1
|
Tian Y, Li H, Li M, Li S, Guo X. Physiological changes in shrub species due to different sources of dust pollution in an urban environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64280-64294. [PMID: 39531108 DOI: 10.1007/s11356-024-35438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Plants effectively filter ambient air by adsorbing particulate matter. The correct selection of landscape plants can exert greater dust retention benefits in different polluted areas. However, few studies have focused on the dust retention ability and related physiological responses of plants under continuous dust pollution from different dust sources. Here, we assessed the particle retention dynamics and plant physiology (chlorophyll content, soluble protein content, soluble sugar content, and peroxidase activity) of six shrubs (Berberis thunbergii var. atropurpurea, Ligustrum vicaryi, Rosa multiflora, Sorbaria sorbifolia, Swida alba, and Syzyga oblata) under continuous dust pollution from different dust sources (industrial sources: area below the direction of the coal-fired thermal power plant in Chengyang District, Qingdao, China; traffic sources: both sides of the road in each direction at the intersection of Great Wall Road and Zhengyang Road, Chengyang District, Qingdao, China; clean sources: Qingdao Agricultural University Campus, Qingdao Olympic Sculpture Park). The results showed that R. multiflora had the highest dust retention per unit leaf area of 3.27 ± 0.018 g·m-2 and 2.886 ± 0.02 g·m-2 in the experimental treatments of fuel source dust and clean source dust, respectively. The chlorophyll content of the tested shrubs significantly decreased due to the influence of dust treatment time, the range of cellular osmoregulatory substances (soluble sugars, soluble proteins, proline) tended to first increase and then decrease, and the antioxidant enzyme activities (superoxide dismutase, peroxidase) tended to increase and then decrease after continuous dust treatment. The greatest physiological changes were observed in plants within the industrial dust treatment area. The peroxidase activity and chlorophyll could be used as sensitive indicators of dust pollution in plants. R. multiflora showed better resistance to dust and had a greater dust retention capacity than other shrubs, making it more suitable for planting as a greening tree in industrial and traffic-polluted areas. S. alba and S. sorbifolia are sensitive to dust pollution, so they can be used as sensitive tree species to indicate atmospheric dust pollution. Our results may help design a feasible approach for urban shrub greening.
Collapse
Affiliation(s)
- Yuan Tian
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, 266109, People's Republic of China
| | - Haimei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, 266109, People's Republic of China.
| | - Mingyan Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, 266109, People's Republic of China
| | - Shimei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, 266109, People's Republic of China
| | - Xiao Guo
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No.700 Changcheng Road, Qingdao, 266109, People's Republic of China
- Academy of Dongying Efficient Agricultural Technology and Industry On Saline and Alkaline Land in Collaboration With, Qingdao Agricultural University, Dongying, 257347, People's Republic of China
| |
Collapse
|
2
|
Jia X, Pan Y, Zhu X. Salinization and heavy metal cadmium impair growth but have contrasting effects on defensive colony formation of Scenedesmus obliquus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160693. [PMID: 36481135 DOI: 10.1016/j.scitotenv.2022.160693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Driven by anthropogenic activities, freshwater salinization has become an emerging global environmental issue. Recent studies indicate that salinization increases the mobility of heavy metals in soil and causes higher flux into surface waterbodies. The present study assessed the combined effects of salinization (0, 3, 6 PSU) and the heavy metal Cd2+ (0, 0.2, 0.4 mg L-1) on the anti-grazing colony formation and population growth of Scenedesmus obliquus, a common freshwater alga. The results showed that the increase in salinity promoted colony formation of S. obliquus with or without the presence of grazing cues and, in contrast, Cd2+ contamination depressed the defensive colony formation of S. obliquus to Daphnia filtrate. The increase in both salinity and Cd2+ concentration depressed the population growth of S. obliquus, including impaired photosynthesis and a decreased population growth rate. Salinization moderated the negative effects of Cd2+ on defensive colony formation of S. obliquus, suggesting increased absorption of Cd2+ ions by a thicker outer layer of the algal cell wall under saltier conditions. As a result, larger defensive colonies of S. obliquus under freshwater salinization may cause higher bioaccumulation of heavy metals by algal cells and heavier influence on zooplankton. This study provides evidence that freshwater salinization could interfere with plankton interactions by affecting algal defense and growth, which may lead to bottom-up cascading effects on freshwater food webs.
