1
|
Estoppey N, Castro G, Slinde GA, Hansen CB, Løseth ME, Krahn KM, Demmer V, Svenni J, Tran TVAT, Asimakopoulos AG, Arp HPH, Cornelissen G. Exposure assessment of plastics, phthalate plasticizers and their transformation products in diverse bio-based fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170501. [PMID: 38307289 DOI: 10.1016/j.scitotenv.2024.170501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Bio-based fertilizers (BBFs) produced from organic waste have the potential to reduce societal dependence on limited and energy-intensive mineral fertilizers. BBFs, thereby, contribute to a circular economy for fertilizers. However, BBFs can contain plastic fragments and hazardous additives such as phthalate plasticizers, which could constitute a risk for agricultural soils and the environment. This study assessed the exposure associated with plastic and phthalates in BBFs from three types of organic wastes: agricultural and food industry waste (AgriFoodInduWaste), sewage sludge (SewSludge), and biowaste (i.e., garden, park, food and kitchen waste). The wastes were associated with various treatments like drying, anaerobic digestion, and vermicomposting. The number of microplastics (0.045-5 mm) increased from AgriFoodInduWaste-BBFs (15-258 particles g-1), to SewSludge-BBFs (59-1456 particles g-1) and then to Biowaste-BBFs (828-2912 particles g-1). Biowaste-BBFs mostly contained packaging plastics (e.g., polyethylene terephthalate), with the mass of plastic (>10 g kg-1) exceeding the EU threshold (3 g kg-1, plastics >2 mm). Other BBFs mostly contained small (< 1 mm) non-packaging plastics in amounts below the EU limit. The calculated numbers of microplastics entering agricultural soils via BBF application was high (107-1010 microplastics ha-1y-1), but the mass of plastic released from AgriFoodInduWaste-BBFs and SewSludge-BBFs was limited (< 1 and <7 kg ha-1y-1) compared to Biowaste-BBFs (95-156 kg ha-1y-1). The concentrations of di(2-ethylhexyl)phthalate (DEHP; < 2.5 mg kg-1) and phthalate transformation products (< 8 mg kg-1) were low (< benchmark of 50 mg kg-1 for DEHP), attributable to both the current phase-out of DEHP as well as phthalate degradation during waste treatment. The Biowaste-BBF exposed to vermicomposting indicated that worms accumulated phthalate transformation products (4 mg kg-1). These results are overall positive for the implementation of the studied AgriFoodInduWaste-BBFs and SewSludge-BBFs. However, the safe use of the studied Biowaste-BBFs requires reducing plastic use and improving sorting methods to minimize plastic contamination, in order to protect agricultural soils and reduce the environmental impact of Biowaste-BBFs.
Collapse
Affiliation(s)
- Nicolas Estoppey
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway.
| | - Gabriela Castro
- Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway; Department of Analytical Chemistry, Nutrition and Food Sciences, Institute for Research in Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gøril Aasen Slinde
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Caroline Berge Hansen
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Mari Engvig Løseth
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | | | - Viona Demmer
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Jørgen Svenni
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Department of Mechanical, Electrical and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet, 0176 Oslo, Norway
| | - Teresa-Van-Anh Thi Tran
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Department of Mechanical, Electrical and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet, 0176 Oslo, Norway
| | | | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| |
Collapse
|
2
|
Huang W, Focker M, van Dongen KCW, van der Fels-Klerx HJ. Factors influencing the fate of chemical food safety hazards in the terrestrial circular primary food production system-A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13324. [PMID: 38517020 DOI: 10.1111/1541-4337.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Food safety is recognized as a major hurdle in the transition toward circular food production systems due to the potential reintroduction and accumulation of chemical contaminants in these food systems. Effectively managing these hazardous contaminants in a risk-based manner requires quantitative insights into the factors influencing the presence and fate of contaminants in the entire circular food chain. A systematic literature review was performed to gain an up-to-date overview of the known factors and their influence on the transfer and accumulation of contaminants. This review focused on the terrestrial circular primary food production system, including the pathways between waste- or byproduct-based fertilizers, soil, crops, animal feed, and farmed animals. This review revealed an imbalance in research regarding the different pathways: studies on the soil-to-crop pathway were most abundant. The factors identified can be categorized as compound-related (intrinsic) factors, such as hydrophobicity, molecular weight, and chain length, and extrinsic factors, such as soil organic matter and carbon, pH, milk yield of cows, crop age, and biomass. Quantitative data on the influence of the identified factors were limited. Most studies quantified the influence of individual factors, whereas only a few studies quantified the combined effect of multiple factors. By providing a holistic insight into the influential factors and the quantification of their influence on the fate of contaminants, this review contributes to the improvement of food safety management for chemical hazards when transitioning to a circular food system.
