 1.0, 0.5 and 0.6 kg a.i.ha(-1), respectively), on the growth and activities of phosphate solubilizing microorganisms in relation to availability of insoluble phosphates in the Gangetic alluvial soil of West Bengal, India. The proliferation of phosphate solubilizing microorganisms was highly induced with profenophos (38.3%), while monocrotophos exerted maximum stimulation (20.8%) towards the solubility of insoluble phosphates in soil. The phosphatase activities of the soil (both acid phosphatase and alkaline phosphatase) were significantly increased due to the incorporation of the insecticides in general, and the augmentation was more pronounced with quinalphos (43.1%) followed by profenophos (27.6%) for acid phosphatase, and with monocrotophos (25.2%) followed by profenophos (16.1%) for alkaline phosphatase activity in soil. The total phosphorus was highly retained by triazophos (19.9%) followed by monocrotophos (16.5%), while incorporation of triazophos and quinalphos manifested greater availability of water soluble phosphorus in soil.
Collapse
Affiliation(s)
- Shyam Prasad Majumder
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India
| | - Amal Chandra Das
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India.
| |
Collapse
|
12
|
Das AC, Barman S, Das R. Effect of Pre-emergence Herbicides on Microbial Biomass and Biochemical Processes in a Typic Fluvaquent Soil Amended with Farm Yard Manure. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:395-400. [PMID: 26048439 DOI: 10.1007/s00128-015-1571-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/02/2015] [Indexed: 06/04/2023]
Abstract
Application of thiobencarb, pendimethalin and pretilachlor at rates of 7.5, 10.0 and 2.5 kg a.i. ha(-1), respectively, under laboratory conditions, significantly increased microbial biomass C, N and P, resulting in greater availability of C, N and P in soil amended with farm yard manure. Application of thiobencarb highly induced microbial biomass C (46.3 %) and N (40.6 %), while pretilachlor and thiobencarb augmented microbial biomass P to the extent of 14.9 % and 14.1 %, respectively. Application of pendimethalin retained the highest amount of total N (19.9 %), soluble NO3 (-) (56 %) and available P (69.5 %) in soil. A similar trend was recorded with thiobencarb for oxidizable organic C (18.1 %) and with pretilachlor for exchangeable NH4 (+) (65.8 %). At the end of the experiment, the highest stimulation of bacteria was recorded with thiobencarb (29.6 %), while pretilachlor harboured the maximum number of actinomycetes (37.2 %) and fungi (40 %) in soil compared to the untreated control.
Collapse
Affiliation(s)
- Amal Chandra Das
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, West Bengal, India,
| | | | | |
Collapse
|
13
|
Das AC, Das R, Bhowmick S. Non-symbiotic N2-fixation and phosphate-solubility in Gangetic alluvial soil as influenced by pre-emergence herbicide residues. CHEMOSPHERE 2015; 135:202-207. [PMID: 25957139 DOI: 10.1016/j.chemosphere.2015.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 02/13/2015] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
An experiment has been conducted under laboratory conditions to investigate the effect of two pre-emergence herbicides viz., thiobencarb (at 1.5 and 4.5 kg a.i. ha(-1)) and pretilachlor (at 0.5 and 1.5 kg a.i. ha(-1)), on the changes of growth and activities of aerobic non-symbiotic N2-fixing bacteria and phosphate-solubilizing microorganisms in relation to availability of mineral nitrogen and soluble phosphorus in the Gangetic alluvial soil (Typic Haplustept) of West Bengal, India. Application of herbicides, in general, significantly increased growth and activities of microorganisms, resulting in greater release of available nitrogen and soluble phosphorus in soil; and the stimulation was more pronounced when the herbicides were applied at their lower concentrations (recommended field application rates), more so with thiobencarb, as compared to pretilachlor. As compared to untreated control, application of thiobencarb at lower concentration increased the proliferation of aerobic non-symbiotic N2-fixing bacteria, phosphate-solubilizing microorganisms and non-symbiotic N2-fixing capacity of soil to the extent of 54.0, 44.6 and 31.7%, respectively; and accumulated the highest amount of available nitrogen (37.8%) and phosphorus (54.5%) in soil, while pretilachlor at field application rate highly induced (37.2%) phosphate-solubilizing capacity of soil. At higher concentration, pretilachlor was superior to thiobencarb in augmenting the growth and activities of phosphate-solubilizers. The results of the present study also indicated that gradual increase in concentration of the herbicides over their recommended field application rates was not much conducive for growth and activities of microorganisms, and subsequent release of nutrients in soil.