Collapse
Affiliation(s)
- Xuanhe Jia
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| | - Yueqiang Pan
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| | - Xuexia Zhu
- The First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, 6 Xianxialing Road, Qingdao 266061, China; College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| |
Collapse
|
3
|
Wu M, Du M, Wu G, Lu F, Li J, Lei A, Zhu H, Hu Z, Wang J. Water reuse and growth inhibition mechanisms for cultivation of microalga Euglena gracilis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:132. [PMID: 34090512 PMCID: PMC8180174 DOI: 10.1186/s13068-021-01980-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microalgae can contribute to more than 40% of global primary biomass production and are suitable candidates for various biotechnology applications such as food, feed products, drugs, fuels, and wastewater treatment. However, the primary limitation for large-scale algae production is the fact that algae requires large amounts of fresh water for cultivation. To address this issue, scientists around the world are working on ways to reuse the water to grow microalgae so that it can be grown in successive cycles without the need for fresh water. RESULTS In this study, we present the results when we cultivate microalgae with cultivation water that is purified and reused. Specifically, we purify the cultivation water using an ultrafiltration membrane (UFM) treatment and investigate how this treatment affects: the biomass and biochemical components of the microalgae; characteristics of microalgae growth inhibitors; the mechanism whereby potential growth inhibitors are secreted (followed using metabolomics analysis); the effect of activated carbon (AC) treatment and advanced oxidation processes (AOPs) on the removal of growth inhibitors of Euglena gracilis. Firstly, the results show that E. gracilis can be only cultivated through two growth cycles with water that has been filtered and reused, and the growth of E. gracilis is significantly inhibited when the water is used a third time. Secondly, as the number of reused water cycles increases, the Cl- concentration gradually increases in the cultivation water. When the Cl- concentration accumulates to a level of fivefold higher than that of the control, growth of E. gracilis is inhibited as the osmolality tolerance range is exceeded. Interestingly, the osmolality of the reused water can be reduced by replacing NH4Cl with urea as the source of nitrogen in the cultivation water. Thirdly, E. gracilis secretes humic acid (HA)-which is produced by the metabolic pathways for valine, leucine, and isoleucine biosynthesis and by linoleic acid metabolism-into the cultivation water. Because HA contains large fluorescent functional groups, specifically extended π(pi)-systems containing C=C and C=O groups and aromatic rings, we were able to observe a positive correlation between HA concentration and the rate of inhibition of E. gracilis growth using fluorescence spectroscopy. Moreover, photosynthetic efficiency is adversely interfered by HA, thereby reductions in the synthetic efficiency of paramylon and lipid in E. gracilis. In this way, we are able to confirm that HA is the main growth inhibitor of E. gracilis. Finally, we verify that all the HA is removed or converted into nutrients efficiently by AC or UV/H2O2/O3 treatments, respectively. As a result of these treatments, growth of E. gracilis is restored (AC treatment) and the amount of biomass is promoted (UV/H2O2/O3 treatment). CONCLUSIONS These studies have important practical and theoretical significance for the cyclic cultivation of E. gracilis and for saving water resources. Our work may also provide a useful reference for other microalgae cultivation.
