1
|
Zhang X, Zhang H, Wang Y, Bai P, Zhang L, Wei Y, Tang N. Personal PM 2.5-bound PAH exposure and lung function in healthy office workers: A pilot study in Beijing and Baoding, China. J Environ Sci (China) 2023; 133:48-59. [PMID: 37451788 DOI: 10.1016/j.jes.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 07/18/2023]
Abstract
The effect of short-term exposure to polycyclic aromatic hydrocarbons (PAHs) on the respiratory system among healthy residents is unclear. Beijing and Baoding are typical polluted cities in China, and there is little research on PAH exposure and its health effects at the individual level. Fourteen healthy female office workers were recruited in urban Beijing and Baoding, China, in 2019. The personal exposure to fine particulate matter (PM2.5)-bound PAHs and lung function were seasonally monitored. The relationships between PAH exposure and lung function were determined by a generalized mixed linear model. Subjects were exposed to high levels of PAH, in which the benzo[a]pyrene (BaP) level (1.26 ng/m3) was over than Chinese national indoor standard (1 ng/m3). All PAHs concentration was higher in winter than that in summer and autumn. Only benz[a]anthracene (BaA) and chrysene (Chr) exposure showed weak relations with decreased lung function, i.e., a 0.58% and 0.73% decrease in peak expiratory flow at lag 2 day, respectively (p < 0.05). PAHs may not be suitable exposure indicators for short-term change in lung function. Our findings highlight the importance of reducing PAH pollution for public respiratory health protection in heavy-polluted cities of China. This pilot study also provides experience on personal PAH assessment such as estimation of the number of repeated measurements required, which is helpful to determine the relationship between PAH exposure and health effect.
Collapse
Affiliation(s)
- Xuan Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hao Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yan Wang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Pengchu Bai
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Lulu Zhang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China; Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
2
|
Laguerre A, Gall ET. Measurement of Polycyclic Aromatic Hydrocarbons (PAHs) on Indoor Materials: Method Development. ACS OMEGA 2023; 8:20634-20641. [PMID: 37332781 PMCID: PMC10268631 DOI: 10.1021/acsomega.3c01184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023]
Abstract
Wildfire smoke penetrates indoors, and polycyclic aromatic hydrocarbons (PAHs) in smoke may accumulate on indoor materials. We developed two approaches for measuring PAHs on common indoor materials: (1) solvent-soaked wiping of solid materials (glass and drywall) and (2) direct extraction of porous/fleecy materials (mechanical air filter media and cotton sheets). Samples are extracted by sonication in dichloromethane and analyzed with gas chromatography-mass spectrometry. Extraction recoveries range from 50-83% for surrogate standards and for PAHs recovered from direct application to isopropanol-soaked wipes, in line with prior studies. We evaluate our methods with a total recovery metric, defined as the sampling and extraction recovery of PAHs from a test material spiked with known PAH mass. Total recovery is higher for "heavy" PAHs (HPAHs, 4 or more aromatic rings) than for "light" PAHs (LPAHs, 2-3 aromatic rings). For glass, the total recovery range is 44-77% for HPAHs and 0-30% for LPAHs. Total recoveries from painted drywall are <20% for all PAHs tested. For filter media and cotton, total recoveries of HPAHs are 37-67 and 19-57%, respectively. These data show acceptable HPAH total recovery on glass, cotton, and filter media; total recovery of LPAHs may be unacceptably low for indoor materials using methods developed here. Our data also indicate that extraction recovery of surrogate standards may overestimate the total recovery of PAHs from glass using solvent wipe sampling. The developed method enables future studies of accumulation of PAHs indoors, including potential longer-term exposure derived from contaminated indoor surfaces.
Collapse
|
3
|
Chiarello DI, Ustáriz J, Marín R, Carrasco-Wong I, Farías M, Giordano A, Gallardo FS, Illanes SE, Gutiérrez J. Cellular mechanisms linking to outdoor and indoor air pollution damage during pregnancy. Front Endocrinol (Lausanne) 2023; 14:1084986. [PMID: 36875486 PMCID: PMC9974835 DOI: 10.3389/fendo.2023.1084986] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Pregnancies are a critical window period for environmental influences over the mother and the offspring. There is a growing body of evidence associating indoor and outdoor air pollution exposure to adverse pregnancy outcomes such as preterm birth and hypertensive disorders of pregnancy. Particulate matter (PM) could trigger oxi-inflammation and could also reach the placenta leading to placental damage with fetal consequences. The combination of strategies such as risk assessment, advise about risks of environmental exposures to pregnant women, together with nutritional strategies and digital solutions to monitor air quality can be effective in mitigating the effects of air pollution during pregnancy.
Collapse
Affiliation(s)
- Delia I. Chiarello
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Javier Ustáriz
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Reinaldo Marín
- Center for Biophysics and Biochemistry (CBB), Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Ivo Carrasco-Wong
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Marcelo Farías
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ady Giordano
- Inorganic Chemistry Department, Faculty of Chemistry and of Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe S. Gallardo
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián E. Illanes
- Reproductive Biology Program, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Jaime Gutiérrez
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
4
|
Huang S, Nian M, Ma S, Huo X, Liu H, Tian Y, Zhang J, Yu Y. Associations between urinary monohydroxylated polycyclic aromatic hydrocarbons and unexplained recurrent spontaneous abortion and health risk assessment in a large case-control study in China. ENVIRONMENTAL RESEARCH 2023; 218:115039. [PMID: 36513126 DOI: 10.1016/j.envres.2022.115039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of environmental endocrine disruptors with known carcinogenic, reproductive, and developmental toxicity. Important knowledge gaps remain regarding the relationship between PAH exposure and unexplained recurrent spontaneous abortion (URSA). In the present study, twelve monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) were measured in the urine of 413 URSA cases and 434 controls. The main OH-PAHs measured in this study were monohydroxy metabolites of naphthalene, followed by fluorene and phenanthrene. After the creatinine correction, the median concentration of urinary OH-PAHs in the control group (17.4 μg/g Creatinine) was higher than that in the case group (14.2 μg/g Creatinine). There was no positive relationship between PAH exposure and URSA using binary logistic regression analysis. Among 847 Chinese women of childbearing age, residential environment, type of drinking water, and education level were the influencing factors of PAH exposure. The health risk assessment showed that over 98% of women had a carcinogenic risk with carcinogenic risk values above the acceptable level (10-6). Although this large-scale case-control study did not observe an association between PAH exposure and URSA, more attention should be paid to the high carcinogenic risk due to PAH exposure in women of reproductive age.
Collapse
Affiliation(s)
- Senyuan Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Min Nian
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaona Huo
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hongli Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Tian
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jun Zhang
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Ghetu C, Rohlman D, Smith BW, Scott RP, Adams KA, Hoffman PD, Anderson KA. Wildfire Impact on Indoor and Outdoor PAH Air Quality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10042-10052. [PMID: 35803593 PMCID: PMC9301925 DOI: 10.1021/acs.est.2c00619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Air quality impacts from wildfires are poorly understood, particularly indoors. As frequencies increase, it is important to optimize methodologies to understand and reduce chemical exposures from wildfires. Public health recommendations use air quality estimates from outdoor stationary air monitors, discounting indoor air conditions, and do not consider chemicals in the vapor phase, known to elicit adverse effects. We investigated vapor-phase polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air before, during, and after wildfires using a community-engaged research approach. Paired passive air samplers were deployed at 15 locations across four states. Twelve unique PAHs were detected only in outdoor air during wildfires, highlighting a PAH exposure mixture for future study. Heavy-molecular-weight (HMW) outdoor PAH concentrations and average Air Quality Index (AQI) values were positively correlated (p < 0.001). Indoor PAH concentrations were higher in 77% of samples across all sampling events. Even during wildfires, 58% of sampled locations still had higher indoor PAH air concentrations. When AQI values exceeded 140 (unhealthy for sensitive groups), outdoor PAH concentrations became similar to or higher than indoors. Cancer and noncancer inhalation risk estimates from vapor-phase PAHs were higher indoors than outdoors, regardless of the wildfire impact. Consideration of indoor air quality and vapor-phase PAHs could inform public health recommendations regarding wildfires.
Collapse
Affiliation(s)
- Christine
C. Ghetu
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Diana Rohlman
- College
of Public Health and Human Sciences, Oregon
State University, Corvallis, Oregon 97331, United States
| | - Brian W. Smith
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Richard P. Scott
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kaley A. Adams
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Peter D. Hoffman
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kim A. Anderson
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
6
|
Zhang N, Geng C, Xu J, Zhang L, Li P, Han J, Gao S, Wang X, Yang W, Bai Z, Zhang W, Han B. Characteristics, Source Contributions, and Source-Specific Health Risks of PM 2.5-Bound Polycyclic Aromatic Hydrocarbons for Senior Citizens during the Heating Season in Tianjin, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4440. [PMID: 35457316 PMCID: PMC9030979 DOI: 10.3390/ijerph19084440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have carcinogenic impacts on human health. However, limited studies are available on the characteristics, sources, and source-specific health risks of PM2.5-bound PAHs based on personal exposure data, and comparisons of the contributions of indoor and outdoor sources are also lacking. We recruited 101 senior citizens in the winter of 2011 for personal PM2.5 sample collection. Fourteen PAHs were analyzed, potential sources were apportioned using positive matrix factorization (PMF), and inhalational carcinogenic risks of each source were estimated. Six emission sources were identified, including coal combustion, gasoline emission, diesel emission, biomass burning, cooking, and environmental tobacco smoking (ETS). The contribution to carcinogenic risk of each source occurred in the following sequence: biomass burning > diesel emission > gasoline emission > ETS > coal combustion > cooking. Moreover, the contributions of biomass burning, diesel emission, ETS, and indoor sources (sum of cooking and ETS) to PAH-induced carcinogenic risk were higher than those to the PAH mass concentration, suggesting severe carcinogenic risk per unit contribution. This study revealed the contribution of indoor and outdoor sources to mass concentration and carcinogenic risk of PM2.5-bound PAHs, which could act as a guide to mitigate the exposure level and risk of PM2.5-bound PAHs.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| | - Chunmei Geng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China;
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China;
| | - Jinbao Han
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China;
| | - Shuang Gao
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China;
| | - Xinhua Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| | - Wenge Zhang
- Particle Laboratory, Center for Environmental Metrology, National Institute of Metrology, Beijing 100022, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| |
Collapse
|
7
|
Moradi M, Hung H, Li J, Park R, Shin C, Alexandrou N, Iqbal MA, Takhar M, Chan A, Brook JR. Assessment of Alkylated and Unsubstituted Polycyclic Aromatic Hydrocarbons in Air in Urban and Semi-Urban Areas in Toronto, Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2959-2967. [PMID: 35148085 DOI: 10.1021/acs.est.1c04299] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
22 alkylated polycyclic aromatic hydrocarbons (alk-PAHs) were characterized in ambient air individually for the first time in urban and semi-urban locations in Toronto, Canada. Five unsubstituted PAHs were included for comparison. Results from the measurements were used to estimate benzo[a]pyrene equivalent toxicity (BaPeq) of individual compounds in order to investigate the significance of a single compound in contributing to the overall toxic equivalency (TEQ) of air mixtures. To determine which compounds merit further investigation, BaPeq values of individual compounds were compared to the measured BaP toxicity. Our results showed that both unsubstituted and alkylated PAHs were more abundant in the urban area (38 and 30%, respectively). Benzo[a]pyrene levels at the urban location exceeded Ontario's 24 h guideline (40% of the events), and on average, it was 5 times higher than that at the semi-urban area. Gas-phase two- and three-ring compounds contributed up to 39% (urban) and 76% (semi-urban) of the TEQ of all compounds analyzed. Some alk-PAHs such as 7,12-dimethylbenzo[a]anthracene had a huge impact on the toxicity of urban air, and its BaPeq was on average 8 times higher than that of BaP. We emphasize that the toxic impact of alkylated and gaseous PAHs, which is not routinely included in many air monitoring programs, is significant and should not be neglected.