Collapse
Affiliation(s)
- Amal Chandra Das
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal 741252, India.
| | - Ritwika Das
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal 741252, India
| | - Sourav Bhowmick
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal 741252, India
| |
Collapse
|
14
|
Barman S, Das AC. Residual effect of pre-emergence herbicides on microbial activities in relation to mineralization of C, N and P in the Gangetic alluvial soil of West Bengal, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:465. [PMID: 26113205 DOI: 10.1007/s10661-015-4698-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
An experiment has been conducted under laboratory conditions to investigate the residual effect of three pre-emergence herbicides (thiobencarb, pendimethalin and pretilachlor) at fivefold field application rates (7.5, 10.0 and 2.5 kg a.i. ha(-1), respectively), on the changes of microbial activities and some biochemical processes in the Gangetic alluvial soil of West Bengal. Application of herbicides in general significantly increased microbial biomass resulting in greater mineralization of C, N and P in soil. The highest stimulation of microbial biomass C was recorded with thiobencarb (24.4%) followed by pendimethalin (23.4%). Microbial biomass N was highly induced under pretilachlor (54.5%) and thiobencarb (52.7%), while the stimulation of microbial biomass P was at par in the herbicide-treated soils. Compared to untreated control, the highest amount of organic C was retained with thiobencarb followed by pendimethalin. A similar trend was recorded with thiobencarb for total N, while pendimethalin induced exchangeable NH4 (+) and soluble NO3 (-) to the highest extent (42.2 and 34.5%, respectively). Regarding the availability of P in soil, pretilachlor manifested greater stimulation (33.1%) than thiobencarb (21.6%) and pendimethalin (11.4%). As compared to untreated control, thiobencarb harboured maximum number of bacteria (107.9%), while pretilachlor exerted the highest stimulations towards the proliferations of actinomycetes (132.6%) and fungi (149.5%) in soil.
Collapse
Affiliation(s)
- Saurav Barman
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, West Bengal, India
| | | |
Collapse
|
15
|
Bhowmick S, Das R, Das AC. Effect of thiobencarb and pretilachlor on microorganisms in relation to mineralization of C and N in the Gangetic alluvial soil of West Bengal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:6849-6856. [PMID: 24996621 DOI: 10.1007/s10661-014-3893-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
An experiment was conducted under laboratory conditions to investigate the effect of two pre-emergence herbicides, viz., thiobencarb (at 1.5 and 4.5 kg active ingredient (a.i.) ha(-1)) and pretilachlor (at 0.5 and 1.5 kg a.i. ha(-1)), on the growth and multiplication of some microorganisms (bacteria, actinomycetes and fungi) in relation to transformations and availability of C and N in the Gangetic alluvial soil (Typic Haplustept) of West Bengal, India. Application of both the herbicides, in general, significantly increased microbial biomass, resulting in greater retention, mineralization and availability of oxidizable organic C and N in soil, and the stimulations were more pronounced when the herbicides were applied at their lower concentrations (recommended field application rates), more so with thiobencarb, as compared to pretilachlor. Compared to untreated control soil, the application of thiobencarb at lower concentration increased the proliferation of total bacteria, actinomycetes and fungi by 57.3, 36.6 and 55.2%, respectively, and released the highest amount (40.2%) of soluble NO₃(-) in soil, while pretilachlor at field application rate induced the growth and multiplication of bacteria and fungi by 58.3 and 17.6%, respectively. Irrespective of the concentrations, the stimulations were at par for both the herbicides towards the retention of oxidizable organic C, total N and exchangeable NH₄(+) in soil.