Collapse
Affiliation(s)
- Mingcan Wu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Ming Du
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Guimei Wu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Feimiao Lu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jing Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Hui Zhu
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
4
|
Beauzamy L, Delacotte J, Bailleul B, Tanaka K, Nakanishi S, Wollman FA, Lemaître F. Mediator-Microorganism Interaction in Microbial Solar Cell: a Fluo-Electrochemical Insight. Anal Chem 2020; 92:7532-7539. [PMID: 32352279 DOI: 10.1021/acs.analchem.9b05808] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Microbial solar cells that mainly rely on the use of photosynthesic organisms are a promising alternative to photovoltaics for solar electricity production. In that way, we propose a new approach involving electrochemistry and fluorescence techniques. The coupled setup Electro-Pulse-Amplitude-Modulation ("e-PAM") enables the simultaneous recording of the produced photocurrent and fluorescence signals from the photosynthetic chain. This methodology was validated with a suspension of green alga Chlamydomonas reinhardtii in interaction with an exogenous redox mediator (2,6-dichlorobenzoquinone; DCBQ). The balance between photosynthetic chain events (PSII photochemical yield, quenching) and the extracted electricity can be monitored overtime. More particularly, the nonphotochemical quenching induced by DCBQ mirrors the photocurrent. This setup thus helps to distinguish the electron harvesting from some side effects due to quinones in real time. It therefore paves the way for future analyses devoted to the choice of the experimental conditions (redox mediator, photosynthetic organisms, and so on) to find the best electron extraction.
Collapse
Affiliation(s)
- Léna Beauzamy
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.,Institut de Biologie Physico-Chimique, UMR7141 Biologie du Chloroplaste et Perception de la Lumière Chez les Micro-Algues, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Jérôme Delacotte
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique, UMR7141 Biologie du Chloroplaste et Perception de la Lumière Chez les Micro-Algues, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | - Francis-André Wollman
- Institut de Biologie Physico-Chimique, UMR7141 Biologie du Chloroplaste et Perception de la Lumière Chez les Micro-Algues, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Frédéric Lemaître
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
5
|
Sha J, Lu Z, Ye J, Wang G, Hu Q, Chen Y, Zhang X. The inhibition effect of recycled Scenedesmus acuminatus culture media: Influence of growth phase, inhibitor identification and removal. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101612] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Rai PK. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 129:120-36. [PMID: 27011112 DOI: 10.1016/j.ecoenv.2016.03.012] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 05/22/2023]
Abstract
Air pollution is one of the serious problems world is facing in recent Anthropocene era of rapid industrialization and urbanization. Specifically particulate matter (PM) pollution represents a threat to both the environment and human health. The changed ambient environment due to the PM pollutant in urban areas has exerted a profound influence on the morphological, biochemical and physiological status of plants and its responses. Taking into account the characteristics of the vegetation (wide distribution, greater contact area etc.) it turns out to be an effective indicator of the overall impact of PM pollution and harmful effects of PM pollution on vegetation have been reviewed in the present paper, covering an extensive span of 1960 to March 2016. The present review critically describes the impact of PM pollution and its constituents (e.g. heavy metals and poly-aromatic hydrocarbons) on the morphological attributes such as leaf area, leaf number, stomata structure, flowering, growth and reproduction as well as biochemical parameters such as pigment content, enzymes, ascorbic acid, protein, sugar and physiological aspect such as pH and Relative water content. Further, the paper provides a brief overview on the impact of PM on biodiversity and climate change. Moreover, the review emphasizes the genotoxic impacts of PM on plants. Finally, on the basis of such studies tolerant plants as potent biomonitors with high Air Pollution Tolerance Index (APTI) and Air Pollution Index (API) can be screened and may be recommended for green belt development.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Tanhril, Aizawl 796004, Mizoram, India.
| |
Collapse
|
7
|
|
8
|
Nemec V, Škvorc N, Cinčić D. Mechanochemical and solution-based cocrystallization of 9,10-phenanthrenequinone and thiourea. CrystEngComm 2015. [DOI: 10.1039/c5ce01291k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have synthesized the first known cocrystal of 9,10-phenanthrenequinone utilizing both liquid-assisted mechanochemical synthesis and crystallization from a solution.
