1
|
Rance N. How single-cell transcriptomics provides insight on hepatic responses to TCDD. CURRENT OPINION IN TOXICOLOGY 2023; 36:100441. [PMID: 37981901 PMCID: PMC10653208 DOI: 10.1016/j.cotox.2023.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The prototypical aryl hydrocarbon receptor (AHR) ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been a valuable model for investigating toxicant-associated fatty liver disease (TAFLD). TCDD induces dose-dependent hepatic lipid accumulation, followed by the development of inflammatory foci and eventual progression to fibrosis in mice. Previously, bulk approaches and in vitro examination of different cell types were relied upon to study the mechanisms underlying TCDD-induced liver pathologies. However, the advent of single-cell transcriptomic technologies, such as single-nuclei RNA sequencing (snRNAseq) and spatial transcriptomics (STx), has provided new insights into the responses of hepatic cell types to TCDD exposure. This review explores the application of these single-cell transcriptomic technologies and highlights their contributions towards unraveling the cell-specific mechanisms mediating the hepatic responses to TCDD.
Collapse
Affiliation(s)
- Nault Rance
- Institute for Integrative Toxicology, Michigan State University, Michigan, USA
- Department of Biochemistry & Molecular Biology, Michigan State University, Michigan, USA
| |
Collapse
|
2
|
Olivero-Verbel J, Harkema JR, Roth RA, Ganey PE. Fenofibrate, a peroxisome proliferator-activated receptor-alpha agonist, blocks steatosis and alters the inflammatory response in a mouse model of inflammation-dioxin interaction. Chem Biol Interact 2021; 345:109521. [PMID: 34052195 DOI: 10.1016/j.cbi.2021.109521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 12/01/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (dioxin; TCDD) is an environmental contaminant that elicits a variety of toxic effects, many of which are mediated through activation of the aryl hydrocarbon receptor (AhR). Interaction between AhR and the peroxisome proliferator-activated receptor-alpha (PPAR-α), which regulates fatty acid metabolism, has been suggested. Furthermore, with recognition of the prevalence of inflammatory conditions, there is current interest in the potential for inflammatory stress to modulate the response to environmental agents. The aim of this work was to assess the interaction of TCDD with hepatic inflammation modulated by fenofibrate, a PPAR-α agonist. Female, C57BL/6 mice were treated orally with vehicle or fenofibrate (250 mg/kg) for 13 days, and then were given vehicle or 30 μg/kg TCDD. Four days later, the animals received an i.p. injection of lipopolysaccharide-galactosamine (LPS-GalN) (0.05x107 EU/kg and 500 mg/kg, respectively) to incite inflammation, or saline as vehicle control. After 4 h, the mice were euthanized, and blood and liver samples were collected for analysis. Livers of animals treated with TCDD with or without LPS-GalN had increased lipid deposition, and this effect was blocked by fenofibrate. In TCDD/LPS-GalN-treated mice, fenofibrate caused an increase in plasma activity of alanine aminotransferase, a marker of hepatocellular injury. TCDD reduced LPS-GalN-induced apoptosis, an effect that was prevented by fenofibrate pretreatment. LPS-GalN induced an increase in the concentration of interleukin-6 in plasma and accumulation of neutrophils in liver. TCDD exposure enhanced the former response and inhibited the latter one. These results suggest that fenofibrate counteracts the changes in lipid metabolism induced by TCDD but increases inflammation and liver injury in this model of inflammation-TCDD interaction.