Collapse
Affiliation(s)
- Sourav Bhowmick
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, West Bengal, India
| | | | | |
Collapse
|
16
|
Rodríguez-Morgado B, Gómez I, Parrado J, Tejada M. Behaviour of oxyfluorfen in soils amended with edaphic biostimulants/biofertilizers obtained from sewage sludge and chicken feathers. Effects on soil biological properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:11027-11035. [PMID: 24859703 DOI: 10.1007/s11356-014-3040-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/12/2014] [Indexed: 05/29/2023]
Abstract
We studied the behaviour of oxyfluorfen herbicide at a rate of 4 l ha(-1) on biological properties of a Calcaric Regosol amended with two edaphic biostimulants/biofertilizers (SS, derived from sewage sludge; and CF, derived from chicken feathers). Oxyfluorfen was surface broadcast on 11 March 2013. Two days after application of oxyfluorfen to soil, both biostimulants/biofertilizers (BS) were also applied to the soil. An unamended soil without oxyfluorfen was used as control. For 2, 4, 7, 9, 20, 30, 60, 90 and 120 days of the application of herbicide to the soil and for each treatment, the soil dehydrogenase, urease, β-glucosidase and phosphatase activities were measured. For 2, 7, 30 and 120 days of the application of herbicide to the soil and for each treatment, soil microbial community was determined. The application of both BS to soil without the herbicide increased the enzymatic activities and soil biodiversity, mainly at 7 days of beginning the experiment. However, this stimulation was higher in the soil amended with SS than for CF. The application of herbicide in organic-amended soils decreased the inhibition of soil enzymatic activities and soil biodiversity. Possibly, the low-molecular-weight protein content easily assimilated by soil microorganisms is responsible for less inhibition of these soil biological properties.
Collapse
Affiliation(s)
- Bruno Rodríguez-Morgado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González 2, 41012, Seville, Spain
| | | | | | | |
Collapse
|
17
|
Das AC, Dey S. Effect of combined application of systemic herbicides on microbial activities in north bengal alluvial soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 92:183-189. [PMID: 24240661 DOI: 10.1007/s00128-013-1154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 11/06/2013] [Indexed: 06/02/2023]
Abstract
An experiment was conducted under laboratory conditions to investigate the effect of combined application of three systemic herbicides, viz., fenoxaprop, pendimethalin and paraquat at 50 g, 1.0 kg and 1.0 kg a.i. ha(-1), respectively, on the changes of microbial biomass C, N and P in relation to transformations and availability of some plant nutrients in an alluvial soil (Typic Orchraqualf) of West Bengal, India. Application of the herbicides, in general, significantly increased microbial biomass C, N and P, resulting in greater availability of C, N and P in soil. The microbial biomass C was highly induced (28.4 %) when fenoxaprop was applied with pendimethalin, while fenoxaprop along with paraquat exerted maximum stimulation towards microbial biomass N (19.9 %) and biomass P (16.2 %). Application of fenoxaprop along with pendimethalin retained the highest amount of organic C (17.4 %), exchangeable NH4(+) (29 %) and available P (19.6 %), while fenoxaprop with paraquat augmented total N and soluble NO3(-) by 21.4 % and 25.2 %, respectively in soil.