Collapse
Affiliation(s)
- Vinko Nemec
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb, Croatia
| | - Nikola Škvorc
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb, Croatia
| | - Dominik Cinčić
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb, Croatia
| |
Collapse
|
9
|
Aksmann A, Pokora W, Baścik-Remisiewicz A, Dettlaff-Pokora A, Wielgomas B, Dziadziuszko M, Tukaj Z. Time-dependent changes in antioxidative enzyme expression and photosynthetic activity of Chlamydomonas reinhardtii cells under acute exposure to cadmium and anthracene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:31-40. [PMID: 25193882 DOI: 10.1016/j.ecoenv.2014.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/23/2014] [Accepted: 08/05/2014] [Indexed: 06/03/2023]
Abstract
Heavy metals (HM) and polycyclic aromatic hydrocarbons (PAHs) are present in the freshwater environment at concentrations that can be hazardous to the biota. Among HMs and PAHs, cadmium (Cd) and anthracene (ANT) are the most prevalent and toxic ones. The response of Chlamydomonas cells to Cd and ANT at concentrations that markedly reduced the growth of algal population was investigated in this study. At such concentrations, both cadmium and anthracene were recognized as oxidative stress inducers, since high concentration of H2O2 in treated cultures was observed. Therefore, as a part of the "molecular phase" of the cell response to this stress, we examined the time-dependent expression of genes encoding the main antioxidative enzymes: superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), as well as the activity of these enzymes in cells, with special attention paid to chloroplastic and mitochondrial isoforms of SOD. To characterize the cell response at the "physiological level", we examined the photosynthetic activity of stressed cells via analysis of chlorophyll a fluorescence in vivo. In contrast to standard ecotoxicity studies in which the growth end-points are usually determined, herein we present time-dependent changes in algal cell response to Cd- and ANT-induced stress. The most significant effect(s) of the toxicants on photosynthetic activity was observed in the 6th hour, when strong depression of PI parameter value, an over 50 percent reduction of the active reaction center fraction (RC0) and a 3-fold increase in non-photochemical energy dissipation (DI0/RC) were noted. At the same time, the increase (up to 2.5-fold) in mRNA transcript of SOD and CAT genes, followed by the enhancement in the enzyme activity was observed. The high expression of the Msd 3 gene in treated Chlamydomonas cells probably complements the partial loss of chloroplast Fe-SOD and APX activity, while catalase and Mn-SOD 5 seem to be the major enzymes responsible for mitochondrion protection. The progressive increase in SOD and CAT activities seems to be involved in the recovery of photosynthesis within 12-24h after the application of the toxicants.
Collapse
Affiliation(s)
- Anna Aksmann
- Department of Plant Physiology and Biotechnology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Wojciech Pokora
- Department of Plant Physiology and Biotechnology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Agnieszka Baścik-Remisiewicz
- Department of Plant Physiology and Biotechnology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | | | - Bartosz Wielgomas
- Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Małgorzata Dziadziuszko
- Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Zbigniew Tukaj
- Department of Plant Physiology and Biotechnology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
10
|
Ozhan K, Parsons ML, Bargu S. How Were Phytoplankton Affected by the Deepwater Horizon Oil Spill? Bioscience 2014. [DOI: 10.1093/biosci/biu117] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
11
|
Kanaly RA, Hamamura N. 9,10-Phenanthrenedione biodegradation by a soil bacterium and identification of transformation products by LC/ESI-MS/MS. CHEMOSPHERE 2013; 92:1442-1449. [PMID: 23611246 DOI: 10.1016/j.chemosphere.2013.03.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 06/02/2023]
Abstract
Transformation of 9,10-phenanthrenedione, a cytotoxic derivative of phenanthrene, was shown to occur by a soil bacterium belonging to the genus Sphingobium. Phenanthrene-grown cells of this strain were exposed to 50mgL(-1) 9,10-phenanthrenedione in liquid cultures, extracted, and extracts were analyzed by liquid chromatography electrospray ionization mass spectrometry in negative ionization mode. Full scan analyses of exposed cells over the range from m/z 50 to m/z 500 were compared to abiotic and biotic controls. Product and precursor ion scan mode analyses indicated that at least three aromatic ring-cleavage transformation products of 9,10-phenanthrenedione were present and structures for these products, corresponding to [M-H](-)=271, [M-H](-)=241, and [M-H](-)=339 were proposed to be 4-(1-hydroxy-3,4-dioxo-2-naphthyl)-2-oxo-but-3-enoic acid, 2,2'-diphenic acid and 2-[(6-carboxy-2,3-dihydroxy-phenyl)-hydroxy-methyl]-5-oxo-hex-3-enedioic acid. The identity of 2,2'-diphenic acid was confirmed by comparison to an authentic standard and when the strain was exposed to 50mgL(-1) 2,2'-diphenic acid in separate assays, a transformation product with a similar mass spectrum as 9,10-phenanthrenedione-derived [M-H](-)=339 was revealed. Based upon these results, pathways for the transformation of 9,10-phenanthrenedione by strain KK22 were proposed. Strain KK22 appeared unable to use 9,10-phenanthrenedione as a growth substrate under these conditions. This is the first report of potential biotransformation pathways of 9,10-phenanthrenedione by a bacterium.