Collapse
Affiliation(s)
- Jesus Olivero-Verbel
- Department of Pharmacology and Toxicology. Michigan State University, East Lansing, MI, USA; Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, 130014, Colombia
| | - Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, Institute for Integrative Toxicology, Michigan State University, USA
| | - Robert A Roth
- Department of Pharmacology and Toxicology. Michigan State University, East Lansing, MI, USA
| | - Patricia E Ganey
- Department of Pharmacology and Toxicology. Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Singleman C, Zimmerman A, Harrison E, Roy NK, Wirgin I, Holtzman NG. Toxic Effects of Polychlorinated Biphenyl Congeners and Aroclors on Embryonic Growth and Development. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:187-201. [PMID: 33118622 DOI: 10.1002/etc.4908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/19/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) cause significant health and reproductive problems in many vertebrates. Exposure during embryogenesis likely leads to defects in organ development, compromising survival and growth through adulthood. The present study identifies the impact of PCBs on the embryonic development of key organs and resulting consequences on survival and growth. Zebrafish embryos were treated with individual PCB congeners (126 or 104) or one of 4 Aroclor mixtures (1016, 1242, 1254, or 1260) and analyzed for changes in gross embryonic morphology. Specific organs were assessed for defects during embryonic development, using a variety of transgenic zebrafish to improve organ visualization. Resulting larvae were grown to adulthood while survival and growth were assayed. Embryonic gross development on PCB treatment was abnormal, with defects presenting in a concentration-dependent manner in the liver, pancreas, heart, and blood vessel organization. Polychlorinated biphenyl 126 treatment resulted in the most consistently severe and fatal phenotypes, whereas treatments with PCB 104 and Aroclors resulted in a range of more subtle organ defects. Survival of fish was highly variable although the growth rates of surviving fish were relatively normal, suggesting that maturing PCB-treated fish that survive develop compensatory strategies needed to reach adulthood. Life span analyses of fish from embryogenesis through adulthood, as in the present study, are scarce but important for the field because they help identify foci for further studies. Environ Toxicol Chem 2021;40:187-201. © 2020 SETAC.
Collapse
Affiliation(s)
- Corinna Singleman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
- The Graduate Center, City University of New York, New York, New York, USA
| | - Alison Zimmerman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
| | - Elise Harrison
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
| | - Nirmal K Roy
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Isaac Wirgin
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Nathalia G Holtzman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
- The Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
4
|
Shi Y, Zeng Z, Yu J, Tang B, Tang R, Xiao R. The aryl hydrocarbon receptor: An environmental effector in the pathogenesis of fibrosis. Pharmacol Res 2020; 160:105180. [PMID: 32877693 DOI: 10.1016/j.phrs.2020.105180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a highly conserved transcription factor that can be activated by small molecules provided by dietary, plant, or microbial metabolites, and environmental pollutants. AhR is expressed in many cell types and engages in crosstalk with other signaling pathways, and therefore provides a molecular pathway that integrates environmental cues and metabolic processes. Fibrosis, which is defined as an aberrant extracellular matrix formation, is a reparative process in the terminal stage of chronic diseases. Both environmental and internal factors have been shown to participate in the pathogenesis of fibrosis; however, the underlying mechanisms still remain elusive. In this review, the potential role of AhR in the process of fibrosis, as well as potential opportunities and challenges in the development of AhR targeting therapeutics, are summarized.
Collapse
Affiliation(s)
- Yaqian Shi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jiangfan Yu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bingsi Tang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Rui Tang
- Department of Rheumatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
5
|
Renal changes and apoptosis caused by subacute exposure to Aroclor 1254 in selenium-deficient and selenium-supplemented rats. Arh Hig Rada Toksikol 2020; 71:110-120. [PMID: 32975097 PMCID: PMC7968486 DOI: 10.2478/aiht-2020-71-3360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Abstract
Aroclor 1254 (A1254), a mixture of polychlorinated biphenyls, exerts hepatic, renal, and reproductive toxicity in rodents. This study aimed to determine a protective role of selenium on histopathological changes, oxidative stress, and apoptosis caused by A1254 in rat kidney. It included a control group, which received regular diet containing 0.15 mg/kg Se (C), a Se-supplemented group (SeS) receiving 1 mg/kg Se, a Se-deficient group (SeD) receiving Se-deficient diet of ≤0.05 mg/kg Se, an A1254-treated group (A) receiving 10 mg/kg of Aroclor 1254 and regular diet, an A1254-treated group receiving Se-supplementation (ASeS), and an A1254-treated group receiving Se-deficient diet (ASeD). Treatments lasted 15 days. After 24 h of the last dose of A1254, the animals were decapitated under anaesthesia and their renal antioxidant enzyme activities, lipid peroxidation (LP), glutathione, protein oxidation, and total antioxidant capacity levels measured. Histopathological changes were evaluated by light and electron microscopy. Apoptosis was detected with the TUNEL assay. Kidney weights, CAT activities, and GSH levels decreased significantly in all A1254-treated groups. Renal atrophic changes and higher apoptotic cell counts were observed in the A and ASeD groups. Both groups also showed a significant drop in GPx1 activities (A – 34.92 % and ASeD – 86.46 %) and rise in LP (A – 30.45 % and ASeD – 20.44 %) vs control. In contrast, LP levels and apoptotic cell counts were significantly lower in the ASeS group vs the A group. Histopathological changes and renal apoptosis were particularly visible in the ASeD group. Our findings suggest that selenium supplementation provides partial protection against renal toxicity of Aroclor 1254.