Collapse
Affiliation(s)
- Weixin Huang
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Marlous Focker
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Katja C W van Dongen
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - H J van der Fels-Klerx
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Tran HT, Nguyen MK, Hoang HG, Hutchison JM, Vu CT. Composting and green technologies for remediation of phthalate (PAE)-contaminated soil: Current status and future perspectives. CHEMOSPHERE 2022; 307:135989. [PMID: 35988768 PMCID: PMC10052775 DOI: 10.1016/j.chemosphere.2022.135989] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 05/29/2023]
Abstract
Phthalate esters (PAEs) are hazardous organic compounds that are widely added to plastics to enhance their flexibility, temperature, and acidic tolerance. The increase in global consumption and the corresponding environmental pollution of PAEs has caused broad public concerns. As most PAEs accumulate in soil due to their high hydrophobicity, composting is a robust remediation technology for PAE-contaminated soil (efficiency 25%-100%), where microbial activity plays an important role. This review summarized the roles of the microbial community, biodegradation pathways, and specific enzymes involved in the PAE degradation. Also, other green technologies, including biochar adsorption, bioaugmentation, and phytoremediation, for PAE degradation were also presented, compared, and discussed. Composting combined with these technologies significantly enhanced removal efficiency; yet, the properties and roles of each bacterial strain in the degradation, upscaling, and economic feasibility should be clarified in future research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Civil, Environmental, and Architectural Engineering Department, University of Kansas, Lawrence, KS, 66045, USA.
| | - Minh-Ky Nguyen
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai 76100, Viet Nam
| | - Justin M Hutchison
- Civil, Environmental, and Architectural Engineering Department, University of Kansas, Lawrence, KS, 66045, USA
| | - Chi Thanh Vu
- Civil and Environmental Engineering Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
4
|
Hoang SA, Bolan N, Madhubashani AMP, Vithanage M, Perera V, Wijesekara H, Wang H, Srivastava P, Kirkham MB, Mickan BS, Rinklebe J, Siddique KHM. Treatment processes to eliminate potential environmental hazards and restore agronomic value of sewage sludge: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118564. [PMID: 34838711 DOI: 10.1016/j.envpol.2021.118564] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 05/22/2023]
Abstract
Land application of sewage sludge is increasingly used as an alternative to landfilling and incineration owing to a considerable content of carbon and essential plant nutrients in sewage sludge. However, the presence of chemical and biological contaminants in sewage sludge poses potential dangers; therefore, sewage sludge must be suitably treated before being applied to soils. The most common methods include anaerobic digestion, aerobic composting, lime stabilization, incineration, and pyrolysis. These methods aim at stabilizing sewage sludge, to eliminate its potential environmental pollution and restore its agronomic value. To achieve best results on land, a comprehensive understanding of the transformation of organic matter, nutrients, and contaminants during these sewage-sludge treatments is essential; however, this information is still lacking. This review aims to fill this knowledge gap by presenting various approaches to treat sewage sludge, transformation processes of some major nutrients and pollutants during treatment, and potential impacts on soils. Despite these treatments, overtime there are still some potential risks of land application of treated sewage sludge. Potentially toxic substances remain the main concern regarding the reuse of treated sewage sludge on land. Therefore, further treatment may be applied, and long-term field studies are warranted, to prevent possible adverse effects of treated sewage sludge on the ecosystem and human health and enable its land application.
Collapse
Affiliation(s)
- Son A Hoang
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; Division of Urban Infrastructural Engineering, Mientrung University of Civil Engineering, Phu Yen, 56000, Viet Nam
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia.
| | - A M P Madhubashani
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Department of Chemical and Process Engineering, University of Moratuwa, Moratuwa, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Vishma Perera
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya, Sri Lanka
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya, Sri Lanka
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Prashant Srivastava
- CSIRO, The Commonwealth Scientific and Industrial Research Organisation Land and Water, PMB 2, Glen Osmond, South Australia, 5064, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Bede S Mickan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, Institute of Soil Engineering, Waste- and Water Science, Faculty of Architecture und Civil Engineering, University of Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| |
Collapse
|
5
|
Lü H, Chen XH, Mo CH, Huang YH, He MY, Li YW, Feng NX, Katsoyiannis A, Cai QY. Occurrence and dissipation mechanism of organic pollutants during the composting of sewage sludge: A critical review. BIORESOURCE TECHNOLOGY 2021; 328:124847. [PMID: 33609883 DOI: 10.1016/j.biortech.2021.124847] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Sewage sludge contains various classes of organic pollutants, limiting its land application. Sludge composting can effectively remove some organic pollutants. This review summarizesrecent researches on concentration changes and dissipation of different organic pollutants including persistent organic pollutants during sludge composting, and discusses their dissipation pathways and the current understanding on dissipation mechanism. Some organic pollutants like PAHs and phthalates were removed mainly through biodegradation or mineralization, and their dissipation percentages were higher than those of PCDD/Fs and PCBs. Nevertheless, some recalcitrant organic pollutants could be sequestrated in organic fractions of sludge mixtures, and their levels and ARG abundance even increased after sludge composting in some studies, posing potential risks for land application. This review demonstrated that microbial community and their corresponding degradation for organic pollutants were influenced by different pollutants, bulking agents, composting methods and processes. Further research perspectives on removing organic pollutants during sludge composting were highlighted.