Collapse
Affiliation(s)
- Robert A Kanaly
- Department of Genome System Science, Faculty of Bionanosciences, Yokohama City University, Yokohama 236-0027, Japan.
| | | |
Collapse
|
12
|
Gómez-Alvarez M, Poznyak T, Ríos-Leal E, Silva-Sánchez C. Anthracene decomposition in soils by conventional ozonation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 113:545-551. [PMID: 22494822 DOI: 10.1016/j.jenvman.2012.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 10/14/2011] [Accepted: 03/08/2012] [Indexed: 05/31/2023]
Abstract
Anthracene decomposition in solid phase by conventional ozonation was investigated employing model and real soil samples. Reaction in a two-phase system (soil-ozone) and a three-phase system (soil-water-ozone) was studied. The total anthracene decomposition in the two studied systems (sand-ozone and burned soil-ozone) was obtained at 15 and 30 min of treatment by ozone, respectively, and the efficiency of ozonation was depended on the water content in treated soil samples. The anthracene degradation in an agricultural soil (free water) was carried up slower (only 30% after 90 min of ozonation), because the real solid samples content organic matter that provokes the additionally ozone consuming. The pre-ozonation of free anthracene agricultural soil depicts the content of the organic matter fraction, which have the ozone reactivity orders as aromatic>aliphatic>polar. In all cases, the ozonation by-products were identified partiality; the majority of by-products formatted react with ozone. Actually some of them were decomposed totally, while others were accumulated. Some products identified in all systems such as anthrone, 9,10-anthraquinone and phthalic acid, are less toxic than the anthracene.
Collapse
Affiliation(s)
- Miriam Gómez-Alvarez
- Superior School of Chemical Engineering, National Polytechnic Institute of Mexico, Edif 7, UPALM, CP 07738 Mexico DF, Mexico
| | | | | | | |
Collapse
|
13
|
Pokora W, Tukaj Z. The combined effect of anthracene and cadmium on photosynthetic activity of three Desmodesmus (Chlorophyta) species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1207-1213. [PMID: 20621357 DOI: 10.1016/j.ecoenv.2010.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 10/30/2009] [Accepted: 06/20/2010] [Indexed: 05/29/2023]
Abstract
Individual toxicity of heavy metals (HM) and polycyclic aromatic hydrocarbons (PAH) to plants living in water bodies is well-documented. In view of frequent joint occurrence of these compounds in the environment, plants are subjected to damage from their combined action. Cadmium and anthracene can generate production of reactive oxygen species (ROS). We have recently detected elevated activity of Fe- and Mn-SOD isoforms, indicating chloroplast and mitochondrion as the main sites of combined toxicity of HM and PAH. In the present paper, short-term (1-24 h) experiments on the mechanism of combined toxicity of anthracene and cadmium to the photosynthesis of three Desmodesmus species are reported. Inhibition, stimulation or no effect on the oxygen evolution was observed following the treatment with the contaminants when applied either separately or jointly. The response pattern was both strongly species- and time-dependent. In contrast, the photosynthetic activity of cells, expressed by chlorophyll fluorescence parameters, was substantially unaffected, since no effect or, in several cases, a slight stimulation of PS II quantum efficiency (Phi PS II) were noted. A characteristic relationship between the SOD activity and the qN values was observed. The treatment of Desmodesmus cells with anthracene or cadmium had either no effect or slightly enhanced either the SOD activity or the qN value, whereas the mixture of the contaminants resulted in a multifold increase in both the SOD activity and the qN values. The results suggest that chloroplasts of algae are well protected against the combined action of the two contaminants the toxicity of which should be attributed to nucleocytoplasmic compartments and reproductive processes of the cell cycle.