Collapse
|
6
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Fürst P, Håkansson H, Halldorsson T, Lundebye AK, Pohjanvirta R, Rylander L, Smith A, van Loveren H, Waalkens-Berendsen I, Zeilmaker M, Binaglia M, Gómez Ruiz JÁ, Horváth Z, Christoph E, Ciccolallo L, Ramos Bordajandi L, Steinkellner H, Hoogenboom LR. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J 2018; 16:e05333. [PMID: 32625737 PMCID: PMC7009407 DOI: 10.2903/j.efsa.2018.5333] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of dioxins (PCDD/Fs) and DL-PCBs in feed and food. The data from experimental animal and epidemiological studies were reviewed and it was decided to base the human risk assessment on effects observed in humans and to use animal data as supportive evidence. The critical effect was on semen quality, following pre- and postnatal exposure. The critical study showed a NOAEL of 7.0 pg WHO2005-TEQ/g fat in blood sampled at age 9 years based on PCDD/F-TEQs. No association was observed when including DL-PCB-TEQs. Using toxicokinetic modelling and taking into account the exposure from breastfeeding and a twofold higher intake during childhood, it was estimated that daily exposure in adolescents and adults should be below 0.25 pg TEQ/kg bw/day. The CONTAM Panel established a TWI of 2 pg TEQ/kg bw/week. With occurrence and consumption data from European countries, the mean and P95 intake of total TEQ by Adolescents, Adults, Elderly and Very Elderly varied between, respectively, 2.1 to 10.5, and 5.3 to 30.4 pg TEQ/kg bw/week, implying a considerable exceedance of the TWI. Toddlers and Other Children showed a higher exposure than older age groups, but this was accounted for when deriving the TWI. Exposure to PCDD/F-TEQ only was on average 2.4- and 2.7-fold lower for mean and P95 exposure than for total TEQ. PCDD/Fs and DL-PCBs are transferred to milk and eggs, and accumulate in fatty tissues and liver. Transfer rates and bioconcentration factors were identified for various species. The CONTAM Panel was not able to identify reference values in most farm and companion animals with the exception of NOAELs for mink, chicken and some fish species. The estimated exposure from feed for these species does not imply a risk.
Collapse
|
7
|
Ricke WA, Lee CW, Clapper TR, Schneider AJ, Moore RW, Keil KP, Abler LL, Wynder JL, López Alvarado A, Beaubrun I, Vo J, Bauman TM, Ricke EA, Peterson RE, Vezina CM. In Utero and Lactational TCDD Exposure Increases Susceptibility to Lower Urinary Tract Dysfunction in Adulthood. Toxicol Sci 2016; 150:429-40. [PMID: 26865671 DOI: 10.1093/toxsci/kfw009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Benign prostatic hyperplasia, prostate cancer, and changes in the ratio of circulating testosterone and estradiol often occur concurrently in aging men and can lead to lower urinary tract (LUT) dysfunction. To explore the possibility of a fetal basis for the development of LUT dysfunction in adulthood, Tg(CMV-cre);Nkx3-1(+/-);Pten(fl/+) mice, which are genetically predisposed to prostate neoplasia, were exposedin uteroand during lactation to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, 1 μg/kg po) or corn oil vehicle (5 ml/kg) after a single maternal dose on 13 days post coitus, and subsequently were aged without further manipulation, or at 8 weeks of age were exposed to exogenous 17 β-estradiol (2.5 mg) and testosterone (25 mg) (T+E2) via slow release subcutaneous implants.In uteroand lactational (IUL) TCDD exposure in the absence of exogenous hormone treatment reduced voiding pressure in adult mice, but otherwise had little effect on mouse LUT anatomy or function. By comparison, IUL TCDD exposure followed by exogenous hormone treatment increased relative kidney, bladder, dorsolateral prostate, and seminal vesicle weights, hydronephrosis incidence, and prostate epithelial cell proliferation, thickened prostate periductal smooth muscle, and altered prostate and bladder collagen fiber distribution. We propose a 2-hit model whereby IUL TCDD exposure sensitizes mice to exogenous-hormone-induced urinary tract dysfunction later in life.