Collapse
Affiliation(s)
- Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Hong Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Min-Ying He
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Athanasios Katsoyiannis
- Norwegian Institute for Air Research (NILU) - FRAM High North Research Centre on Climate and the Environment, Hjalmar Johansens gt. 14, NO-9296, Tromsø, Norway
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
The Assessment of the Sewage and Sludge Contamination by Phthalate Acid Esters (PAEs) in Eastern Europe Countries. SUSTAINABILITY 2021. [DOI: 10.3390/su13020529] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Phthalate acid esters (PAEs) are widely used as raw materials for industries that are well known for their environmental contamination and toxicological effects as “endocrine disruptors”. The determining of PAE contamination was based on analysis of dimethyl phthalate (DMP), diethyl phthalate (DEP), dipropyl phthalate (DPP), dibutyl phthalate (DBP), diisobutyl phthalate (DiBP), dicyclohexyl phthalate (DCHP) and di(2-ethylhexyl) phthalate (DEHP) in wastewater and sediment samples collected from city sewer systems of Lithuania and Poland, and Denmark for comparison. The potential PAE sources as well as their concentrations in the wastewater were analyzed and discussed. The intention of the study was to determine the level and key sources of pollution by phthalates in some Eastern European countries and to reveal the successful managerial actions to minimize PAEs taken by Denmark. Water and sludge samples were collected in 2019–2020 and analyzed by gas chromatography-mass spectrometry. The highest contamination with phthalates in Lithuania can be attributed to DEHP: up to 63% of total PAEs in water samples and up to 94% of total PAEs in sludge samples, which are primarily used as additive compounds to plastics but do not react with them and are gradually released into the environment. However, in water samples in Poland, the highest concentration belonged to DMP—up to 210 μg/L, while the share of DEHP reached 15 μg/L. The concentrations of priority phthalate esters in the water samples reached up to 159 μg/L (DEHP) in Lithuania and up to 1.2 μg/L (DEHP) in Denmark. The biggest DEHP concentrations obtained in the sediment samples were 95 mg/kg in Lithuania and up to 6.6 mg/kg in Denmark. The dominant compounds of PAEs in water samples of Lithuania were DEHP > DEP > DiBP > DBP > DMP. DPP and DCHP concentrations were less than 0.05 μg/L. However, the distribution of PAEs in the water samples from Poland was as follows: DMP > DEHP > DEP > DBP, and DiBP, as well as DPP and DCHP, concentrations were less than 0.05 μg/L. Further studies are recommended for adequate monitoring of phthalates in wastewater and sludge in order to reduce or/and predict phthalates’ potential risk to hydrobiots and human health.
Collapse
|
7
|
Owusu-Twum MY, Sharara MA. Sludge management in anaerobic swine lagoons: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110949. [PMID: 32583800 DOI: 10.1016/j.jenvman.2020.110949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Sludge is nutrient and mineral rich residue of anaerobic treatment that is often utilized as a fertilizer. Sludge management is crucial to maintain the function of anaerobic treatment lagoons and ensure efficient nutrient utilization. Intensive livestock production has resulted in accumulation of sludge residue in regions where nutrients are in surplus. This situation adversely impacts the sustainability of livestock production. Alternative uses of sludge needs to be developed and adopted to reduce the negative impacts associated with the nutrients accumulation on farms and nearby crop fields. A thorough understanding of sludge composition is necessary to identify appropriate end use. This review explores swine lagoon sludge (SLS) in relation to its composition, sampling techniques, management approaches, fertilizer value, challenges and opportunities for further development.
Collapse
Affiliation(s)
- Maxwell Y Owusu-Twum
- Department of Biological and Agricultural Engineering, 3100 Faucette Drive, North Carolina State University, Raleigh, NC, 27695, United States
| | - Mahmoud A Sharara
- Department of Biological and Agricultural Engineering, 3100 Faucette Drive, North Carolina State University, Raleigh, NC, 27695, United States.
| |
Collapse
|
8
|
Zhang H, Zhao C, Na H. Enhanced Biodegradation of Phthalic Acid Esters' Derivatives by Plasticizer-Degrading Bacteria ( Burkholderia cepacia, Archaeoglobus fulgidus, Pseudomonas aeruginosa) Using a Correction 3D-QSAR Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155299. [PMID: 32717867 PMCID: PMC7432126 DOI: 10.3390/ijerph17155299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022]
Abstract
A phthalic acid ester’s (PAEs) comprehensive biodegradability three-dimensional structure-activity relationship (3D-QSAR) model was established, to design environmentally friendly PAE derivatives, which could be simultaneously degraded by plasticizer-degrading bacteria, such as Burkholderia cepacia, Archaeoglobus fulgidus, and Pseudomonas aeruginosa. Only three derivatives of diethyl phthalate (DEP (DEP-27, DEP-28 and DEP-29)) were suited for their functionality and environmental friendliness, which had an improved stability in the environment and improved the characteristics (bio-toxicity, bioaccumulation, persistence, and long-range migration) of the persistent organic pollutants (POPs). The simulation inference of the microbial degradation path before and after DEP modification and the calculation of the reaction energy barrier exhibited the energy barrier for degradation being reduced after DEP modification and was consistent with the increased ratio of comprehensive biodegradability. This confirmed the effectiveness of the comparative molecular similarity index analysis (CoMSIA) model of the PAE’s comprehensive biodegradability. In addition, a molecular dynamics simulation revealed that the binding of the DEP-29 derivative with the three plasticizer-degradation enzymes increased significantly. DEP-29 could be used as a methyl phthalate derivative that synergistically degrades with microplastics, providing directional selection and theoretical designing for plasticizer replacement.