Collapse
Affiliation(s)
- Wojciech Pokora
- Department of Plant Physiology, Faculty of Biology, University of Gdan sk, al. MarszaŁka PiŁsudskiego 46, 81-378 Gdynia, Poland.
| | | |
Collapse
|
14
|
Yin Y, Wang X, Yang L, Sun Y, Guo H. Bioaccumulation and ROS generation in Coontail Ceratophyllum demersum L. exposed to phenanthrene. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:1102-1110. [PMID: 20390349 DOI: 10.1007/s10646-010-0492-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Phenanthrene bioaccumulation, induction free radicals and their consequent biochemical responses in coontail (Ceratophyllum demersum L.) were examined. Plants were exposed to different levels (0.01, 0.02, 0.05, 0.07 and 0.1 mg/l) of phenanthrene for 10 days. Results showed that the phenanthrene concentration in the plants was exponentially correlated to exposure concentration (R (2) = 0.958) and phenanthrene exposure significantly increased the total free radicals and superoxide anion in the plants. The activities of antioxidant enzymes and the contents of glutathione were determined. The superoxide dismutase (SOD) activity and reduced glutathione (GSH) content were inhibited, while the catalase (CAT), peroxidase (POD), glutathione-s-transferase (GST) activities and oxidized glutathione (GSSG) content were significantly induced. Changes in the contents of chlorophyll and malondialdehyde (MDA) indicated that the MDA content was enhanced after phenanthrene exposure and the contents of chlorophyll were significantly increased in the 0.01 mg/l group. These experimental data demonstrated that the bioaccumulation of phenanthrene induced the production of free radicals and ROS, and changed the antioxidant defense system, ultimately resulting in oxidative damage in C. demersum.
Collapse
Affiliation(s)
- Ying Yin
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210093, China
| | | | | | | | | |
Collapse
|
15
|
Jonsson CM, Paraiba LC, Aoyama H. Metals and linear alkylbenzene sulphonate as inhibitors of the algae Pseudokirchneriella subcapitata acid phosphatase activity. ECOTOXICOLOGY (LONDON, ENGLAND) 2009; 18:610-619. [PMID: 19418219 DOI: 10.1007/s10646-009-0319-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 04/13/2009] [Indexed: 05/27/2023]
Abstract
Sewage sludge applied to soils as a fertilizer often contains metals and linear alkylbenzene sulphonate (LAS) as contaminants. These pollutants can be transported to the aquatic environment where they can alter the phosphatase activity in living organisms. The acid phosphatase of algae plays important roles in metabolism such as decomposing organic phosphate into free phosphate and autophagic digestive processes. The order of in vitro inhibition of Pseudokirchneriella subcapitata acid phosphatase at the highest concentration tested was LAS > Hg2+ = Al3+ > Se4+ = Pb2+ > Cd2+. A non-competitive inhibition mechanism was obtained for Hg2+ (Ki = 0.040 mM) and a competitive inhibition for LAS (Ki = 0.007 mM). In vivo studies with treated algae cultures showed that the inhibition of specific activity was observed in algae exposed during 7 days, in contrast to short term (24 h) treatments with both these chemicals. Our results suggest that the inhibition parameters in vitro did not markedly differ between the two chemicals. On the other hand, in vivo evaluations showed strong differences between both pollutants regarding the concentration values and the degree of response.