Collapse
Affiliation(s)
- Maryam Moradi
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
- Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - James Li
- Civil Engineering Department, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Richard Park
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Cecilia Shin
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Nick Alexandrou
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Mohammed Asif Iqbal
- Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Manpreet Takhar
- Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Arthur Chan
- Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, Toronto, Ontario M5T 1P8, Canada
| |
Collapse
|
8
|
Liu Y, Qin N, Liang W, Chen X, Hou R, Kang Y, Guo Q, Cao S, Duan X. Polycycl. Aromatic Hydrocarbon Exposure of Children in Typical Household Coal Combustion Environments: Seasonal Variations, Sources, and Carcinogenic Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186520. [PMID: 32911594 PMCID: PMC7576491 DOI: 10.3390/ijerph17186520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
Polycyclic aromatic hydrocarbon (PAH) emissions from the combustion of household solid coal for cooking and heating cause great harm to public health in China, especially in less developed areas. Children are one of the most susceptible population groups at risk of indoor air pollutants due to their immature respiratory and immune systems. However, information on PAH exposure of children is limited due to limited monitoring data. In this study, we aimed to assess the seasonal differences of PAHs in classrooms, analyze the pollutant sources, and calculate the incremental lifetime cancer risk attributable to PAHs in Shanxi Provence. A typical school using household coal combustion in Shanxi Province was selected. Fine particulate matter (PM2.5)samples were collected by both individual samplers and fixed middle-flow samplers during the heating and non-heating seasons in December 2018 and April 2019. The PAH concentrations in PM2.5 samples were analyzed by a gas chromatograph coupled to a mass spectrometer. The results showed that PAH concentrations in PM2.5 varied between 89.1 ng/m3 in the heating season and 1.75 ng/m3 in the non-heating season. The mean concentrations of benzo[a]pyrene (BaP), a carcinogenic marker of PAHs, were 10.3 and 0.05 ng/m3 in the heating and non-heating seasons, respectively. Source allocation analysis of individual portable and passive samplers revealed that the main contributors during heating and non-heating seasons were coal combustion and gasoline sources, respectively. According to the results of a Monte Carlo simulation, the incremental lifetime cancer risk values from the inhalation of PAHs in the heating and non-heating seasons were 3.1 × 10−6 and 5.7 × 10−8, respectively. The significant increase in PAHs and the incremental lifetime cancer risk in the heating season indicates that children are more exposed to health threats in winter. Further PAH exposure control strategies, including reducing coal usage and promoting clean fuel applications, need to be developed to reduce the risk of PAH-induced cancer.
Collapse
Affiliation(s)
| | - Ning Qin
- Correspondence: (N.Q.); (X.D.); Tel./Fax: +86-10-62334308 (X.D.)
| | | | | | | | | | | | | | - Xiaoli Duan
- Correspondence: (N.Q.); (X.D.); Tel./Fax: +86-10-62334308 (X.D.)
| |
Collapse
|
9
|
Poutasse CM, Poston WSC, Jahnke SA, Haddock CK, Tidwell LG, Hoffman PD, Anderson KA. Discovery of firefighter chemical exposures using military-style silicone dog tags. ENVIRONMENT INTERNATIONAL 2020; 142:105818. [PMID: 32521346 PMCID: PMC9985454 DOI: 10.1016/j.envint.2020.105818] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 05/07/2023]
Abstract
Occupational chemical hazards in the fire service are hypothesized to play a role in increased cancer risk, and reliable sampling technologies are necessary for conducting firefighter chemical exposure assessments. This study presents the military-style dog tag as a new configuration of silicone passive sampling device to sample individual firefighters' exposures at one high and one low fire call volume department in the Kansas City, Missouri metropolitan area. The recruited firefighters (n = 56) wore separate dog tags to assess on- and off-duty exposures (ndogtags = 110), for a total of 30 24 h shifts. Using a 63 PAH method (GC-MS/MS), the tags detected 45 unique PAHs, of which 18 have not been previously reported as firefighting exposures. PAH concentrations were higher for on- compared to off-duty tags (0.25 < Cohen's d ≤ 0.80) and for the high compared to the low fire call volume department (0.25 ≤ d < 0.70). Using a 1530 analyte screening method (GC-MS), di-n-butyl phthalate, diisobutyl phthalate, guaiacol, and DEET were commonly detected analytes. The number of fire attacks a firefighter participated in was more strongly correlated with PAH concentrations than firefighter rank or years in the fire service. This suggested that quantitative data should be employed for firefighter exposure assessments, rather than surrogate measures. Because several detected analytes are listed as possible carcinogens, future firefighter exposure studies should consider evaluating complex mixtures to assess individual health risks.
Collapse
Affiliation(s)
- Carolyn M Poutasse
- Department of Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Walker S C Poston
- Center for Fire, Rescue, and EMS Health Research, NDRI-USA, Leawood, KS 66224, USA
| | - Sara A Jahnke
- Center for Fire, Rescue, and EMS Health Research, NDRI-USA, Leawood, KS 66224, USA
| | | | - Lane G Tidwell
- Department of Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Peter D Hoffman
- Department of Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Kim A Anderson
- Department of Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
10
|
Caliskan B, Kücük A, Tasdemir Y, Cindoruk SS. PAH levels in a furniture-manufacturing city atmosphere. CHEMOSPHERE 2020; 240:124757. [PMID: 31726607 DOI: 10.1016/j.chemosphere.2019.124757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
In this study, in order to determine atmospheric PAH concentrations in Inegol/Turkey, ambient air samples were collected from two different sites representing industrial and uncontrolled furniture manufacturers regions. Sampling campaign took place between December 2017 and November 2018. Air samples were collected using high volume air samplers (HVAS) and PAH concentrations were determined in both gas and particulate phases. The mean of the atmospheric PAH concentrations obtained in the gas phase in the furniture workshops (FW) and industrial district (ID) regions were 697.82 ± 637 ng/m3 and 772.92 ± 864.23 ng/m3, respectively. The concentrations in the particulate phase in the regions were 413.52 ± 430.23 ng/m3 and 342.40 ± 527.48 ng/m3, respectively. The average total (gas + particlulate phases) concentration of ∑16PAH determined in the site of FW was 1111.34 ± 1045.24 ng/m3 while that was 772.92 ± 864.23 ng/m3 in ID. These values are over the ambient levels reported for urban sites wherein big industries exist around the world. Additionally, the average of particle phase percentage was 30% because of nearby combustion sources. The determination of possible sources of PAHs in the regions was performed using principal component analysis (PCA). PCA results showed that the main sources of pollutants of the regions are intertwined (combustion, traffic, industries). However, the most effective source is thought to be uncontrolled combustion of furniture wastes as fuel for residential heating. Health risks for the citizens were calculated for both regions and were found not to be at high-class risk.
Collapse
Affiliation(s)
- Burak Caliskan
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, 16059, Nilüfer, Bursa, Turkey
| | - Aleyna Kücük
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, 16059, Nilüfer, Bursa, Turkey
| | - Yücel Tasdemir
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, 16059, Nilüfer, Bursa, Turkey
| | - S Sıddık Cindoruk
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, 16059, Nilüfer, Bursa, Turkey.
| |
Collapse
|
11
|
Roy D, Seo YC, Sinha S, Bhattacharya A, Singh G, Biswas PK. Human health risk exposure with respect to particulate-bound polycyclic aromatic hydrocarbons at mine fire-affected coal mining complex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19119-19135. [PMID: 28551742 DOI: 10.1007/s11356-017-9202-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Particulate-bound poly-aromatic hydrocarbons (PAHs) are of great concern due to their mutagenicity and carcinogenicity effect on human health. In this context, identification, quantification and inhalation cancer risk (ICR) assessment due to PM10- and PM2.5-bound PAHs has been carried out at six monitoring stations in a critically polluted Jharia coalfield/Dhanbad City. Identification of pollution sources at study area has been performed by using PCA statistical methods. Air quality index (AQI) and air quality health index (AQHI) were calculated based on the concentration levels of PM10. Location-wise direct comparison between AQI, AQHI and ICR was performed to analyse the risk levels. Consequently, maximum concentration levels of particulate (PM2.5 and PM10)-bound total PAHs (400 and 482 ng/m3) were recorded at the monitoring station Lodna Thana, followed by Bank More and Sijua Stadium, respectively. It was also observed that mine fire-affected station Lodna Thana was exaggerated with presence of PAHs due to wood and open coal burning activities. Moreover, about 1000 and 889 cases of inhalation cancer risk were estimated due to direct exposure of PM10- and PM2.5-bound PAHs in the study area, respectively. Active mine fire-affected station Lodna Thana was recorded with maximum probability of lung tumour due to inhalation cancer risk. This study has reported higher AQHI at station Dugdha Basti, Lodna Thana and Bank More, which results increased number of tumours due to ICR. This result concludes that Jharia coalfield/Dhanbad City are not only critically polluted area but it is also an inhalation cancer prone area due to direct exposure of active mine fire.