Collapse
Affiliation(s)
- Haigang Zhang
- Correspondence: ; Tel.: +86-0431-85168870; Fax: +86-0431-85168870
| | | | | |
Collapse
|
9
|
Shu L, Chen S, Zhao WW, Bai Y, Ma XC, Li XX, Li JR, Somsundaran P. High-performance liquid chromatography separation of phthalate acid esters with a MIL-53(Al)-packed column. J Sep Sci 2016; 39:3163-70. [DOI: 10.1002/jssc.201600364] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Lun Shu
- Key Laboratory of Beijing on Regional Air Pollution Control; Beijing University of Technology; Beijing P. R. China
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering; College of Environmental and Energy Engineering; Beijing University of Technology; Beijing P. R. China
| | - Sha Chen
- Key Laboratory of Beijing on Regional Air Pollution Control; Beijing University of Technology; Beijing P. R. China
| | - Wei-Wei Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering; College of Environmental and Energy Engineering; Beijing University of Technology; Beijing P. R. China
| | - Yan Bai
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering; College of Environmental and Energy Engineering; Beijing University of Technology; Beijing P. R. China
| | - Xing-Chen Ma
- Key Laboratory of Beijing on Regional Air Pollution Control; Beijing University of Technology; Beijing P. R. China
| | - Xiao-Xin Li
- Key Laboratory of Beijing on Regional Air Pollution Control; Beijing University of Technology; Beijing P. R. China
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering; College of Environmental and Energy Engineering; Beijing University of Technology; Beijing P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering; College of Environmental and Energy Engineering; Beijing University of Technology; Beijing P. R. China
| | - P. Somsundaran
- Earth and Environment Engineering Department; Columbia University; New York USA
| |
Collapse
|
10
|
Semblante GU, Hai FI, Huang X, Ball AS, Price WE, Nghiem LD. Trace organic contaminants in biosolids: Impact of conventional wastewater and sludge processing technologies and emerging alternatives. JOURNAL OF HAZARDOUS MATERIALS 2015; 300:1-17. [PMID: 26151380 DOI: 10.1016/j.jhazmat.2015.06.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/10/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
This paper critically reviews the fate of trace organic contaminants (TrOCs) in biosolids, with emphasis on identifying operation conditions that impact the accumulation of TrOCs in sludge during conventional wastewater and sludge treatment and assessing the technologies available for TrOC removal from biosolids. The fate of TrOCs during sludge thickening, stabilisation (e.g. aerobic digestion, anaerobic digestion, alkaline stabilisation, and composting), conditioning, and dewatering is elucidated. Operation pH, sludge retention time (SRT), and temperature have significant impact on the sorption and biodegradation of TrOCs in activated sludge that ends up in the sludge treatment line. Anaerobic digestion may exacerbate the estrogenicity of sludge due to bioconversion to more potent metabolites. Application of advanced oxidation or thermal pre-treatment may minimise TrOCs in biosolids by increasing the bioavailability of TrOCs, converting TrOCs into more biodegradable products, or inducing complete mineralisation of TrOCs. Treatment of sludge by bioaugmentation using various bacteria, yeast, or fungus has the potential to reduce TrOC levels in biosolids.
Collapse
Affiliation(s)
- Galilee U Semblante
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Andrew S Ball
- School of Applied Sciences, RMIT University, Bundoora 3083, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
11
|
Haudin CS, Zhang Y, Dumény V, Lashermes G, Bergheaud V, Barriuso E, Houot S. Fate of (14)C-organic pollutant residues in composted sludge after application to soil. CHEMOSPHERE 2013; 92:1280-5. [PMID: 23545187 DOI: 10.1016/j.chemosphere.2013.02.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 06/02/2023]
Abstract
Organic micropollutants may be present in biosolids, leading to soil contamination when they are recycled in agriculture. A sludge spiked with (14)C-labelled glyphosate (GLY), sodium linear dodecylbenzene sulphonate (LAS), fluoranthene (FLT) or 4-n-nonylphenol (NP) was composted with green waste and the fate of the (14)C-micropollutant residues remaining after composting was assessed after the compost application to the soil. (14)C-residues were mineralised in the soil and represented after 140d 20-32% of the initial activity for LAS, 16-25% for GLY, 6-9% for FLT and 4-7% for NP. The (14)C-residues at the end of composting that could not be extracted with methanol or ammonia were minimally remobilised or even increased for FLT. After 140d, non-extractable residues represented 38-52% of all of the (14)C-residues remaining in the soil for FLT, 50-67% for GLY, 91-92% for NP and 94-97% for LAS and in most cases, less than 1% of the (14)C-residues were water soluble, suggesting a low direct availability for leaching and microbial or plant assimilation. FLT was identified as the main compound among the methanol-extractable (14)C-residues that may be potentially available. The fate of the (14)C-organic pollutant residues in composts after application to soil could be assessed through a sequential chemical extraction scheme and depended on the chemical nature of the pollutant.