Collapse
|
16
|
Aksmann A, Tukaj Z. Intact anthracene inhibits photosynthesis in algal cells: a fluorescence induction study on Chlamydomonas reinhardtii cw92 strain. CHEMOSPHERE 2008; 74:26-32. [PMID: 18980775 DOI: 10.1016/j.chemosphere.2008.09.064] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/11/2008] [Accepted: 09/23/2008] [Indexed: 05/27/2023]
Abstract
Short-term (24h) experiments were performed to examine the effect of anthracene (ANT) on Chlamydomonas reinhardtii cw92 grown in a batch culture system aerated with 2.5% CO(2). At concentrations ranging from 0.7 to 5.6 microM, ANT inhibited the growth of population in a concentration-dependent manner and EC(50) calculated amounted to 1.6 microM. At concentrations from 0.7 to 4.2 microM ANT stimulated respiration and inhibited the intensity of photosynthesis but did not affect chlorophyll content in the cells. ANT influenced chlorophyll a fluorescence parameters, measured by OJIP test (O, J, I and P are the different steps of fluorescence induction curve). ANT diminished the performance index (PI), the yield of primary photochemistry (phi(Po)), the yield of electron transport (phi(Epsilonomicron), the efficiency of moving the electron beyond Qa(-) (Psi(0)) and the fraction of active oxygen evolving complexes (OEC). The fraction of active PS II reaction centres in the treated samples dramatically dropped. The most pronounced changes in ANT-treated cells were observed in the stimulation of energy dissipation parameter (DI(0)/RC). The only OJIP parameter that was not influenced by ANT was energy absorption by photosynthetic antennae (ABS). The results lead to a conclusion that the inhibition of photosynthesis may be a consequence of unspecific ANT-membrane interaction, resulting from hydrophobic character of this hydrocarbon.
Collapse
Affiliation(s)
- Anna Aksmann
- Department of Plant Physiology, University of Gdańsk, Gdynia, Poland
| | | |
Collapse
|
17
|
Kummerová M, Vánová L, Krulová J, Zezulka S. The use of physiological characteristics for comparison of organic compounds phytotoxicity. CHEMOSPHERE 2008; 71:2050-9. [PMID: 18336864 DOI: 10.1016/j.chemosphere.2008.01.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 01/21/2008] [Accepted: 01/23/2008] [Indexed: 05/26/2023]
Abstract
The influence of intact (FLT) and photomodified (phFLT) fluoranthene (0.05, 0.5 and 5 micromol l(-1)) and herbicide Basagran (5, 20, 35 and 50 nmol l(-1)) on the germination, growth of seedlings and photosynthetic processes in pea plants (Pisum sativum L., cv. Garde) was investigated. The germination was significantly inhibited already by the lowest concentration (0.05 micromol l(-1)) of FLT and phFLT, while Basagran caused inhibition only in higher concentrations (35 and 50 nmol l(-1)). The growth of roots was significantly inhibited by higher concentration 5 micromol l(-1) of both FLT and phFLT and the shoot of seedlings was significantly influenced only by photomodified form. The length of root and shoot was inhibited already by concentration 5 nmol l(-1) of Basagran. Organic compounds applied on chloroplasts suspension influenced primary photochemical processes of photosynthesis. In chlorophyll fluorescence parameters, the significant increase of F(0) values and the decrease of F(V)/F(M) and Phi(II) values by application of FLT (0.5 and 5 micromol l(-1)) and phFLT (0.05, 0.5 and 5 micromol l(-1)) was recorded. The maximum capacity of PSII (F(V)/F(M)) was influenced by the highest (50 nmol l(-1)) and the effective quantum yield of PSII (Phi(II)) already by the lowest (5 nmol l(-1)) concentration of Basagran. Hill reaction activity decreased and was significantly inhibited by higher concentration (0.5 and 5 micromol l(-1)) of FLT and phFLT and already by the lowest concentration (5 nmol l(-1)) of Basagran.
Collapse
Affiliation(s)
- Marie Kummerová
- Department of Plant Physiology and Anatomy, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlárská 2, 611 37 Brno, Czech Republic
| | | | | | | |
Collapse
|