Collapse
Affiliation(s)
- William A Ricke
- *Molecular and Environmental Toxicology Center; Department of Urology; University of Wisconsin Carbone Cancer Center; George M. O'Brien Benign Urology Center of Research Excellence
| | | | | | | | | | - Kimberly P Keil
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Lisa L Abler
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | | | | | | | - Jenny Vo
- *Molecular and Environmental Toxicology Center
| | | | | | - Richard E Peterson
- *Molecular and Environmental Toxicology Center; University of Wisconsin Carbone Cancer Center; School of Pharmacy; and
| | - Chad M Vezina
- *Molecular and Environmental Toxicology Center; Department of Urology; University of Wisconsin Carbone Cancer Center; George M. O'Brien Benign Urology Center of Research Excellence; School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
8
|
Kim S, Sundaramoorthi H, Jagadeeswaran P. Dioxin-induced thrombocyte aggregation in zebrafish. Blood Cells Mol Dis 2014; 54:116-22. [PMID: 25129381 DOI: 10.1016/j.bcmd.2014.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 10/24/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a canonical member of a group of dioxins which are byproducts of industrial combustion and are dangerous environmental pollutants. TCDD has been shown to cause several abnormalities in humans and wildlife, and recently, some dioxins have been found to activate platelets. However, TCDD-mediated platelet activation pathways are elusive and virtually nothing is known about TCDD activation of fish thrombocytes. To investigate TCDD effect on thrombocyte function, we tested zebrafish blood in presence of TCDD using a thrombocyte functional assay. We found that TCDD activated thrombocytes. Further experiments showed that thrombocytes of fish treated with TCDD formed both aggregates and filopodia. To investigate the mechanism of TCDD-mediated activation of thrombocytes we used inhibitors for Gq, cyclooxygenase-1, aryl hydrocarbon receptor (AHR), c-src, Akt, and ERK1/2. We found that TCDD induces AHR which activates c-src and signals the activation of Akt and ERK1/2 which are ultimately involved in generation of thromboxane A2. Furthermore, we found that ADP potentiates TCDD action, which led to the discovery that ADP itself activates AHR in the absence of TCDD. Taken together, these results resolved the pathway of TCDD activation of thrombocytes and led to the finding that ADP is an activator of AHR.
Collapse
Affiliation(s)
- Seongcheol Kim
- Department of Biological Sciences, University of North Texas, 1510 Chestnut, Denton TX 76203, USA
| | - Hemalatha Sundaramoorthi
- Department of Biological Sciences, University of North Texas, 1510 Chestnut, Denton TX 76203, USA
| | - Pudur Jagadeeswaran
- Department of Biological Sciences, University of North Texas, 1510 Chestnut, Denton TX 76203, USA.
| |
Collapse
|
9
|
Forgacs AL, Dere E, Angrish MM, Zacharewski TR. Comparative analysis of temporal and dose-dependent TCDD-elicited gene expression in human, mouse, and rat primary hepatocytes. Toxicol Sci 2013; 133:54-66. [PMID: 23418086 DOI: 10.1093/toxsci/kft028] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-elicited time- and dose-dependent differential gene expression was compared in human, mouse, and rat primary hepatocytes. Comprehensive time course (10 nM TCDD or dimethyl sulfoxide vehicle control for 1, 2, 4, 8, 12, 24, and 48h) studies identified 495, 2305, and 711 differentially expressed orthologous genes in human, mouse, and rat hepatocytes, respectively. However, only 16 orthologs were differentially expressed across all three species, with the majority of orthologs exhibiting species-specific expression (399 human, 2097 mouse, and 533 rat), consistent with species-specific expression reported in other in vitro and in vivo comparative studies. TCDD also elicited the dose-dependent induction of 397 human, 100 mouse, and 443 rat genes at 12h and 615 human, 426 mouse, and 314 rat genes at 24h. Comparable EC50 values were obtained for AhR battery genes including Cyp1a1 (0.1 nM human, 0.05 nM mouse, 0.08 nM rat at 24h) and Tiparp (0.97 nM human, 0.63 nM mouse, 0.14 nM rat at 12h). Overrepresented functions and pathways included amino acid metabolism in humans, immune response in mice, and energy homeostasis in rats. Differentially expressed genes functionally associated with lipid transport, processing, and metabolism were overrepresented in all three species but exhibited species-specific expression consistent with the induction of hepatic steatosis in mice but not in rats following a single oral gavage of TCDD. Furthermore, human primary hepatocytes showed lipid accumulation following 48h of treatment with TCDD, suggesting that AhR-mediated steatosis in mice more closely resembles human hepatic fat accumulation compared with that in rats. Collectively, these results suggest that species-specific gene expression profiles mediate the species-specific effects of TCDD despite the conservation of the AhR and its signaling mechanism.