Collapse
Affiliation(s)
- Claire-Sophie Haudin
- AgroParisTech, UMR 1091 Environment and Arable Crops, F-78850 Thiverval-Grignon, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
Patureau D, Delgenes N, Muller M, Dagnino S, Lhoutellier C, Delgenes JP, Balaguer P, Hernandez-Raquet G. Chemical and toxicological assessment of a full-scale biosolid compost. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:2748-2756. [PMID: 22949087 DOI: 10.1002/etc.2002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/15/2012] [Accepted: 08/01/2012] [Indexed: 06/01/2023]
Abstract
The impact of a full-scale biosolid composting plant on the fate of a broad range of priority organic pollutants was investigated. Chemical analysis was performed at different steps of the process during two seasons. Simultaneously, the toxicological quality was assessed using estrogen α-, dioxin-, and pregnane X-receptor reporter cell lines. Mass-balance calculation highlighted the removal of easily degradable pollutants during composting. The important variations observed for each compound and for the two seasons might be explained by pollutant-fate dependency on process parameters like temperature. The final compost displayed low pregnane X activity but high estrogenic activity. The dioxin-like activity stayed constant through the process. The chemical and toxicological results highlight the importance of combining both approaches to accurately assess the compost quality. Such compilation of data on full-scale processes may be also very helpful for the environmental risk assessment of new organic waste disposal practices.
Collapse
Affiliation(s)
- Dominique Patureau
- INRA, UR050, Laboratoire de Biotechnologie de l'Environnement, Narbonne, France.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bergé A, Cladière M, Gasperi J, Coursimault A, Tassin B, Moilleron R. Meta-analysis of environmental contamination by alkylphenols. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:3798-819. [PMID: 22864754 DOI: 10.1007/s11356-012-1094-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 07/16/2012] [Indexed: 05/02/2023]
Abstract
Alkylphenols and alkylphenol ethoxylates (APE) are toxics classified as endocrine-disrupting compounds; they are used in detergents, paints, herbicides, pesticides, emulsifiers, wetting and dispersing agents, antistatic agents, demulsifiers, and solubilizers. Many studies have reported the occurrence of alkylphenols in different environmental matrices, though none of these studies have yet to establish a comprehensive overview of such compounds in the water cycle within an urban environment. This review summarizes APE concentrations for all environmental media throughout the water cycle, from the atmosphere to receiving waters. Once the occurrence of compounds has been assessed for each environmental compartment (urban wastewater, wastewater treatment plants [WWTP], atmosphere, and the natural environment), data are examined in order to understand the fate of APE in the environment and establish their geographical and historical trends. From this database, it is clear that the environment in Europe is much more contaminated by APE compared to North America and developing countries, although these APE levels have been decreasing in the last decade. APE concentrations in the WWTP effluent of developed countries have decreased by a factor of 100 over the past 30 years. This study is aimed at identifying both the correlations existing between environmental compartments and the processes that influence the fate and transport of these contaminants in the environment. In industrial countries, the concentrations observed in waterways now represent the background level of contamination, which provides evidence of a past diffuse pollution in these countries, whereas sediment analyses conducted in developing countries show an increase in APE content over the last several years. Finally, similar trends have been observed in samples drawn from Europe and North America.
Collapse
Affiliation(s)
- Alexandre Bergé
- Laboratoire Central de la Préfecture de Police, 39 bis rue de Dantzig, 75015, Paris, France.
| | | | | | | | | | | |
Collapse
|
14
|
Abdel daiem MM, Rivera-Utrilla J, Ocampo-Pérez R, Méndez-Díaz JD, Sánchez-Polo M. Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies--a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 109:164-78. [PMID: 22796723 DOI: 10.1016/j.jenvman.2012.05.014] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/08/2012] [Accepted: 05/16/2012] [Indexed: 05/26/2023]
Abstract
This article describes the most recent methods developed to remove phthalic acid esters (PAEs) from water, wastewater, sludge, and soil. In general, PAEs are considered to be endocrine disrupting chemicals (EDCs), whose effects may not appear until long after exposure. There are numerous methods for removing PAEs from the environment, including physical, chemical and biological treatments, advanced oxidation processes and combinations of these techniques. This review largely focuses on the treatment of PAEs in aqueous solutions but also reports on their treatment in soil and sludge, as well as their effects on human health and the environment.