Collapse
Affiliation(s)
- Debananda Roy
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea.
- Department of Environmental Science & Engineering, Marwadi Education Foundation & Group of Institutions, Rajkot, (GTU), Gujarat, India.
| | - Yong-Chil Seo
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Sweta Sinha
- Department of Environmental Science & Engineering, Marwadi Education Foundation & Group of Institutions, Rajkot, (GTU), Gujarat, India
| | - Abir Bhattacharya
- Department of Mathematics, Marwadi Education Foundation & Group of Institutions, Rajkot, (GTU), Gujarat, India
| | - Gurdeep Singh
- Vinoba Bhave University, Hazaribag, Jharkhand, India
| | - Pallab Kr Biswas
- Government College of Engineering and Leather Technology, Salt Lake, Kolkata, West Bengal, India
| |
Collapse
|
12
|
Harley KG, Parra KL, Camacho J, Bradman A, Nolan JES, Lessard C, Anderson KA, Poutasse CM, Scott RP, Lazaro G, Cardoso E, Gallardo D, Gunier RB. Determinants of pesticide concentrations in silicone wristbands worn by Latina adolescent girls in a California farmworker community: The COSECHA youth participatory action study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1022-1029. [PMID: 30380470 PMCID: PMC6309742 DOI: 10.1016/j.scitotenv.2018.10.276] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 05/18/2023]
Abstract
Personal exposure to pesticides has not been well characterized, especially among adolescents. We used silicone wristbands to assess pesticide exposure in 14 to 16 year old Latina girls (N = 97) living in the agricultural Salinas Valley, California, USA and enrolled in the COSECHA (CHAMACOS of Salinas Examining Chemicals in Homes and Agriculture) Study, a youth participatory action study in an agricultural region of California. We determined pesticide concentrations (ng/g/day) in silicone wristbands worn for one week using gas chromatography electron capture detection and employed gas chromatography mass spectrometry to determine the presence or absence of over 1500 chemicals. Predictors of pesticide detections and concentrations were identified using logistic regression, Wilcoxon rank sum tests, and Tobit regression models. The most frequently detected pesticides in wristbands were fipronil sulfide (87%), cypermethrin (56%), dichlorodiphenyldichloroethylene (DDE) (56%), dacthal (53%), and trans-permethrin (52%). Living within 100 m of active agricultural fields, having carpeting in the home, and having an exterminator treat the home in the past six months were associated with higher odds of detecting certain pesticides. Permethrin concentrations were lower for participants who cleaned their homes daily (GM: 1.9 vs. 6.8 ng/g/day, p = 0.01). In multivariable regression models, participants with doormats in the entryway of their home had lower concentrations (p < 0.05) of cypermethrin (87%), permethrin (99%), fipronil sulfide (69%) and DDE (75%). The results suggest that both nearby agricultural pesticide use and individual behaviors are associated with pesticide exposures.
Collapse
Affiliation(s)
- Kim G Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA.
| | - Kimberly L Parra
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA
| | - Jose Camacho
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA
| | - Asa Bradman
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA
| | - James E S Nolan
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA
| | - Chloe Lessard
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA
| | - Carolyn M Poutasse
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA
| | - Richard P Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA
| | - Giselle Lazaro
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA
| | - Edgar Cardoso
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA
| | - Daisy Gallardo
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA
| | - Robert B Gunier
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave Suite 265, Berkeley, CA 94704, USA
| |
Collapse
|
13
|
Huang G, Liu Y, Shao M, Li Y, Chen Q, Zheng Y, Wu Z, Liu Y, Wu Y, Hu M, Li X, Lu S, Wang C, Liu J, Zheng M, Zhu T. Potentially Important Contribution of Gas-Phase Oxidation of Naphthalene and Methylnaphthalene to Secondary Organic Aerosol during Haze Events in Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1235-1244. [PMID: 30625271 DOI: 10.1021/acs.est.8b04523] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Naphthalene (Nap) and methylnaphthalene (MN) are the most abundant polycyclic aromatic hydrocarbons (PAHs) in atmosphere and have been proposed to be important precursors of anthropogenic secondary organic aerosol (SOA) derived from laboratory chamber experiments. In this study, atmospheric Nap/MN and their gas-phase photooxidation products were quantified by a Proton Transfer Reaction-Quadrupole interface Time-of-Flight Mass Spectrometer (PTR-QiTOF) during the 2016 winter in Beijing. Phthalic anhydride, a late generation product from Nap under high-NO x conditions, appeared to be more prominent than 2-formylcinnamaldehyde (early generation product), possibly due to more sufficient oxidation during the haze. 1,2-Phthalic acid (1,2-PhA), the hydrated form of phthalic anhydride, was capable of partitioning into aerosol phase and served as a tracer to explore the contribution of Nap to ambient SOA. The measured fraction in particle phase ( Fp) of 1,2-PhA averaged at 73 ± 13% with OA mass loadings of 52.5-87.8 μg/m3, lower than the value predicted by the absorptive partitioning model (100%). Using tracer product-based and precursor consumption-based methods, 2-ring PAHs (Nap and MN) were estimated to produce 14.9% (an upper limit) of the SOA formed in the afternoon during the wintertime haze, suggesting a comparable contribution of Nap and MN with monocyclic-aromatics on urban SOA formation.
Collapse
Affiliation(s)
- Guancong Huang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Ying Liu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Min Shao
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
- Institute for Environmental and Climate Research , Jinan University , Guangzhou 511443 , China
| | - Yue Li
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Qi Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Yan Zheng
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Zhijun Wu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Yuechen Liu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Yusheng Wu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Min Hu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Xin Li
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Sihua Lu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Chenjing Wang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Junyi Liu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Mei Zheng
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Tong Zhu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| |
Collapse
|
14
|
Dixon HM, Armstrong G, Barton M, Bergmann AJ, Bondy M, Halbleib ML, Hamilton W, Haynes E, Herbstman J, Hoffman P, Jepson P, Kile ML, Kincl L, Laurienti PJ, North P, Paulik LB, Petrosino J, Points GL, Poutasse CM, Rohlman D, Scott RP, Smith B, Tidwell LG, Walker C, Waters KM, Anderson KA. Discovery of common chemical exposures across three continents using silicone wristbands. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181836. [PMID: 30891293 PMCID: PMC6408398 DOI: 10.1098/rsos.181836] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/14/2019] [Indexed: 05/21/2023]
Abstract
To assess differences and trends in personal chemical exposure, volunteers from 14 communities in Africa (Senegal, South Africa), North America (United States (U.S.)) and South America (Peru) wore 262 silicone wristbands. We analysed wristband extracts for 1530 unique chemicals, resulting in 400 860 chemical data points. The number of chemical detections ranged from 4 to 43 per wristband, with 191 different chemicals detected, and 1339 chemicals were not detected in any wristband. No two wristbands had identical chemical detections. We detected 13 potential endocrine disrupting chemicals in over 50% of all wristbands and found 36 chemicals in common between chemicals detected in three geographical wristband groups (Africa, North America and South America). U.S. children (less than or equal to 11 years) had the highest percentage of flame retardant detections compared with all other participants. Wristbands worn in Texas post-Hurricane Harvey had the highest mean number of chemical detections (28) compared with other study locations (10-25). Consumer product-related chemicals and phthalates were a high percentage of chemical detections across all study locations (36-53% and 18-42%, respectively). Chemical exposures varied among individuals; however, many individuals were exposed to similar chemical mixtures. Our exploratory investigation uncovered personal chemical exposure trends that can help prioritize certain mixtures and chemical classes for future studies.
Collapse
Affiliation(s)
- Holly M. Dixon
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Georgina Armstrong
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Michael Barton
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Alan J. Bergmann
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Melissa Bondy
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Mary L. Halbleib
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| | - Winifred Hamilton
- Department of Medicine, Environmental Health Section, Baylor College of Medicine, Houston, TX, USA
| | - Erin Haynes
- College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Julie Herbstman
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Peter Hoffman
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Paul Jepson
- Integrated Plant Protection Center, Oregon State University, Corvallis, OR, USA
| | - Molly L. Kile
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Laurel Kincl
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Paul J. Laurienti
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Paula North
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - L. Blair Paulik
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Joe Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Gary L. Points
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Carolyn M. Poutasse
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Diana Rohlman
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Richard P. Scott
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Brian Smith
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Lane G. Tidwell
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Cheryl Walker
- Department of Medicine, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Katrina M. Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kim A. Anderson
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
15
|
Gao Y, Ji H. Characteristics of polycyclic aromatic hydrocarbons components in fine particle during heavy polluting phase of each season in urban Beijing. CHEMOSPHERE 2018; 212:346-357. [PMID: 30145426 DOI: 10.1016/j.chemosphere.2018.08.079] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Beijing experienced a period of severe atmospheric particulate pollution from 2015 to 2016. In order to acquire the characteristics of polycyclic aromatic hydrocarbons (PAHs) under heavy polluting status, one year sampling campaign was carried out. We selected PM2.5 samples which had the highest concentrations or suffered serious haze-fog weathers in each month. Through the analysis of data from heavily polluting phase, the mean concentrations of PM2.5 and PAHs in winter (369.63 μg m-3 and 223.60 ng m-3) were obviously higher than that in other seasons. The concentration of Σ16PAHs ranged from 3.22 to 297.01 ng m-3, with a mean value of 77.48 ng m-3. In winter, 4-ring PAH congeners (52.33%) contributed the most in PM2.5, followed by 5-rings (27.05%), 6-rings (11.55%) and 2∼3-rings (9.06%). Summertime measurements showed the highest decline in PAHs concentrations for 3∼5-ring congeners. The diagnostic ratios and PCA analysis manifest that vehicle and combustion emission were major sources and totally occupied 88.57% under heavy polluting stage. Moreover, exponential relationship between LWM/HWM (light/high weight molecule-PAHs) and combustion-derived PAHs, as well as linear relationship between BghiP and ∑PAHs verified that the pollution sources mentioned above affected local atmosphere environment as major sources. The highest total BaP equivalent concentration suggested that toxicity potency under heavy polluting phase was mainly attributed to 5-ring PAHs. Through analysis of carcinogenic-PAHs, potency risk to adults was significantly higher than that to children. BaP, BbF and DahA, which belong to 5-ring congeners, contributed the highest potency carcinogenic risk. BbF in winter, BaP in spring and winter may cause potential risk to local residents.