Collapse
Affiliation(s)
- Agnes L Forgacs
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
10
|
Mehta V, Vezina CM. Potential protective mechanisms of aryl hydrocarbon receptor (AHR) signaling in benign prostatic hyperplasia. Differentiation 2012; 82:211-9. [PMID: 21684673 DOI: 10.1016/j.diff.2011.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 05/20/2011] [Accepted: 05/27/2011] [Indexed: 11/17/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is an evolutionarily conserved ligand activated transcription factor best known for its role in mediating toxic responses to dioxin-like environmental contaminants. However, AHR signaling has also emerged as an active participant in processes of normal development and disease progression. Here, we review the role of AHR signaling in prostate development and disease processes, with a particular emphasis on benign prostatic hyperplasia (BPH). Inappropriate AHR activation has recently been associated with a decreased risk of symptomatic BPH in humans and has been shown to impair prostate development and disrupt endocrine signaling in rodents. We highlight known physiological responses to AHR activation in prostate and other tissues and discuss potential mechanisms by which it may act in adult human prostate to protect against symptomatic BPH.
Collapse
Affiliation(s)
- Vatsal Mehta
- Department of Comparative Biosciences, University of Wisconsin, 1656 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
11
|
Wang Y, Lu C, Sheng Z, Liu G, Fu Z, Zhu B, Peng S. Enhanced hepatotoxicity induced by repeated exposure to polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin in combination in male rats. J Environ Sci (China) 2011; 23:119-124. [PMID: 21476350 DOI: 10.1016/s1001-0742(10)60382-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs) are among persistent polyhalogenated aromatic hydrocarbons that exist as complex mixtures in the environment worldwide. The present study was attempted to investigate the hepatotoxicity following repeated exposure to TCDD and PCBs in combination in male rats, and to reveal the involvement of potential mechanisms. Male Sprague-Dawley rats were exposed to TCDD (10 microg/kg) and Aroclor 1254 (10 mg/kg, a representative mixture of PCBs) alone or in combination by intragastric administration. After 12-day exposure, all treatments produced significant hepatotoxicity as characterized by changes of plasma biochemistry and histopathological changes. These effects were more prominent in the combined group. Furthermore, all treatments induced hepatic cytochrome P450 1A1 (CYP1A1) expression, and the maximal level of CYP1A1 expression was observed in the combined group, as in the case of the most severe hepatotoxicity evoked by the combined exposure. These findings indicated that the hepatotoxicity induced by TCDD and Aroclor 1254 might be ascribed to the high expression of hepatic CYP1A1. The present study demonstrates the enhanced hepatotoxicity after exposure to TCDD and PCBs in combination in rats.
Collapse
Affiliation(s)
- Yimei Wang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Kawano Y, Nishiumi S, Tanaka S, Nobutani K, Miki A, Yano Y, Seo Y, Kutsumi H, Ashida H, Azuma T, Yoshida M. Activation of the aryl hydrocarbon receptor induces hepatic steatosis via the upregulation of fatty acid transport. Arch Biochem Biophys 2010; 504:221-7. [PMID: 20831858 DOI: 10.1016/j.abb.2010.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix/Per-ARNT-Sim domain transcription factor, which is activated by various xenobiotic ligands. AHR is known to be abundant in liver tissue and to be associated with hepatic steatosis. However, it has not yet been elucidated how the activation of AHR promotes hepatic steatosis. The aim of this study is to clarify the role of AHR in hepatic steatosis. The intraperitoneal injection of 3-methylcholanthrene (3MC), a potent AHR ligand, into C57BL/6J mice significantly increased the levels of triglycerides and six long-chain monounsaturated fatty acids in the livers of mice, resulting in hepatic microvesicular steatosis. 3MC significantly enhanced the expression level of fatty acid translocase (FAT), a factor regulating the uptake of long-chain fatty acids into hepatocytes, in the liver. In an in vitro experiment using human hepatoma HepG2 cells, 3MC increased the expression level of FAT, and the downregulation of AHR by AHR siRNA led to the suppression of 3MC-induced FAT expression. In addition, the mRNA level of peroxisome proliferator-activated receptor (PPAR) α, an upstream factor of FAT, was increased in the livers of 3MC-treated mice. Taking together, AHR activation induces hepatic microvesicular steatosis by increasing the expression level of FAT.