Collapse
Affiliation(s)
- Amal Chandra Das
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, West Bengal, India,
| | | |
Collapse
|
18
|
Angelini J, Silvina G, Taurian T, Ibáñez F, Tonelli ML, Valetti L, Anzuay MS, Ludueña L, Muñoz V, Fabra A. The effects of pesticides on bacterial nitrogen fixers in peanut-growing area. Arch Microbiol 2013; 195:683-92. [PMID: 23963492 DOI: 10.1007/s00203-013-0919-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 11/29/2022]
Abstract
In the peanut production, the applications of herbicides and fungicides are a common practice. In this work, studies done under field conditions demonstrated that pesticides affected negatively the number and nitrogenase activity of diazotrophic populations of soil. Agrochemical effects were not transient, since these parameters were not recovered to pre-treatment levels even 1 year after pesticides application. Results obtained from greenhouse experiments revealed that the addition of herbicide or fungicides diminished the free-living diazotrophs number reaching levels found in soil amended with the pesticides and that the number of symbiotic diazotrophs was not affected by the insecticide assayed. The soil nitrogenase activity was not affected by fungicides and glyphosate. The effect of pesticides on the nitrogen-fixing bacteria diversity was evaluated both in field and greenhouse experiments. Analysis of clone libraries generated from the amplification of soil nifH gene showed a diminution in the genetic diversity of this bacterial community.
Collapse
Affiliation(s)
- Jorge Angelini
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Enlace Rutas 8 y 36 km 601, 5800, Río Cuarto, Córdoba, Argentina,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Das AC, Dey S. Effect of systemic herbicides on microbial biomass in relation to availability of some plant nutrients in an alluvial soil of West Bengal. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 90:666-672. [PMID: 23595346 DOI: 10.1007/s00128-013-0994-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 04/02/2013] [Indexed: 06/02/2023]
Abstract
An experiment was conducted under laboratory conditions to investigate the effect of three herbicides, viz., fenoxaprop, pendimethalin and paraquat, at their recommended field application rates (50 g, 1.0 kg and 1.0 kg a.i. ha⁻¹, respectively), on the changes of microbial biomass C, N and P in relation to transformations and availability of plant nutrients in an alluvial soil (Typic Orchraqualf) from West Bengal, India. Application of herbicides, in general, significantly increased the microbial biomass C, N and P, resulting in greater availability of these plant nutrients in soil. The microbial biomass C was highly increased due to application of fenoxaprop (39.8%) followed by paraquat (28.2%). Application of pendimethalin led to the maximum stimulation of microbial biomass N (37.1%), while microbial biomass P was increased by 15.2% following the incorporation of paraquat into the soil. Compared to untreated control soil, the soil retained the highest amount of organic C (19.8%) when it was treated with pendimethalin. A similar trend was recorded with fenoxaprop for total N (19.6%) and exchangeable NH₄⁺ (21.3%) in soil. The stimulation of soluble NO₃⁻ was highest under fenoxaprop (22.3%) followed by paraquat (20.7%). Regarding the availability of P in soil, paraquat manifested greater stimulation (17.8%) than fenoxaprop (15.4%) or pendimethalin (13.1%). Application of paraquat also gave the highest amount of total P (17.8%) in the soil solution.
Collapse
Affiliation(s)
- Amal Chandra Das
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, West Bengal, India.
| | | |
Collapse
|
20
|
Yen JH, Wang YS, Hsu WS, Chen WC. Phylogenetic changes in soil microbial and diazotrophic diversity with application of butachlor. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2013; 48:49-56. [PMID: 23030440 DOI: 10.1080/03601234.2012.716729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We investigated changes in population and taxonomic distribution of cultivable bacteria and diazotrophs with butachlor application in rice paddy soils. Population changes were measured by the traditional plate-count method, and taxonomic distribution was studied by 16S rDNA sequencing, then maximum parsimony phylogenic analysis with bootstrapping (1,000 replications). The bacterial population was higher after 39 than 7 days of rice cultivation, which indicated the augmentation of soil microbes by rice root exudates. The application of butachlor increased the diazotrophic population in both upper (0-3 cm) and lower (3-15 cm) layers of soils. Especially at day 39, the population of diazotrophs was 1.8 and 1.6 times that of the control in upper and lower layer soils, respectively. We found several bacterial strains only with butachlor application; examples are strains closest to Bacillus arsenicus, B. marisflavi, B. luciferensis, B. pumilus, and Pseudomonas alvei. Among diazotrophs, three strains closely related to Streptomyces sp. or Rhrizobium sp. were found only with butachlor application. The population of cultivable bacteria and the species composition were both changed with butachlor application, which explains in part the contribution of butachlor to augmenting soil nitrogen-fixing ability.