Collapse
Affiliation(s)
- Yang Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hongbing Ji
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Municipal Key Laboratory of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
16
|
Paulik LB, Hobbie KA, Rohlman D, Smith BW, Scott RP, Kincl L, Haynes EN, Anderson KA. Environmental and individual PAH exposures near rural natural gas extraction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:397-405. [PMID: 29857308 PMCID: PMC7169985 DOI: 10.1016/j.envpol.2018.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 05/19/2023]
Abstract
Natural gas extraction (NGE) has expanded rapidly in the United States in recent years. Despite concerns, there is little information about the effects of NGE on air quality or personal exposures of people living or working nearby. Recent research suggests NGE emits polycyclic aromatic hydrocarbons (PAHs) into air. This study used low-density polyethylene passive samplers to measure concentrations of PAHs in air near active (n = 3) and proposed (n = 2) NGE sites. At each site, two concentric rings of air samplers were placed around the active or proposed well pad location. Silicone wristbands were used to assess personal PAH exposures of participants (n = 19) living or working near the sampling sites. All samples were analyzed for 62 PAHs using GC-MS/MS, and point sources were estimated using the fluoranthene/pyrene isomer ratio. ∑PAH was significantly higher in air at active NGE sites (Wilcoxon rank sum test, p < 0.01). PAHs in air were also more petrogenic (petroleum-derived) at active NGE sites. This suggests that PAH mixtures at active NGE sites may have been affected by direct emissions from petroleum sources at these sites. ∑PAH was also significantly higher in wristbands from participants who had active NGE wells on their properties than from participants who did not (Wilcoxon rank sum test, p < 0.005). There was a significant positive correlation between ∑PAH in participants' wristbands and ∑PAH in air measured closest to participants' homes or workplaces (simple linear regression, p < 0.0001). These findings suggest that living or working near an active NGE well may increase personal PAH exposure. This work also supports the utility of the silicone wristband to assess personal PAH exposure.
Collapse
Affiliation(s)
- L Blair Paulik
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Kevin A Hobbie
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Diana Rohlman
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Brian W Smith
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Richard P Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Laurel Kincl
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Erin N Haynes
- College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|
17
|
Cui L, Duo B, Zhang F, Li C, Fu H, Chen J. Physiochemical characteristics of aerosol particles collected from the Jokhang Temple indoors and the implication to human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:992-1003. [PMID: 29452713 DOI: 10.1016/j.envpol.2017.10.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 06/08/2023]
Abstract
This paper presents a detailed study on the indoor air pollution in the Jokahng Temple at Tibet Plateau, and its implication to human health. The mean concentrations of PM1.0 and PM2.5 were 435.0 ± 309.5 and 483.0 ± 284.9 μg/m3, respectively. The PM2.5 concentration exceeded the National Ambient Air Quality Standard (75 μg/m3) by 6.4 times. The size-segregated aerosols displayed a bimodal distribution. One peak was observed in the fine mode (0.4-2.1 μm) and the other peak appeared in the coarse mode (2.1-9.0 μm). The concentration of the total size-resolved PM was 794.3 ± 84.9 μg/m3. The mass fraction of coarse particles shared by 41.1%, apparently higher than that reported at low altitudes, probably due to incomplete combustion at Tibet Plateau with hypoxic atmospheric environment. The total concentration of polycyclic aromatic hydrocarbons (PAHs) was 331.2 ± 60.3 ng/m3, in which the concentration of benzo(a)pyrene (BaP) was 18.5 ± 4.3 ng/m3, over ten times higher than the maximum permissible risk value of 1 ng/m3 on account of carcinogenic potency of particulate PAHs through inhalation. PAHs exhibited a trimodal distribution, of which two peaks were observed in the fine mode and one peak in the coarse mode. With the aromatic rings increasing, the peak intensity increased in the fine mode. Na, Ca, Al, Mg and K dominated the elemental mass profiles, and metals displayed a bimodal distribution with a dominant peak in the coarse range. The total PAH deposition flux was 123.6 and 53.1 ng/h for adults and children, respectively. Coarse particles contributed most deposition flux in the head region, while fine particles contribute most deposition flux in the alveolar region. The increment lifetime cancer risk (ILCR) of PAHs ranaged at 10-5-10-4, indicating potential cancer risk to human health. The total deposition flux of metals was estimated at 1.4-13.2 ng/h. With the size increasing, deposition flux increased in the head region while decreased in the alveolar region. The highest ILCR of Cr and Ni were 4.9 × 10-5 and 1.5 × 10-6, respectively, exceeding the permissible risk of 10-6. The hazard quotient (HQ) of Fe (10-5-10-4) and Zn (10-6-10-5) were much lower than the safe level of 1.0, and thus they were not considered as a health concern.
Collapse
Affiliation(s)
- Lulu Cui
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai, 200433, China
| | - Bu Duo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai, 200433, China; Department of Chemistry& Environmental Science, Tibet University, Lhasa 850000, China
| | - Fei Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai, 200433, China
| | - Chunlin Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai, 200433, China
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai, 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
18
|
Samburova V, Zielinska B, Khlystov A. Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity? TOXICS 2017; 5:E17. [PMID: 29051449 PMCID: PMC5634701 DOI: 10.3390/toxics5030017] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/30/2022]
Abstract
Estimation of carcinogenic potency based on analysis of 16 polycyclic aromatic hydrocarbons (PAHs) ranked by U.S. Environmental Protection Agency (EPA) is the most popular approach within scientific and environmental air quality management communities. The majority of PAH monitoring projects have been focused on particle-bound PAHs, ignoring the contribution of gas-phase PAHs to the toxicity of PAH mixtures in air samples. In this study, we analyzed the results of 13 projects in which 88 PAHs in both gas and particle phases were collected from different sources (biomass burning, mining operation, and vehicle emissions), as well as in urban air. The aim was to investigate whether 16 particle-bound U.S. EPA priority PAHs adequately represented health risks of inhalation exposure to atmospheric PAH mixtures. PAH concentrations were converted to benzo(a)pyrene-equivalent (BaPeq) toxicity using the toxic equivalency factor (TEF) approach. TEFs of PAH compounds for which such data is not available were estimated using TEFs of close isomers. Total BaPeq toxicities (∑88BaPeq) of gas- and particle-phase PAHs were compared with BaPeq toxicities calculated for the 16 particle-phase EPA PAH (∑16EPABaPeq). The results showed that 16 EPA particle-bound PAHs underrepresented the carcinogenic potency on average by 85.6% relative to the total (gas and particle) BaPeq toxicity of 88 PAHs. Gas-phase PAHs, like methylnaphthalenes, may contribute up to 30% of ∑88BaPeq. Accounting for other individual non-EPA PAHs (i.e., benzo(e)pyrene) and gas-phase PAHs (i.e., naphthalene, 1- and 2-methylnaphthalene) will make the risk assessment of PAH-containing air samples significantly more accurate.
Collapse
Affiliation(s)
- Vera Samburova
- Desert Research Institute, Division of Atmospheric Sciences, 2215 Raggio Parkway, Reno, NV 89512, USA.
| | - Barbara Zielinska
- Desert Research Institute, Division of Atmospheric Sciences, 2215 Raggio Parkway, Reno, NV 89512, USA.
| | - Andrey Khlystov
- Desert Research Institute, Division of Atmospheric Sciences, 2215 Raggio Parkway, Reno, NV 89512, USA.
| |
Collapse
|
19
|
Zhao YJ, Shou YP, Mao TY, Guo LQ, Li PH, Yi X, Li QQ, Shen LZ, Zuo HR, Wang J, Wang L. PAHs Exposure Assessment for Highway Toll Station Workers Through Personal Particulate Sampling and Urinary Biomonitoring in Tianjin, China. Polycycl Aromat Compd 2016. [DOI: 10.1080/10406638.2016.1220959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yu-jie Zhao
- Agro-environmental Protection Institute, Ministry of Agriculture, Tianjin, China
| | - You-ping Shou
- Key Laboratory of Environmental Protection Technology on Water Transport, Ministry of Transport, Tianjin Research Institute for Water Transport Engineering, Tianjin, China
| | - Tian-yu Mao
- Key Laboratory of Environmental Protection Technology on Water Transport, Ministry of Transport, Tianjin Research Institute for Water Transport Engineering, Tianjin, China
| | - Li-qiong Guo
- Department of Occupational & Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Peng-hui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Xianliang Yi
- School of Food and Environment, Dalian University of Technology, Panjin, China
| | - Qian-qian Li
- Neurology Department, General Hospital of PLA, Beijing, China
| | - Li-zhu Shen
- Tianjin Research Institute for Family Planning, Tianjin, China
| | - Huan-rong Zuo
- Tianjin Research Institute for Family Planning, Tianjin, China
| | - Jing Wang
- Tianjin Research Institute for Family Planning, Tianjin, China
| | - Lei Wang
- Hebei Geological Laboratory, Hebei, China
| |
Collapse
|
20
|
Han B, Liu Y, You Y, Xu J, Zhou J, Zhang J, Niu C, Zhang N, He F, Ding X, Bai Z. Assessing the inhalation cancer risk of particulate matter bound polycyclic aromatic hydrocarbons (PAHs) for the elderly in a retirement community of a mega city in North China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20194-20204. [PMID: 27443855 DOI: 10.1007/s11356-016-7209-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
Assessment of the health risks resulting from exposure to ambient polycyclic aromatic hydrocarbons (PAHs) is limited by the lack of environmental exposure data among different subpopulations. To assess the exposure cancer risk of particulate carcinogenic polycyclic aromatic hydrocarbon pollution for the elderly, this study conducted a personal exposure measurement campaign for particulate PAHs in a community of Tianjin, a city in northern China. Personal exposure samples were collected from the elderly in non-heating (August-September, 2009) and heating periods (November-December, 2009), and 12 PAHs individuals were analyzed for risk estimation. Questionnaire and time-activity log were also recorded for each person. The probabilistic risk assessment model was integrated with Toxic Equivalent Factors (TEFs). Considering that the estimation of the applied dose for a given air pollutant is dependent on the inhalation rate, the inhalation rate from both EPA exposure factor book was applied to calculate the carcinogenic risk in this study. Monte Carlo simulation was used as a probabilistic risk assessment model, and risk simulation results indicated that the inhalation-ILCR values for both male and female subjects followed a lognormal distribution with a mean of 4.81 × 10-6 and 4.57 × 10-6, respectively. Furthermore, the 95 % probability lung cancer risks were greater than the USEPA acceptable level of 10-6 for both men and women through the inhalation route, revealing that exposure to PAHs posed an unacceptable potential cancer risk for the elderly in this study. As a result, some measures should be taken to reduce PAHs pollution and the exposure level to decrease the cancer risk for the general population, especially for the elderly.