Collapse
Affiliation(s)
- Yuki Kawano
- Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
NMR-based metabonomic analysis of the hepatotoxicity induced by combined exposure to PCBs and TCDD in rats. Toxicol Appl Pharmacol 2010; 248:178-84. [PMID: 20691717 DOI: 10.1016/j.taap.2010.07.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 07/06/2010] [Accepted: 07/23/2010] [Indexed: 01/05/2023]
Abstract
A metabonomic approach using (1)H NMR spectroscopy was adopted to investigate the metabonomic pattern of rat urine after oral administration of environmental endocrine disruptors (EDs) polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) alone or in combination and to explore the possible hepatotoxic mechanisms of combined exposure to PCBs and TCDD. (1)H NMR spectra of urines collected 24h before and after exposure were analyzed via pattern recognition by using principal component analysis (PCA). Serum biochemistry and liver histopathology indicated significant hepatotoxicity in the rats of the combined group. The PCA scores plots of urinary (1)H NMR data showed that all the treatment groups could be easily distinguished from the control group, so could the PCBs or TCDD group and the combined group. The loadings plots of the PCA revealed remarkable increases in the levels of lactate, glucose, taurine, creatine, and 2-hydroxy-isovaleric acid and reductions in the levels of 2-oxoglutarate, citrate, succinate, hippurate, and trimethylamine-N-oxide in rat urine after exposure. These changes were more striking in the combined group. The changed metabolites may be considered possible biomarker for the hepatotoxicity. The present study demonstrates that combined exposure to PCBs and TCDD induced significant hepatotoxicity in rats, and mitochondrial dysfunction and fatty acid metabolism perturbations might contribute to the hepatotoxicity. There was good conformity between changes in the urine metabonomic pattern and those in serum biochemistry and liver histopathology. These results showed that the NMR-based metabonomic approach may provide a promising technique for the evaluation of the combined toxicity of EDs.
Collapse
|
14
|
Imura H, Yamada T, Mishima K, Fujiwara K, Kawaki H, Hirata A, Sogawa N, Ueno T, Sugahara T. Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin suggests abnormal palate development after palatal fusion. Congenit Anom (Kyoto) 2010; 50:77-84. [PMID: 20156238 DOI: 10.1111/j.1741-4520.2010.00271.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mouse embryos exposed to 2,3,7,8-tetrachloridedibenzo-p-dioxin (TCDD) develop cleft palates and hydronephrosis. Cleft palates occur after TCDD exposure due to contact and/or fusion failure. We investigated whether cleft palate can be induced by dissociation of the palatine process after fusion. Pregnant mice on gestational day (GD) 12 were randomly divided into two groups: one group was administered through gastric tubes one dose of olive oil (control group) and the other group was administered one dose of TCDD diluted with olive oil, both at a dose of 40 microg/kg body weight. Embryos were removed by cesarean section from pregnant mice during the palatal formation stage (GD 13-18) and the palatal form was observed using a stereoscopic microscope. In TCDD-exposed embryos, palatal fusion was observed on GD 14, 15 and 16 and the incidence of cleft palate was 100% on GD 18. Fusion rates were 17.5 +/- 15.2% and 12.4 +/- 11.8% on GD 15 and 16, respectively. Some palates from the TCDD-exposed mouse embryos showed clearly developed cleft palate after fusion of the lateral palatine processes during palatal formation. A mass of cells, which were chiefly epithelial in the fused palates was observed in the TCDD-exposed mouse embryos. A decrease in E-cadherin expression was observed in this mass of cells, indicating its involvement in the development of cleft palate.