Collapse
Affiliation(s)
- Mahmoud M Abdel daiem
- Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada, Spain.
| | | | | | | | | |
Collapse
|
15
|
Roig N, Sierra J, Nadal M, Martí E, Navalón-Madrigal P, Schuhmacher M, Domingo JL. Relationship between pollutant content and ecotoxicity of sewage sludges from Spanish wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 425:99-109. [PMID: 22483948 DOI: 10.1016/j.scitotenv.2012.03.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/29/2012] [Accepted: 03/10/2012] [Indexed: 05/15/2023]
Abstract
Chemical and ecotoxicological properties of 28 sewage sludge samples from Spanish wastewater treatment plants were studied in order to assess their suitability for agricultural purposes. Sludge samples were classified into five categories according to specific treatment processes in terms of digestion (aerobic/anaerobic) and drying (mechanical/thermal). Composted samples, as indicative of the most refined process, were also considered. Sludges were subjected to physical-chemical characterization, being the sludge stabilization degree respirometrically assessed. The concentrations of seven metals (Cd, Cr, Cu, Pb, Zn, Ni, Hg) and organic substances (phenolic compounds, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polychlorinated naphthalenes, polybrominated diphenyl ethers, and perfluorinated compounds) were determined. Finally, two ecotoxicological tests were performed: i) Microtox® toxicity test with Vibrio fischeri, and ii) root elongation test with Allium cepa, Lolium perenne and Raphanus sativus seeds. Significant differences were found in the following parameters: dry matter, electrical conductivity, nitrogen, organic matter and its stability, phytotoxicity and ecotoxicity, depending on the sludge treatment. In turn, no significant differences were found between categories in the concentrations of most metals and organic pollutants, with the exception of free phenolic compounds. Furthermore, no correlation between total heavy metal burden and ecotoxicity was observed. However, a good correlation was found between phenolic compounds and most ecotoxicological tests. These results suggest that sludge stability (conditioned by sludge treatment) might have a greater influence on sludge ecotoxicity than the pollutant load. Composting was identified as the treatment resulting in the lowest toxicity.
Collapse
Affiliation(s)
- Neus Roig
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Lashermes G, Barriuso E, Houot S. Dissipation pathways of organic pollutants during the composting of organic wastes. CHEMOSPHERE 2012; 87:137-43. [PMID: 22209253 DOI: 10.1016/j.chemosphere.2011.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 05/31/2023]
Abstract
The organic pollutants (OPs) present in compostable organic residues can be recovered in the final composts leading to environmental impacts related to their use in agriculture. However, the composting process may contribute to their partial dissipation that is classically evaluated through the concentration decrease in extractable OPs, without identification of the responsible mechanisms as mineralization or stabilization of OP as non-extractable residues (NER) or bound residues. The dissipation of four (14)C-labeled OPs (fluoranthene; 4-n-nonylphenol, NP; sodium linear dodecylbenzene sulfonate, LAS; glyphosate) was assessed during composting of sewage sludge and green waste. The dissipation of LAS largely resulted from its mineralization (51% of initial LAS), whereas mineralization was intermediate for NP (29%) and glyphosate (24%), and negligible for fluoranthene. The NER pathway mostly concerned NP and glyphosate, with 45% and 37% of the recovered (14)C being found as NER at the end of composting, respectively. In the final composts, the proportions of water soluble residues of OPs considered as readily available were <11% of recovered (14)C-OPs. However, most fluoranthene remained solvent extractable (72%) and potentially available, whereas only 18% of glyphosate and less than 7% of both NP and LAS remained solvent extractable in the final compost.
Collapse
Affiliation(s)
- Gwenaëlle Lashermes
- INRA, UMR1091, Environnement et Grandes Cultures, INRA-AgroParisTech, F-78850 Thiverval-Grignon, France.
| | | | | |
Collapse
|
17
|
Domene X, Solà L, Ramírez W, Alcañiz JM, Andrés P. Soil bioassays as tools for sludge compost quality assessment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2011; 31:512-522. [PMID: 21074983 DOI: 10.1016/j.wasman.2010.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 09/30/2010] [Accepted: 10/12/2010] [Indexed: 05/30/2023]
Abstract
Composting is a waste management technology that is becoming more widespread as a response to the increasing production of sewage sludge and the pressure for its reuse in soil. In this study, different bioassays (plant germination, earthworm survival, biomass and reproduction, and collembolan survival and reproduction) were assessed for their usefulness in the compost quality assessment. Compost samples, from two different composting plants, were taken along the composting process, which were characterized and submitted to bioassays (plant germination and collembolan and earthworm performance). Results from our study indicate that the noxious effects of some of the compost samples observed in bioassays are related to the low organic matter stability of composts and the enhanced release of decomposition endproducts, with the exception of earthworms, which are favored. Plant germination and collembolan reproduction inhibition was generally associated with uncomposted sludge, while earthworm total biomass and reproduction were enhanced by these materials. On the other hand, earthworm and collembolan survival were unaffected by the degree of composting of the wastes. However, this pattern was clear in one of the composting procedures assessed, but less in the other, where the release of decomposition endproducts was lower due to its higher stability, indicating the sensitivity and usefulness of bioassays for the quality assessment of composts.