Collapse
Affiliation(s)
- Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yating Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yan You
- Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing, China
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jian Zhou
- Energy Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Jiefeng Zhang
- Division of Environmental and Water Resources, School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Can Niu
- Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing, China
| | - Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Fei He
- Hubei Provincial Meteorological Service Center, Wuhan, China
| | - Xiao Ding
- Department of Building, School of Design and Environment, National University of Singapore, Singapore, Singapore
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
21
|
Tidwell LG, Allan SE, O'Connell SG, Hobbie KA, Smith BW, Anderson KA. PAH and OPAH Flux during the Deepwater Horizon Incident. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7489-97. [PMID: 27391856 PMCID: PMC5134734 DOI: 10.1021/acs.est.6b02784] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water-air boundary was determined. This is the first report of vapor phase and diffusive flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 6.6 and 210 ng/m(3) and 0.02 and 34 ng/m(3) respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air-water flux of 13 individual PAHs was shown to be at least partially influenced by the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi at nominal rates of 56 000 and 42 000 ng/m(2) day(-1) in the summer. Naphthalene was the PAH with the highest observed volatilization rate of 52 000 ng/m(2) day(-1) in June 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air-water chemical flux determinations with passive sampling technology.
Collapse
Affiliation(s)
| | | | | | | | | | - Kim A. Anderson
- Corresponding Author: , Phone: 541-737-8501, Fax: 541-737-0497
| |
Collapse
|
22
|
Bhatt A, Mittal S, Gopinath KS. Safety considerations for Health care Workers involved in Cytoreductive Surgery and Perioperative chemotherapy. Indian J Surg Oncol 2016; 7:249-57. [PMID: 27065717 DOI: 10.1007/s13193-016-0503-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/28/2016] [Indexed: 12/29/2022] Open
Abstract
The combined modality treatment of cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) has gained worldwide acceptance for management of selected patients with peritoneal metastases from various cancers. Cytoreductive surgery is performed with the goal of removing all macroscopic disease and is coupled with perioperative chemotherapy (POC) in the form of HIPEC with or without EPIC (early postoperative intraperitoneal chemotherapy) to deal with the microscopic residual disease. These treatments entail the use of cytotoxic drugs in the operation theatre or in the intensive care unit where they are not commonly used and put the healthcare workers participating in the treatment at risk of exposure. CRS is performed with high voltage electrocautery generating a large amount of surgical smoke which is inhaled by the involved personnel and has potential health hazards. This article outlines the safety measures to be taken while performing CRS and POC.
Collapse
Affiliation(s)
- Aditi Bhatt
- Department of Surgical Oncology, Fortis Hospital, 154/9 Bannerghatta road, Opposite IIM-Bangalore, Bangalore, -560076 India
| | - Sourabh Mittal
- Department of Surgical Oncology, Fortis Hospital, 154/9 Bannerghatta road, Opposite IIM-Bangalore, Bangalore, -560076 India
| | - K S Gopinath
- Department of Surgical Oncology, HCG Bangalore Institute of Oncology, Bangalore, India
| |
Collapse
|
23
|
Wu CC, Bao LJ, Guo Y, Li SM, Zeng EY. Barbecue Fumes: An Overlooked Source of Health Hazards in Outdoor Settings? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10607-10615. [PMID: 26259039 DOI: 10.1021/acs.est.5b01494] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Barbecuing or charcoal-grilling has become part of popular outdoor recreational activities nowadays; however, potential human health hazards through outdoor exposure to barbecue fumes have yet to be adequately quantified. To fill this knowledge gap, atmospheric size-fractioned particle and gaseous samples were collected near an outdoor barbecuing vendor stall (along with charcoal-grilled food items) in Xinjiang of Northwest China with a 10-stage micro-orifice uniform deposit impactor and a polyurethane foam (PUF) sampler and were analyzed for particulate matter and polycyclic aromatic hydrocarbons (PAHs). Exposure to PAHs through inhalation and dermal contact by adult consumers who spent 1 h per day near a charcoal-grilling vendor for a normal meal (lunch or dinner) amounted to a BaP equivalent (BaPeq) dosage of 3.0-77 ng day(-1) (inhalation: 2.8-27 ng day(-1) of BaPeq; dermal contact: 0.2-50 ng day(-1) of BaPeq), comparable to those (22-220 ng day(-1) of BaPeq) from consumer exposure through the consumption of charcoal-grilled meat, assumed to be at the upper limit of 50-150 g. In addition, the potential health risk was in the range of 3.1 × 10(-10) to 1.4 × 10(-4) for people of different age groups with inhalation and dermal contact exposure to PAHs once a day, with a 95% confidence interval (7.2 × 10(-9) to 1.2 × 10(-5)) comparable to the lower limit of the potential cancer risk range (1 × 10(-6) to 1 × 10(-4)). Sensitivity analyses indicated that the area of dermal contact with gaseous contaminants is a critical parameter for risk assessment. These results indicated that outdoor exposure to barbecue fumes (particularly dermal contact) may have become a significant but largely neglected source of health hazards to the general population and should be well-recognized.
Collapse
Affiliation(s)
- Chen-Chou Wu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Lian-Jun Bao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Ying Guo
- School of Environment and Guangzhou Key Laboratory of Environmental Exposure and Health, Jinan University , Guangzhou 510632, China
| | - Shao-Meng Li
- Air Quality Research Division, Environment Canada , 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Eddy Y Zeng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- School of Environment and Guangzhou Key Laboratory of Environmental Exposure and Health, Jinan University , Guangzhou 510632, China
| |
Collapse
|
24
|
Bortey-Sam N, Ikenaka Y, Akoto O, Nakayama SMM, Yohannes YB, Baidoo E, Mizukawa H, Ishizuka M. Levels, potential sources and human health risk of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM(10)) in Kumasi, Ghana. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:9658-67. [PMID: 25616380 DOI: 10.1007/s11356-014-4022-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/17/2014] [Indexed: 05/02/2023]
Abstract
Airborne particulate samples were collected on quartz filters to determine the concentrations, sources and health risks of polycyclic aromatic hydrocarbons (PAHs) in air in Kumasi, Ghana. A total of 32 air samples were collected in Kwame Nkrumah University of Science and Technology (KNUST) campus (pristine site) and city centre (CC). Samples were extracted with 1:2 v/v acetone/hexane mixture prior to GC-MS analyses. The sum of concentrations of 17 PAHs in air ranged from 0.51 to 16 (KNUST) and 19-38 ng/m(3) (CC). The concentration of benzo[a]pyrene, BaP, ranged from below detection limit to 0.08 ng/m(3) (KNUST) and 1.6 to 5.6 ng/m(3) (CC). Chemical mass balance model showed that PAHs in air in Kumasi were mainly from fuel combustion. The total BaP equivalent concentration (BaPeq) in CC was 18 times higher compared to KNUST; based on the European Legislation and Swedish and UK Standards for BaP in air, CC could be classified as highly polluted. Estimated carcinogenicity of PAHs in terms of BaPeq indicated that BaP was the principal PAH contributor in CC (70%). Health risk to adults and children associated with PAH inhalation was assessed by taking into account the lifetime average daily dose and corresponding incremental lifetime cancer risk (ILCR). The ILCR was within the acceptable range (10(-6) to 10(-4)), indicating low health risk to residents.
Collapse
Affiliation(s)
- Nesta Bortey-Sam
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tidwell LG, Allan SE, O’Connell S, Hobbie K, Smith B, Anderson KA. Polycyclic aromatic hydrocarbon (PAH) and oxygenated PAH (OPAH) air-water exchange during the deepwater horizon oil spill. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:141-9. [PMID: 25412353 PMCID: PMC4291772 DOI: 10.1021/es503827y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during, and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water-air boundary was determined. This is the first report of vapor phase and flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 1 and 24 ng/m(3) and 0.3 and 27 ng/m(3), respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air-water flux of 13 individual PAHs were strongly associated with the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi in the summer, each nominally 10,000 ng/m(2)/day. Acenaphthene was the PAH with the highest observed volatilization rate of 6800 ng/m(2)/day in September 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air-water chemical flux determinations with passive sampling technology.
Collapse
|
26
|
Ali N, Al-Awadhi H, Dashti N, Khanafer M, El-Nemr I, Sorkhoh N, Radwan SS. Bioremediation of Atmospheric Hydrocarbons via Bacteria Naturally Associated with Leaves of Higher Plants. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:1160-1170. [PMID: 25946637 DOI: 10.1080/15226514.2015.1045125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bacteria associated with leaves of sixteen cultivated and wild plant species from all over Kuwait were analyzed by a culture-independent approach. This technique depended on partial sequencing of 16S rDNA regions in total genomic DNA from the bacterial consortia and comparing the resulting sequences with those in the GenBank database. To release bacterial cells from leaves, tough methods such as sonication co-released too much leaf chloroplasts whose DNA interfered with the bacterial DNA. A more satisfactory bacterial release with a minimum of chloroplast co-release was done by gently rubbing the leaf surfaces with soft tooth brushes in phosphate buffer. The leaves of all plant species harbored on their surfaces bacterial communities predominated by hydrocarbonoclastic (hydrocarbon-utilizing) bacterial genera. Leaves of 6 representative plants brought about in the laboratory effective removal of volatile hydrocarbons in sealed microcosms. Each individual plant species had a unique bacterial community structure. Collectively, the phyllospheric microflora on the studied plants comprised the genera Flavobacterium, Halomonas, Arthrobacter, Marinobacter, Neisseria, Ralstonia, Ochrobactrum. Exiguobacterium, Planomicrobium, Propionibacterium, Kocuria, Rhodococcus and Stenotrophomonas. This community structure was dramatically different from the structure we determined earlier for the same plants using the culture-dependent approach, although in both cases, hydrocarbonoclastic bacteria were frequent.