Collapse
Affiliation(s)
- Jui-Hung Yen
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
21
|
Das AC, Nayek H, Chakravarty A. Soil application of dinitroaniline and arylphenoxy propionic herbicides influences the activities of phosphate-solubilizing microorganisms in soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:7453-7459. [PMID: 22350342 DOI: 10.1007/s10661-011-2512-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 12/26/2011] [Indexed: 05/31/2023]
Abstract
An experiment was conducted under laboratory conditions to investigate the effect of two systemic herbicides, viz. pendimethalin (a dinitroaniline) and quizalofop (an arylphenoxy propionic acid) at their recommended field application rates (1.0 kg and 50 g active ingredient per hectare, respectively), either separately or in a combination, on growth and activities of phosphate-solubilizing microorganisms in relation to their effects on biochemical transformations and availability of organic carbon, total and available phosphorus in a Typic Haplustept soil of West Bengal, India. Application of herbicides, in general, significantly stimulated the growth and activities of phosphate-solubilizing microorganisms which increased microbial biomass resulting in higher accumulation of oxidizable organic carbon, total and available phosphorus in soil as compared to untreated control. The combined application of both the herbicides highly stimulated the proliferations of phosphate-solubilizing microorganisms, while pendimethalin alone significantly accentuated phosphate-solubilizing capacities 36.4% as compared to untreated control and retained highest amount of total phosphorus due to greater microbial activities in soil. The separate application of quizalofop also manifested an induced effect on the proliferations of phosphate-solubilizing microorganisms and accounted significant amounts of organic carbon and available phosphorus in the soil system. The results of the present study thus indicated that the cited herbicides at their field application rates can be safely used to eradicate weeds in the crop fields.
Collapse
Affiliation(s)
- Amal Chandra Das
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal 741 252, India.
| | | | | |
Collapse
|
22
|
Das AC, Nayek H, Nongthombam SD. Effect of pendimethalin and quizalofop on N2-fixing bacteria in relation to availability of nitrogen in a Typic Haplustept soil of West Bengal, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:1985-1989. [PMID: 21674227 DOI: 10.1007/s10661-011-2093-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/19/2011] [Indexed: 05/30/2023]
Abstract
An experiment was conducted under laboratory conditions to investigate the effect of two systemic herbicides viz., pendimethalin and quizalofop, at their recommended field rates (1.0 kg and 50 g active ingredient ha(- 1), respectively) on the growth and activities of non-symbiotic N(2)-fixing bacteria in relation to mineralization and availability of nitrogen in a Typic Haplustept soil. Both the herbicides, either singly or in a combination, stimulated the growth and activities of N(2)-fixing bacteria resulting in higher mineralization and availability of nitrogen in soil. The single application of quizalofop increased the proliferation of aerobic non-symbiotic N(2)-fixing bacteria to the highest extent while that of pendimethalin exerted maximum stimulation to their N(2)-fixing capacity in soil. Both the herbicides, either alone or in a combination, did not have any significant difference in the stimulation of total nitrogen content and availability of exchangeable NH(4)(+) while the solubility of NO(3)(-) was highly manifested when the herbicides were applied separately in soil.