Collapse
Affiliation(s)
- Xavier Domene
- Center for Ecological Research and Forestry Applications (CREAF), Facultat de Ciències i Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
18
|
Poulsen TG, Bester K. Organic micropollutant degradation in sewage sludge during composting under thermophilic conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:5086-5091. [PMID: 20521786 DOI: 10.1021/es9038243] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Degradation of 12 common organic micropollutants in sewage sludge representing bactericides, flame retardants, fragrances, vulcanizers, and plasticizers (part of many common products) during thermophilic composting was investigated. Micropollutant concentrations, compost temperature, water content, and organic matter content were measured over 24 days in a full-scale compost windrow made from digested sewage sludge, yard waste, and horse manure. Composting took place indoors, and the windrow was turned several times during the experimental period. Concentrations of all 12 micropollutants decreased during composting, and degradation was statistically significant for 7 of the 12 micropollutants. Metabolites (galaxolidone and methyl-triclosan) were produced from two micropollutants (galaxolide and triclosan) during composting, indicating microbial degradation. Pollutant concentrations early in the experiment were more variable than those experienced for the chemical method development. This was likely due to compost heterogeneity. After the second compost turning, concentrations became more stable as compost became more homogeneous.
Collapse
Affiliation(s)
- Tjalfe G Poulsen
- Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, DK-9000 Aalborg, Denmark.
| | | |
Collapse
|
19
|
Lashermes G, Houot S, Barriuso E. Sorption and mineralization of organic pollutants during different stages of composting. CHEMOSPHERE 2010; 79:455-62. [PMID: 20156635 DOI: 10.1016/j.chemosphere.2010.01.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 01/19/2010] [Accepted: 01/21/2010] [Indexed: 05/28/2023]
Abstract
The organic pollutant (OP) content is a key factor when determining compost quality. The OPs present in feedstock materials may either be degraded during composting or stabilized in the compost by sorption interactions with organic matter (OM), which may reduce the availability of OP to microorganism degradation. It is particularly important to identify the key stages during composting that are involved in OP mineralization so as to be able to optimize the composting process and determine whether OP sorption on OM is a limiting factor to OP mineralization. Four (14)C-labeled OPs were used during the study: a polycyclic aromatic hydrocarbon (fluoranthene), two surfactants (4-n-nonylphenol - NP and sodium linear dodecylbenzene sulfonate - LAS) and a herbicide (glyphosate). The potential for compost microflora to degrade OP, and compost sorption properties, were characterized at different stages of composting. The highest levels of LAS and glyphosate mineralization were found during the thermophilic stage, at the beginning of maturation for NP and at the end of maturation for fluoranthene. A specific microflora was probably involved in the biodegradation of fluoranthene while NP, LAS and glyphosate mineralization were linked to total microbial activity. OP sorption on compost was linked to their hydrophobicity, decreasing in the order: fluoranthene>NP>LAS>glyphosate. Moreover, sorption decreased as compost maturity increased, except for glyphosate. The sorption coefficients were positively correlated to mineralization kinetics parameters for NP, LAS and glyphosate, suggesting a positive effect of sorption on increasing mineralization rates.
Collapse
Affiliation(s)
- G Lashermes
- INRA (French National Institute for Agricultural Research)-AgroParisTech, UMR1091, Environment and Arable Corps, 78850 Thiverval-Grignon, France
| | | | | |
Collapse
|
20
|
González MM, Santos JL, Aparicio I, Alonso E. Method for the simultaneous determination of the most problematic families of organic pollutants in compost and compost-amended soil. Anal Bioanal Chem 2010; 397:277-285. [DOI: 10.1007/s00216-010-3509-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 01/22/2010] [Accepted: 01/25/2010] [Indexed: 11/24/2022]
|
21
|
González MM, Martín J, Santos JL, Aparicio I, Alonso E. Occurrence and risk assessment of nonylphenol and nonylphenol ethoxylates in sewage sludge from different conventional treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:563-570. [PMID: 19896162 DOI: 10.1016/j.scitotenv.2009.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 09/30/2009] [Accepted: 10/10/2009] [Indexed: 05/28/2023]
Abstract
In the present work, the concentrations of the organic pollutants nonylphenol (NP) and nonylphenol mono- and diethoxylates (NP1EO and NP2EO, respectively) in primary, secondary, mixed, aerobically-digested, anaerobically-digested, dehydrated, compost and lagoon sludge samples from different sludge treatments have been evaluated. Toxicological risk assessment of these compounds in sludge and sludge-amended soil has also been reported. NP, NP1EO and NP2EO were monitored in sludge samples obtained from treatment plants located in Andalusia (south of Spain) based on anaerobic treatments (11 anaerobic-digestion wastewater treatment plants and 3 anaerobic wastewater stabilization ponds) or on aerobic treatments (3 aerobic-digestion wastewater treatment plants, 1 dehydration treatment plant and 2 composting plants). The sum of NP, NP1EO and NP2EO (NPE) concentrations has been evaluated in relation to the limit value of 50 mg/kg set by the European Union Sludge Directive draft published in April 2000 (Working Document on Sludge). In most of the samples, NP was present at higher concentration levels (mean value 88.0 mg/kg dm) than NP1EO (mean value 33.8 mg/kg dm) and NP2EO (mean value 14.0 mg/kg dm). The most contaminated samples were compost, anaerobically-digested sludge, lagoon sludge and aerobically-digested sludge samples, which contained NPE concentrations in the ranges 44-962 mg/kg dm, 8-669 mg/kg dm, 27-319 mg/kg dm and 61-282 mg/kg dm, respectively. Risk quotients, expressed as the ratios between environmental concentrations and the predicted no-effect concentrations, were higher than 1 for NP, NP1EO and NP2EO in the 99%, 92% and 36% of the studied samples, respectively; and higher than 1 in the 86%, 6% and 2%, respectively, after sludge application to soil, leading to a significant ecotoxicological risk mainly due to the presence of NP.