Collapse
Affiliation(s)
- N Ali
- a Department of Biological Sciences , Faculty of Science, Kuwait University , Safat , Kuwait
| | - H Al-Awadhi
- a Department of Biological Sciences , Faculty of Science, Kuwait University , Safat , Kuwait
| | - N Dashti
- a Department of Biological Sciences , Faculty of Science, Kuwait University , Safat , Kuwait
| | - M Khanafer
- a Department of Biological Sciences , Faculty of Science, Kuwait University , Safat , Kuwait
| | - I El-Nemr
- a Department of Biological Sciences , Faculty of Science, Kuwait University , Safat , Kuwait
| | - N Sorkhoh
- a Department of Biological Sciences , Faculty of Science, Kuwait University , Safat , Kuwait
| | - S S Radwan
- a Department of Biological Sciences , Faculty of Science, Kuwait University , Safat , Kuwait
| |
Collapse
|
27
|
Duan X, Wang B, Zhao X, Shen G, Xia Z, Huang N, Jiang Q, Lu B, Xu D, Fang J, Tao S. Personal inhalation exposure to polycyclic aromatic hydrocarbons in urban and rural residents in a typical northern city in China. INDOOR AIR 2014; 24:464-473. [PMID: 24467466 DOI: 10.1111/ina.12099] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 01/18/2014] [Indexed: 06/03/2023]
Abstract
Personal inhalation exposure samples were collected and analyzed for polycyclic aromatic hydrocarbons (PAHs) for 126 selected volunteers during heating and non-heating seasons in a typical northern Chinese city, Taiyuan. Measured personal PAH exposure levels for the urban residents in the heating and non-heating seasons were 690 (540-1051) and 404 (266-544) ng/m(3) , respectively, while, for the rural residents, they were 770 (504-1071) and 312 (201-412) ng/m(3) , respectively. Thus, rural residents are exposed to lower PAH contamination in comparison with the urban residents in the non-heating seasons. In the heating season, personal PAH inhalation exposure levels were comparable between the urban and rural residents, in part owing to the large rate of residential solid fuel consumption in the rural area for household cooking and heating. The estimated incremental lifetime cancer risks (ILCR) due to PAH exposure in Taiyuan were 3.36 × 10(-5) and 2.39 × 10(-5) for the rural and urban residents, respectively, significantly higher than the literature-reported national average level, suggesting an urgent need of PAH pollution control to protect human health.
Collapse
Affiliation(s)
- X Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Han J, Zhang N, Niu C, Han B, Bai Z. Personal Exposure of Children to Particle-Associated Polycyclic Aromatic Hydrocarbons in Tianjin, China. Polycycl Aromat Compd 2014. [DOI: 10.1080/10406638.2014.883416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Wang Y, Hu L, Lu G. Health risk analysis of atmospheric polycyclic aromatic hydrocarbons in big cities of China. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:584-588. [PMID: 24420621 DOI: 10.1007/s10646-014-1179-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/2014] [Indexed: 06/03/2023]
Abstract
A probabilistic carcinogenic risk assessment of atmospheric polycyclic aromatic hydrocarbons (PAHs) in four big cities (Beijing, Shanghai, Guangzhou, Xiamen) of China was carried out. PAHs levels in these cities were collected from published literatures and converted into BaP equivalent (BaPeq) concentrations. The health risk assessment models recommended by US EPA were applied to quantitatively characterize the health risk values of PAHs. Monte Carlo simulation and sensitivity analysis were applied to quantify uncertainties of risk assessment. The results showed that BaPeq concentrations of four cities were all higher than the newest limited value (1 ng/m(3)) of China. Health risk assessment indicated that atmospheric PAHs in Guangzhou and Xiamen posed no or little carcinogenic risk on local residents. However, the PAHs in Beijing and Shanghai posed potential carcinogenic risk for adults and lifetime exposure. Notwithstanding the uncertainties, this study provides the primary information on the carcinogenic risk of atmospheric PAHs in studied cities of China.
Collapse
Affiliation(s)
- Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China,
| | | | | |
Collapse
|
30
|
Xue X, You Y, Wu J, Han B, Bai Z, Tang N, Zhang L. Exposure measurement, risk assessment and source identification for exposure of traffic assistants to particle-bound PAHs in Tianjin, China. J Environ Sci (China) 2014; 26:448-457. [PMID: 25076537 DOI: 10.1016/s1001-0742(13)60427-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To investigate the levels of exposure to particulate-bound polycyclic aromatic hydrocarbon (PAH) and to estimate the risk these levels pose to traffic assistants (TAs) in Tianjin (a megacity in North China), a measurement campaign (33 all-day exposure samples, 25 occupational-exposure samples and 10 indoor samples) was conducted to characterize the TAs' exposure to PAHs, assess the cancer risk and identify the potential sources of exposure. The average total exposure concentration of 14 PAHs was approximately 2871 +/- 928 ng/m3 (on-duty), and 1622 +/- 457 ng/m3 (all-day). The indoor PAHs level was 1257 +/- 107 ng/m3. After 8000 Monte Carlo simulations, the cancer risk resulting from exposure to PAHs was found to be approximately 1.05 x 10(-4). A multivariate analysis was applied to identify the potential sources, and the results showed that, in addition to vehicle exhaust, coal combustion and cooking fumes were also another two important contributors to personal PAH exposure. The diagnostic ratios of PAH compounds agree with the source apportionment results derived from principal component analysis.
Collapse
|
31
|
Zhang Y, Ding J, Shen G, Zhong J, Wang C, Wei S, Chen C, Chen Y, Lu Y, Shen H, Li W, Huang Y, Chen H, Su S, Lin N, Wang X, Liu W, Tao S. Dietary and inhalation exposure to polycyclic aromatic hydrocarbons and urinary excretion of monohydroxy metabolites--a controlled case study in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 184:515-22. [PMID: 24177434 PMCID: PMC4299857 DOI: 10.1016/j.envpol.2013.10.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 08/29/2013] [Accepted: 10/04/2013] [Indexed: 05/03/2023]
Abstract
Daily dietary and inhalation exposures to 16 parent polycyclic aromatic hydrocarbons (PAHs) and urinary excretion of 13 monohydroxy metabolites (OHPAHs) were monitored for 12 non-smoking university students in Beijing, China, during a controlled feeding experiment. The relationship between the urinary excretion of OHPAHs and the uptake of PAHs was investigated. The results suggest severe exposure of the subjects to PAHs via both dietary and inhalation pathways. Large increase of most urinary OHPAHs occurred after the ingestion of lamb kabob. Higher concentrations of OHPAHs were observed for female subjects, with the intakes of parent PAHs lower than those by males, likely due to the gender differences in metabolism. It appears that besides 1-PYR, metabolites of PHE could also be used as biomarkers to indicate the short-term dietary exposure to PAHs and urinary 3-BaA may serve as the biomarker for inhalation intake of high molecular weight PAHs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Shu Tao
- Corresponding author phone: 86-10-62751938;
| |
Collapse
|
32
|
Li PH, Kong SF, Geng CM, Han B, Lu B, Sun RF, Zhao RJ, Bai ZP. Health risk assessment for vehicle inspection workers exposed to airborne polycyclic aromatic hydrocarbons (PAHs) in their work place. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:623-632. [PMID: 23738361 DOI: 10.1039/c2em30708a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Inhalatory and dermal exposures of on-duty vehicle inspection workers to polycyclic aromatic hydrocarbons (PAHs) in Beijing were investigated from April 18 to May 17, 2011. Exposure levels to particulate PAHs for the vehicle inspection workers at gasoline, bus and diesel lines were found to be 56.07 ng m(-3), 111.72 ng m(-3) and 199.80 ng m(-3), respectively. A probabilistic risk assessment framework was integrated with the toxic equivalence factors (TEFs) and the incremental lifetime cancer risk (ILCR) approaches to quantitatively estimate the exposure risk for vehicle inspection workers of the three work lines. The median values of inhalation risk were estimated to be 3.7 × 10(-7), 5.0 × 10(-7) and 1.37 × 10(-6), respectively, while the median dermal ILCR values were 7.05 × 10(-6), 6.98 × 10(-6) and 1.28 × 10(-5), respectively for gasoline, bus, and diesel inspection workers. Total ILCR was higher than the acceptable risk level of 10(-6), indicating unacceptable potential cancer risk.
Collapse
Affiliation(s)
- Peng-hui Li
- College of Environmental Science and Engineering, Nankai University, Weijin Road 94#, Tianjin, China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang K, Zhang BZ, Li SM, Wong CS, Zeng EY. Calculated respiratory exposure to indoor size-fractioned polycyclic aromatic hydrocarbons in an urban environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 431:245-251. [PMID: 22687434 DOI: 10.1016/j.scitotenv.2012.05.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 06/01/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) associated with inhalable particles are harmful to human health, especially to people in urban indoor environments. To evaluate human respiratory exposure to indoor PAHs properly, respiratory deposition fluxes of size-fractioned PAHs were estimated based on size-segregated distribution of PAHs in indoor air of an urban community of Guangzhou, China. The concentrations of ∑(16)PAH (sum of the 16 priority PAHs designated by the United States Environmental Protection Agency) were 28.9±10.0 ng/m(3), with the mean benzo(a)pyrene equivalent (BaPE) concentration at 4.1±1.6 ng/m(3). Particle size distributions of both ∑(16)PAH and BaPE concentrations peaked in the 1.0-1.8 μm fraction. The mean respiratory deposition flux of ∑(16)PAH was 5.9 ng/h, and accumulation mode particles contributed 20.5-83.8% of the respiratory deposition fluxes for individual PAHs. In addition, 8.6-10.2% of inhaled ∑(16)PAH were calculated to be deposited in the alveoli region, with accumulation particles as the largest contributor. In particular, ultrafine particles contributed 0.4-21.7% of individual PAHs deposited in the alveoli region, more than twice the fraction of the PAHs in the ultrafine particles (0.2-8.5%). Finally, lifetime cancer risk via inhalation of indoor particulate PAHs may be greater than the cancer risk guideline value (10(-6)), depending on specific assumptions used in this risk assessment.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | | | | | | | | |
Collapse
|
34
|
Kan H, Chen R, Tong S. Ambient air pollution, climate change, and population health in China. ENVIRONMENT INTERNATIONAL 2012; 42:10-9. [PMID: 21440303 DOI: 10.1016/j.envint.2011.03.003] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/29/2011] [Accepted: 03/02/2011] [Indexed: 05/22/2023]
Abstract
As the largest developing country, China has been changing rapidly over the last three decades and its economic expansion is largely driven by the use of fossil fuels, which leads to a dramatic increase in emissions of both ambient air pollutants and greenhouse gases (GHGs). China is now facing the worst air pollution problem in the world, and is also the largest emitter of carbon dioxide. A number of epidemiological studies on air pollution and population health have been conducted in China, using time-series, case-crossover, cross-sectional, cohort, panel or intervention designs. The increased health risks observed among Chinese population are somewhat lower in magnitude, per amount of pollution, than the risks found in developed countries. However, the importance of these increased health risks is greater than that in North America or Europe, because the levels of air pollution in China are very high in general and Chinese population accounts for more than one fourth of the world's totals. Meanwhile, evidence is mounting that climate change has already affected human health directly and indirectly in China, including mortality from extreme weather events; changes in air and water quality; and changes in the ecology of infectious diseases. If China acts to reduce the combustion of fossil fuels and the resultant air pollution, it will reap not only the health benefits associated with improvement of air quality but also the reduced GHG emissions. Consideration of the health impact of air pollution and climate change can help the Chinese government move forward towards sustainable development with appropriate urgency.