Collapse
Affiliation(s)
- Amal C Das
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252, West Bengal, India.
| | | | | |
Collapse
|
23
|
El Hussein AA, Mohamed AT, Siddig MAE, Sherif AM, Osman AG. Effects of Oxyfluorfen Herbicide on Microorganisms in Loam and Silt Loam Soils. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/rjes.2012.134.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
|
25
|
Shen J, Luo W. Effects of monosulfuron on growth, photosynthesis, and nitrogenase activity of three nitrogen-fixing cyanobacteria. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 60:34-43. [PMID: 20437038 DOI: 10.1007/s00244-010-9534-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 04/12/2010] [Indexed: 05/29/2023]
Abstract
Application of monosulfuron, a new sulfonylurea herbicide, produced a simulative effect on heterocyst formation and nitrogenase activity but an inhibitory effect on photosynthesis, i.e., a lower net photosynthetic rate, fewer photosynthetic pigments, and a smaller Fv/Fm ratio at increasingly higher monosulfuron concentrations (0.001-10 mg/l) for three nonspecific filamentous nitrogen-fixing cyanobacteria: Anabaena azollae, A. flos-aquae, and A. azotica. The decrease in biliprotein of algal cells was less than that of carotenoid and chlorophyll-a. Monosulfuron was more readily degraded and less accumulated in A. azotica compared with A. azollae and A. flos-aquae. The three algae exhibited varying degrees of sensitivity to monosulfuron: Calculated 50% inhibition concentrations (IC(50)s) of algal growth and no observed-effect concentration (NOEC) values after 4 days of treatment were 0.014 and 0.005, 0.029 and 0.019, and 0.22 and 0.075 mg/l for A. flos-aquae, A. azollae, and A. azotica, respectively. Normal agricultural use of monosulfuron at postemergence rates of 0.3-0.8 mg/l in rice fields will likely be toxic to these three ubiquitous nitrogen-fixing cyanobacteria. Low-dose monosulfuron application (<0.1 mg/l) enables growth of the more tolerant A. azotica as biofertilizer, and the use of photosynthetic efficiency and growth rates as sensitive-indicator indexes of toxicity to nitrogen-fixing cyanobacteria are recommended.
Collapse
Affiliation(s)
- Jianying Shen
- Department of Environmental Science and Resources, Shanghai Jiaotong University, China.
| | | |
Collapse
|
26
|
Chen WC, Yen JH, Chang CS, Wang YS. Effects of herbicide butachlor on soil microorganisms and on nitrogen-fixing abilities in paddy soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:120-127. [PMID: 18490058 DOI: 10.1016/j.ecoenv.2008.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/29/2008] [Accepted: 03/23/2008] [Indexed: 05/26/2023]
Abstract
The composition of culture-independent microbial communities and the change of nitrogenase activities under the application of butachlor in paddy soil were investigated. Nitrogen-fixation ability was expressed by the amount of acetylene reduction, and changes of microbial communities were studied by using denaturing gradient gel electrophoresis (DGGE) technique; afterward, minimum distance (MD, in brief) statistics was applied to determine the cluster numbers in UPGMA dendrograms. The results showed that the reduction of acetylene was suppressed shortly after butachlor application but was augmented after 37 days in both upper and lower layer soils. From UPGMA dendrograms, the diazotrophic divergences ranged from 33% to 64% throughout rice growth stages. For general bacterial communities, the diversities ranged from 28% to 52%. The divergences became higher with the cultivation period, and the application of butachlor imposed a significant variation on microbial community shift, which may be a reason for the boosting nitrogen-fixation ability in paddy soils.
Collapse
Affiliation(s)
- Wen-Ching Chen
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosvelet Road, Taipei 10617, Taiwan
| | - Jui-Hung Yen
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosvelet Road, Taipei 10617, Taiwan
| | - Ching-Shu Chang
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosvelet Road, Taipei 10617, Taiwan
| | - Yei-Shung Wang
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosvelet Road, Taipei 10617, Taiwan.
| |
Collapse
|