Collapse
Affiliation(s)
- M M González
- Department of Analytical Chemistry, Chemical Engineering School, University of Seville, C/ Virgen de Africa 7, E-41011 Seville, Spain
| | | | | | | | | |
Collapse
|
22
|
Aparicio I, Santos JL, Alonso E. Limitation of the concentration of organic pollutants in sewage sludge for agricultural purposes: A case study in South Spain. WASTE MANAGEMENT (NEW YORK, N.Y.) 2009; 29:1747-1753. [PMID: 19135349 DOI: 10.1016/j.wasman.2008.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 11/13/2008] [Indexed: 05/27/2023]
Abstract
In 2000, the EU published the third draft of a future sludge directive entitled "Working document on sludge" where limit values for some organic compounds, including di-(2-ethyhexyl)phthalate (DEHP), sum of nonylphenol (NP), nonyphenol mono-(NP1EO) and diethoxylates (NP2EO), seven polychlorinated biphenyl congeners (PCB), polycyclic aromatic hydrocarbons (PAH) and linear alkylbenzene sulphonates (LAS), are fixed. In the present work, the monitoring of these organic compounds in sludge samples from four wastewater treatment plants (WWTPs) is reported. All WWTPs use anaerobic biological stabilization of sludge. The highest concentration levels were found for LAS, NPE and DEHP, in this order, with, in general, anaerobically-digested dehydrated sludge and compost samples being the most contaminated samples. DEHP, NPE, LAS and PAH were found at concentration levels above the limit values fixed in the third draft of the future EU sludge directive in the 44%, 88%, 13% and 6% of the analyzed anaerobically-digested dehydrated sludge and compost samples.
Collapse
Affiliation(s)
- I Aparicio
- Department of Analytical Chemistry, University of Seville, C/ Virgen de Africa, 7, E41011 Seville, Spain
| | | | | |
Collapse
|
23
|
Garrido Frenich A, de las Nieves Barco Bonilla M, López Martínez JC, Martínez Vidal JL, Romero-González R. Determination of di-(2-ethylhexyl)phthalate in environmental samples by liquid chromatography coupled with mass spectrometry. J Sep Sci 2009; 32:1383-9. [DOI: 10.1002/jssc.200900020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Oleszczuk P. Sorption of phenanthrene by sewage sludge during composting in relation to potentially bioavailable contaminant content. JOURNAL OF HAZARDOUS MATERIALS 2009; 161:1330-7. [PMID: 18555600 DOI: 10.1016/j.jhazmat.2008.04.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 05/15/2023]
Abstract
The aim of the present study was to determine to what degree the sewage sludge sorption capacity to phenanthrene influences on bioavailability of this compound during composting. Sewage sludges were composted for 76 days. The content of the potentially bioavailable phenanthrene fraction was determined by: mild-solvent extraction with n-butanol (BTL) and non-exhaustive extraction technique with hydroxypropyl[beta] cyclodextrin (HPCD). Batch experiments were used to construct phenanthrene sorption isotherms. The contribution of the potentially bioavailable phenanthrene fraction in individual sewage sludges ranged from 32 to 48% (BTL) and from 5.1 to 80.3% (HPCD). The direction of changes in the potentially bioavailable fraction resulting from composting also depended on the sewage sludge and the extraction method applied. Isotherms demonstrated a good fit to the Freundlich isotherm model. Sorption coefficients (logK(F)) and organic carbon-normalized distribution coefficients (logK(oc)) of phenanthrene by sewage sludges ranged from 3.42 to 3.98 and from 4.14 to 4.70, respectively. Sewage sludges exhibited relatively strong affinity for sorption large amounts of phenanthrene. In the case of two sludges, a strong relationship between phenanthrene sorption capacity (logK(F) and logK(oc)) and the content of the bioavailable fraction of this compound was observed.
Collapse
Affiliation(s)
- Patryk Oleszczuk
- Laboratory of Soil Reclamation and Waste Management, Institute of Soil Science and Environmental Management, University of Agriculture, ul. Leszczyńskiego 7, 20-069 Lublin, Poland.
| |
Collapse
|