Collapse
Affiliation(s)
- Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China.
| | | | | |
Collapse
|
35
|
Gaga EO, Ari A, Döğeroğlu T, Çakırca EE, Machin NE. Atmospheric polycyclic aromatic hydrocarbons in an industrialized city, Kocaeli, Turkey: study of seasonal variations, influence of meteorological parameters and health risk estimation. ACTA ACUST UNITED AC 2012; 14:2219-29. [PMID: 22699796 DOI: 10.1039/c2em30118k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ambient gas and particle phase samples were collected during two sampling periods from a residential area of an industrialized city, Kocaeli, Turkey. The sampling occurred during winter months when structures were being heated, and summer months when structures were not being heated. Σ(13)PAH (gas + particle) concentrations ranged between 6.2 ng m(-3) (DahA) and 98.6 ng m(-3) (Phe) in the heating (winter) period and 3.0 ng m(-3) (BaA) and 35.1 ng m(-3) (Phe) in the non-heating (summer) period. Phe, Flt and Pyr were found to be at high concentrations in both sampling periods. Winter time to summer time concentration ratios for individual ambient PAH concentration ratios ranged between 1.2 (DahA) and 17.5 (Flu), indicating the effect of the emissions from residential heating on measured concentrations of PAHs, but great industrial plants and the only incinerator facility of Turkey are other important pollution sources around the city. Temperature dependence of gas phase PAHs was investigated using the Clausius-Clapeyron equation. A high slope obtained (5069.7) indicated the effect of the local sources on measured gas phase PAHs. Correlation of the supercooled vapor pressure (P) with the gas particle partitioning coefficient (K(p)) and particle phase fraction was also evaluated. The relationship between the meteorological parameters and individual PAH (gas + particle) concentrations was investigated further by multiple linear regression analysis. It was found that the temperature had a significant effect on all of the measured PAH concentrations, while the effects of the wind speed and direction were not significant on the individual PAHs. On the other hand, PAH concentrations showed a strong linear relationship with the ventilation coefficient (VC) which showed the influence of local sources on measured PAHs. Benzo[a]pyrene toxic equivalent (BaP(eq.)) concentrations were used for health risk assessment purposes. The winter period risk level (2.92 × 10(-3)) due to the respiratory exposure to PAHs was found to be almost 3 times higher than in the summer period (1.15 × 10(-3)).
Collapse
Affiliation(s)
- Eftade O Gaga
- Anadolu University, Department of Environmental Engineering, 26470, Eskisehir, Turkey.
| | | | | | | | | |
Collapse
|
36
|
Polycyclic aromatic hydrocarbons in electrocautery smoke during peritonectomy procedures. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2012; 2012:929053. [PMID: 22685482 PMCID: PMC3364671 DOI: 10.1155/2012/929053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 03/08/2012] [Accepted: 03/23/2012] [Indexed: 12/21/2022]
Abstract
Objective. This study identified and quantified polycyclic aromatic hydrocarbons (PAHs) in electrocautery smoke during 40 peritonectomy procedures and investigated any correlations and/or differences between levels of PAHs and perioperative variables. Methods. PAHs were measured in personal and stationary sampling by 40 mm Millipore cassettes, for adsorption of both gaseous and particle-bound PAHs. Results. All 16 USEPA priority pollutant PAHs were detected during peritonectomy procedures, naphthalene being the most abundant. For the only two PAHs with Swedish occupational exposure limits (OELs), benzo[a]pyrene and naphthalene, limits were never exceeded. Amount of bleeding was the only perioperative variable that correlated with levels of PAHs. Conclusions. Low levels of PAHs were detected in electrocautery smoke during peritonectomy procedures, and an increased amount of bleeding correlated with higher levels of PAHs. For evaluation of long-term health effects, more studies are needed.
Collapse
|
37
|
Layshock J, Simonich SM, Anderson KA. Effect of dibenzopyrene measurement on assessing air quality in Beijing air and possible implications for human health. JOURNAL OF ENVIRONMENTAL MONITORING : JEM 2010; 12:2290-8. [PMID: 20967364 PMCID: PMC4157367 DOI: 10.1039/c0em00057d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Size fractionated particulate matter (PM) was collected in summer and winter from Beijing, China for the characterization of an expanded list of PAHs and evaluation of air pollution metrics. Summertime ΣPAHs on PM was 14.6 ± 29(PM 1.5), 0.88 ± 0.49(PM 1.5-7.2) and 0.29 ± 0.076(PM 7.2) ng m(-3) air while wintertime concentrations were 493 ± 206(PM 1.5), 26.7 ± 14(PM 1.5-7.2) and 5.3 ± 2.5(PM 7.2) ng m(-3) air. Greater than 90% of the carcinogenic PAHs were concentrated on PM(1.5). Dibenzopyrene isomers made up a significant portion (∼30%) of the total carcinogenic PAH load during the winter. To our knowledge, this is the first report of dibenzopyrenes in the Beijing atmosphere and among the few studies that report these highly potent PAHs in ambient particulate matter. Lifetime risk calculations indicated that 1 out of 10,000 to over 6 out of 100 Beijing residents may have an increased risk of lung cancer due to PAH concentration. Over half of the lifetime risk was attributed to Σdibenzopyrenes. The World Health Organization and Chinese daily PM(10) standard was exceeded on each day of the study, however, PAH limits were only exceeded during the winter. The outcomes of the air pollution metrics were highly dependent on the individual PAHs measured and seasonal variation.
Collapse
Affiliation(s)
- Julie Layshock
- Environmental and Molecular Toxicology Department, Oregon State University, 1007 ALS, Corvallis, USA, , , Fax: 541-737-0497, Tel: 541-737-0851
| | - Staci Massey Simonich
- Environmental and Molecular Toxicology Department, Oregon State University, 1007 ALS, Corvallis, USA, , , Fax: 541-737-0497, Tel: 541-737-0851
- Department of Chemistry, Oregon State University, 1007 ALS, Corvallis, USA, , Fax: 541-737-0497, Tel: 541-737-9194
| | - Kim A. Anderson
- Environmental and Molecular Toxicology Department, Oregon State University, 1007 ALS, Corvallis, USA, , , Fax: 541-737-0497, Tel: 541-737-0851
| |
Collapse
|
38
|
Wang L, Zhao B, Liu C, Lin H, Yang X, Zhang Y. Indoor SVOC pollution in China: A review. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-3094-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Liu WX, Ling X, Halbrook RS, Martineau D, Dou H, Liu X, Zhang G, Tao S. Preliminary evaluation on the use of homing pigeons as a biomonitor in urban areas. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:295-305. [PMID: 19771513 DOI: 10.1007/s10646-009-0412-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 09/09/2009] [Indexed: 05/20/2023]
Abstract
This study evaluates the usefulness of homing pigeons as a biomonitor of polycyclic aromatic hydrocarbons (PAHs) in urban environments. The mean concentrations of total PAHs in liver and lung tissues were greater in pigeons from Beijing compared to pigeons from Chengdu, however, this difference was only statistically significant for PAH concentrations in liver tissue (P < 0.05). Similarly, the severity of anthracosis or pneumoconiosis in lung tissue and hepatitis in liver tissue was greater in pigeons from Beijing compared to pigeons from Chengdu. Low molecular weight PAHs dominated the contribution of individual PAHs in both tissues. Significant differences (P < 0.05) were observed for most low and moderate molecular weights PAHs in liver and for some low and high molecular weights PAHs in lung between the two cites. The profile patterns of individual PAHs were similar between lung tissue of pigeons and between local ambient airs in summer for both cities, whereas the profile patterns between liver tissue and pigeon food were less similar. These data suggest that homing pigeons may be of value as a biomonitor of environmental pollution in urban areas.
Collapse
Affiliation(s)
- W X Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Yutthammo C, Thongthammachat N, Pinphanichakarn P, Luepromchai E. Diversity and activity of PAH-degrading bacteria in the phyllosphere of ornamental plants. MICROBIAL ECOLOGY 2010; 59:357-68. [PMID: 20107780 DOI: 10.1007/s00248-009-9631-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 12/16/2009] [Indexed: 05/06/2023]
Abstract
Phyllosphere bacteria on ornamental plants were characterized based on their diversity and activity towards the removal of polycyclic aromatic hydrocarbons (PAHs), the major air pollutants in urban area. The amounts of PAH-degrading bacteria were about 1-10% of the total heterotrophic phyllosphere populations and consisted of diverse bacterial species such as Acinetobacter, Pseudomonas, Pseudoxanthomonas, Mycobacterium, and uncultured bacteria. Bacterial community structures analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis from each plant species showed distinct band patterns. The uniqueness of these phyllosphere bacterial communities was partly due to the variation in leaf morphology and chemical properties of ornamental plants. The PAH degradation activity of these bacteria was monitored in gas-tight systems containing sterilized or unsterilized leaves. The results indicated that phyllosphere bacteria on unsterilized leaves were able to enhance the activity of leaves for phenanthrene removal. When compared between plant species, phenanthrene removal efficiency corresponded to the size of phenanthrene-degrading bacteria. In addition, phyllosphere bacteria on Wrightia religiosa were able to reduce other PAHs such as acenaphthylene, acenaphthene, and fluorine in 60-ml glass vials and in a 14-l glass chamber. Thus, phyllosphere bacteria on ornamental plants may play an important role in natural attenuation of airborne PAHs in urban areas.