Collapse
Affiliation(s)
- Hideto Imura
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lu CF, Wang YM, Peng SQ, Zou LB, Tan DH, Liu G, Fu Z, Wang QX, Zhao J. Combined effects of repeated administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin and polychlorinated biphenyls on kidneys of male rats. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 57:767-776. [PMID: 19373505 DOI: 10.1007/s00244-009-9323-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 03/30/2009] [Indexed: 05/26/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs) are persistent environmental contaminants that exist as complex mixtures in the environment, but the possible interactions of TCDD and PCBs have not been systematically investigated. The main objective of this study was to investigate the combined nephrotoxic effects of TCDD and PCBs on rats and to reveal the potential interactions between TCDD and PCBs. Male Sprague-Dawley rats were intragastrically administered TCDD (10 microg/kg), PCBs (Aroclor 1254, 10 mg/kg), or the combination (10 microg/kg TCDD + 10 mg/kg Aroclor 1254). After 12 consecutive days of exposure, all treatments induced nephrotoxicity, as evidenced by significant increases in the levels of serum creatinine and blood urea nitrogen, changes of kidney histopathology, and significant renal oxidative stress. Most of these effects were more remarkable in the combined-exposure group. Furthermore, all treatments induced renal cytochrome P450 1A1 (CYP1A1) protein expression, and the induction was more conspicuous in the combined-exposure group. These findings suggested that the nephrotoxicity induced by TCDD and PCBs in the present study might be attributable to the high expression of CYP1A1. In addition, the result of the two-way analysis of variance revealed that the combined effects of TCDD and PCBs were complicated, being additive, synergistic, or antagonistic depending on the selection of toxicity end points under the present experimental condition. This study demonstrates that combined exposure to TCDD and PCBs induced significant nephrotoxicity in rats, and there were complicated interactions between the two pollutants on the nephrotoxicity.
Collapse
Affiliation(s)
- Chun-Feng Lu
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention of PLA, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) affects bone tissue in rhesus monkeys. Toxicology 2008; 253:147-52. [DOI: 10.1016/j.tox.2008.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/03/2008] [Accepted: 09/04/2008] [Indexed: 01/01/2023]
|
17
|
Gomez-Duran A, Carvajal-Gonzalez JM, Mulero-Navarro S, Santiago-Josefat B, Puga A, Fernandez-Salguero PM. Fitting a xenobiotic receptor into cell homeostasis: how the dioxin receptor interacts with TGFbeta signaling. Biochem Pharmacol 2008; 77:700-12. [PMID: 18812170 DOI: 10.1016/j.bcp.2008.08.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/07/2008] [Accepted: 08/08/2008] [Indexed: 02/06/2023]
Abstract
As our knowledge on the mechanisms that control cell function increases, more complex signaling pathways and quite intricate cross-talks among regulatory proteins are discovered. Establishing accurate interactions between cellular networks is essential for a healthy cell and different alterations in signaling are known to underline human disease. Transforming growth factor beta (TGFbeta) is an extracellular cytokine that regulates such critical cellular responses as proliferation, apoptosis, differentiation, angiogenesis and migration, and it is assumed that the latency-associated protein LTBP-1 plays a relevant role in TGFbeta targeting and activation in the extracellular matrix (ECM). The dioxin receptor (AhR) is a unique intracellular protein long studied because of its critical role in xenobiotic-induced toxicity and carcinogenesis. Yet, a large set of studies performed in cellular systems and in vivo animal models have suggested important xenobiotic-independent functions for AhR in cell proliferation, differentiation and migration and in tissue homeostasis. Remarkably, AhR activity converges with TGFbeta-dependent signaling through LTBP-1 since cells lacking AhR expression have phenotypic alterations that can be explained, at least in part, by the coordinated regulation of both proteins. Here, we will discuss the existence of functional interactions between AhR and TGFbeta signaling. We will focus on regulatory and functional aspects by analyzing how AhR status determines TGFbeta activity and by proposing a mechanism through which LTBP-1, a novel AhR target gene, mediates such effects. We will integrate ECM proteases in the AhR-LTBP-1-TGFbeta axis and suggest a model that could help explain some in vivo phenotypes associated to AhR deficiency.
Collapse
Affiliation(s)
- Aurea Gomez-Duran
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | | | |
Collapse
|