Collapse
Affiliation(s)
- Chontisak Yutthammo
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | |
Collapse
|
41
|
Cao SP, Ni HG, Qin PH, Zeng H. Occurrence and human non-dietary exposure of polycyclic aromatic hydrocarbons in soils from Shenzhen, China. ACTA ACUST UNITED AC 2010; 12:1445-50. [DOI: 10.1039/c000549e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Zhang S, Zhang W, Wang K, Shen Y, Hu L, Wang X. Concentration, distribution and source apportionment of atmospheric polycyclic aromatic hydrocarbons in the southeast suburb of Beijing, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2009; 151:197-207. [PMID: 18386146 DOI: 10.1007/s10661-008-0261-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 02/29/2008] [Indexed: 05/26/2023]
Abstract
Total suspended particle samples and gas phase samples were collected at three representative sampling sites in the southeastern suburb of Beijing from March 2005 to January 2006. The samples were analyzed for 16 US EPA priority PAHs using GC/MS. Concentrations of Sigma PAHs in particle and gas phases were 0.21-1.18 x 10(3) ng m(-3) and 9.5 x 10(2) ng-1.03 x 10(5) ng m(-3), respectively. PAH concentrations displayed seasonal variation in the order of winter>spring>autumn>summer for particle phase, and winter>autumn>summer>spring for gas phase. Partial correlation analysis indicates that PAH concentrations in particle phase are negatively correlated with temperature and positively correlated with air pollution index of SO(2). No significant correlation is observed between gas phase PAHs and the auxiliary parameters. Sources of PAH are identified through principal component analysis, and source contributions are estimated through multiple linear regression. Major sources of atmospheric PAHs in the study area include coal combustion, coke industry, vehicular emission and natural gas combustion.
Collapse
Affiliation(s)
- Shucai Zhang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, People's Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
Liu S, Tao S, Liu W, Dou H, Liu Y, Zhao J, Little MG, Tian Z, Wang J, Wang L, Gao Y. Seasonal and spatial occurrence and distribution of atmospheric polycyclic aromatic hydrocarbons (PAHs) in rural and urban areas of the North Chinese Plain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 156:651-656. [PMID: 18674851 DOI: 10.1016/j.envpol.2008.06.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 06/07/2008] [Accepted: 06/11/2008] [Indexed: 05/26/2023]
Abstract
Passive air sampling (PAS) was employed to study the occurrence of gaseous and particle-bound PAHs in the North Chinese Plain. The averaged concentrations of gaseous and particle-bound PAHs were 485+/-209 ng/m(3) and 267+/-161 ng/m(3), respectively. The PAHs concentrations at urban sites were generally higher than those at rural ones with ratios <1.5 in spring, summer and fall, but differences between them were not significant for the wintertime and annually averaged concentrations. This urban-rural distribution pattern was related to the PAHs emission sources. PAHs spatial variation can be partially (49%) explained by emission with a simple linear regression method. Both the gaseous and particle-bound PAHs were highest in winter and lowest in summer, with winter/summer ratios of 1.8 and 8, respectively. Emission strength was the most important factor for the seasonality.
Collapse
Affiliation(s)
- Shuzhen Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang YQ, Tao S, Jiao XC, Coveney RM, Wu SP, Xing BS. Polycyclic aromatic hydrocarbons in leaf cuticles and inner tissues of six species of trees in urban Beijing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 151:158-64. [PMID: 17400349 DOI: 10.1016/j.envpol.2007.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 02/11/2007] [Accepted: 02/13/2007] [Indexed: 05/14/2023]
Abstract
Leaf samples of six tree species were collected along urban roadsides and a campus site in Beijing for measurement of polycyclic aromatic hydrocarbons (PAHs). PAHs in leaves were attributed to two fractions, leaf cuticles and inner leaf tissues, using sequential extraction. Total concentrations of 16 PAHs in the cuticles and the inner tissues were 69.3+/-64.6 microg g(-1) (d.w.) and 1.07+/-0.2 microg g(-1) (d.w.) at roadside and 57.5+/-52.6 microg g(-1) and 0.716+/-0.2 microg g(-1) on campus, respectively. The lipid-normalized inner tissue PAHs varied from 5.8 microg g(-1) to 15.0 microg g(-1). Similarities in PAH spectra between leaf cuticles and airborne particles and between the inner tissues and gaseous phase imply that airborne particulates and gaseous PAHs are likely the sources of PAHs for cuticles and the inner tissues, respectively. Difficulty in migration of heavier PAHs into inner tissues could be another reason.
Collapse
Affiliation(s)
- Y Q Wang
- Laboratory for Earth Surface Processes, College of Environmental Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
45
|
Yu Y, Guo H, Liu Y, Huang K, Wang Z, Zhan X. Mixed uncertainty analysis of polycyclic aromatic hydrocarbon inhalation and risk assessment in ambient air of Beijing. J Environ Sci (China) 2008; 20:505-512. [PMID: 18575139 DOI: 10.1016/s1001-0742(08)62087-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This article presents the application of an integrated method that estimates the dispersion of polycyclic aromatic hydrocarbons (PAHs) in air, and assesses the human health risk associated with PAHs inhalation. An uncertainty analysis method consisting of three components were applied in this study, where the three components include a bootstrapping method for analyzing the whole process associated uncertainty, an inhalation rate (IR) representation for evaluating the total PAH inhalation risk for human health, and a normally distributed absorption fraction (AF) ranging from 0% to 100% to represent the absorption capability of PAHs in human body. Using this method, an integrated process was employed to assess the health risk of the residents in Beijing, China, from inhaling PAHs in the air. The results indicate that the ambient air PAHs in Beijing is an important contributor to human health impairment, although over 68% of residents seem to be safe from daily PAH carcinogenic inhalation. In general, the accumulated daily inhalation amount is relatively higher for male and children at 10 years old of age than for female and children at 6 years old. In 1997, about 1.73% cancer sufferers in Beijing were more or less related to ambient air PAHs inhalation. At 95% confidence interval, approximately 272-309 individual cancer incidences can be attributed to PAHs pollution in the air. The probability of greater than 500 cancer occurrence is 15.3%. While the inhalation of ambient air PAHs was shown to be an important factor responsible for higher cancer occurrence in Beijing, while the contribution might not be the most significant one.
Collapse
Affiliation(s)
- Yajuan Yu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | | | |
Collapse
|
46
|
Srogi K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2007; 5:169-195. [PMID: 29033701 PMCID: PMC5614912 DOI: 10.1007/s10311-007-0095-0] [Citation(s) in RCA: 531] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Accepted: 01/26/2007] [Indexed: 05/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds with two or more fused aromatic rings. They have a relatively low solubility in water, but are highly lipophilic. Most of the PAHs with low vapour pressure in the air are adsorbed on particles. When dissolved in water or adsorbed on particulate matter, PAHs can undergo photodecomposition when exposed to ultraviolet light from solar radiation. In the atmosphere, PAHs can react with pollutants such as ozone, nitrogen oxides and sulfur dioxide, yielding diones, nitro- and dinitro-PAHs, and sulfonic acids, respectively. PAHs may also be degraded by some microorganisms in the soil. PAHs are widespread environmental contaminants resulting from incomplete combustion of organic materials. The occurrence is largely a result of anthropogenic emissions such as fossil fuel-burning, motor vehicle, waste incinerator, oil refining, coke and asphalt production, and aluminum production, etc. PAHs have received increased attention in recent years in air pollution studies because some of these compounds are highly carcinogenic or mutagenic. Eight PAHs (Car-PAHs) typically considered as possible carcinogens are: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene (B(a)P), dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene. In particular, benzo(a)pyrene has been identified as being highly carcinogenic. The US Environmental Protection Agency (EPA) has promulgated 16 unsubstituted PAHs (EPA-PAH) as priority pollutants. Thus, exposure assessments of PAHs in the developing world are important. The scope of this review will be to give an overview of PAH concentrations in various environmental samples and to discuss the advantages and limitations of applying these parameters in the assessment of environmental risks in ecosystems and human health. As it well known, there is an increasing trend to use the behavior of pollutants (i.e. bioaccumulation) as well as pollution-induced biological and biochemical effects on human organisms to evaluate or predict the impact of chemicals on ecosystems. Emphasis in this review will, therefore, be placed on the use of bioaccumulation and biomarker responses in air, soil, water and food, as monitoring tools for the assessment of the risks and hazards of PAH concentrations for the ecosystem, as well as on its limitations.
Collapse
Affiliation(s)
- K. Srogi
- Institute for Chemical Processing of Coal, Zamkowa 1, 41-803 Zabrze, Poland
| |
Collapse
|
47
|
Wang W, Meng B, Lu X, Liu Y, Tao S. Extraction of polycyclic aromatic hydrocarbons and organochlorine pesticides from soils: A comparison between Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction techniques. Anal Chim Acta 2007; 602:211-22. [DOI: 10.1016/j.aca.2007.09.023] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 07/20/2007] [Accepted: 09/13/2007] [Indexed: 11/30/2022]
|
48
|
Liu Y, Tao S, Yang Y, Dou H, Yang Y, Coveney RM. Inhalation exposure of traffic police officers to polycyclic aromatic hydrocarbons (PAHs) during the winter in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2007; 383:98-105. [PMID: 17582467 DOI: 10.1016/j.scitotenv.2007.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 05/03/2007] [Accepted: 05/04/2007] [Indexed: 05/15/2023]
Abstract
This study concerns the use of personal samplers to evaluate the exposure of traffic police to polycyclic aromatic hydrocarbons (PAHs) during the winter of 2005 in Beijing. We measured the samples collected for gas and particulate phases PAHs with the same technique used for an earlier study during the summer of 2004, and evaluated exposure risk based on the calculated benzo(a)pyrene equivalent concentrations (BaP(eq)) of both summer and winter. The mean exposure concentrations of gaseous and particulate phase PAHs in the winter are 4300+/-2900 ng/m(3) and 750+/-1000 ng/m(3), respectively, significantly higher than those measured simultaneously at control sites and also considerably higher than the values measured during the summer. The exposure PAH profiles for police and the control subjects are similar with predominant naphthalene in gaseous phase and dominant fluoranthene, pyrene, anthracene and naphthalene in particulate phase. Large daily variations occur both in summer and winter, because of the changes in the weather conditions especially wind speed and relative humidity which tend to disperse and scavenge PAHs in air. In the winter, the average BaP(eq) value for traffic police is 82.1 ng/m(3), which is significantly higher than those for the control subjects and the national standard of 10 ng/m(3) for ambient air. Particulate phase PAHs contribute more than 90% of the total exposure risk in the winter. Annually, weighted-average probabilities of exceeding the national standard (10 ng/m(3)) are 69.3% and 20.6% for the police and the controls, respectively.
Collapse
Affiliation(s)
- Yanan Liu
- Laboratory for Earth Surface Processes, College of Environmental Sciences, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|