1
|
Ho CD, Ke JW, Lim JW. Effects of Varying Spiral-Ring Pitches on CO 2 Absorption by Amine Solution in Concentric Circular Membrane Contactors. MEMBRANES 2024; 14:147. [PMID: 39057655 PMCID: PMC11279012 DOI: 10.3390/membranes14070147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
The CO2 absorption flux while using monoethanolamide (MEA) solution in a spiral-wired channel was significantly enhanced by optimizing both the descending and ascending spiral ring pitch configurations within the filled channel. In this study, two distinct spiral ring pitch configurations were integrated into concentric circular membrane contactors to augment CO2 absorption flux. Spiral rods were strategically inserted to mitigate concentration polarization effects, thereby reducing mass transfer boundary layers and increasing turbulence intensity. A theoretical one-dimensional model was developed to predict absorption flux and concentration distributions across varying MEA absorbent flow rates, CO2 feed flow rates, and inlet CO2 concentrations in the gas feed. Theoretical predictions of absorption flux improvement were validated against experimental results, demonstrating favorable agreement for both ascending and descending spiral ring pitch operations. Interestingly, the results indicated that descending spiral ring pitch operations achieved higher turbulent intensity compared to ascending configurations, thereby alleviating concentration polarization resistance and enhancing CO2 absorption flux with reduced polarization effects. Specifically, under conditions of a 40% inlet CO2 concentration and 5 cm3/s MEA feed flow rate, a notable 83.69% enhancement in absorption flux was achieved compared to using an empty channel configuration. Moreover, a generalized expression for the Sherwood number was derived to predict the mass transfer coefficient for CO2 absorption in concentric circular membrane contactors, providing a practical tool for performance estimation. The economic feasibility of the spiral-wired module was also assessed by evaluating both absorption flux improvement and incremental power consumption. Overall, these findings underscore the effectiveness of optimizing spiral ring pitch configurations in enhancing CO2 absorption flux, offering insights into improving the efficiency and economic viability of CO2 capture technologies.
Collapse
Affiliation(s)
- Chii-Dong Ho
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei 251301, Taiwan;
| | - Jui-Wei Ke
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei 251301, Taiwan;
| | - Jun-Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Department of Fundamental and Applied Sciences, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| |
Collapse
|
2
|
Imtiaz A, Othman MHD, Jilani A, Khan IU, Kamaludin R, Ayub M, Samuel O, Kurniawan TA, Hashim N, Puteh MH. A critical review in recent progress of hollow fiber membrane contactors for efficient CO 2 separations. CHEMOSPHERE 2023; 325:138300. [PMID: 36893870 DOI: 10.1016/j.chemosphere.2023.138300] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Among wide range of membrane-based operations, membrane contactors, as they reify comparatively modern membrane-based mechanism are gaining quite an attention in both pilot and industrial scales. In recent literature, carbon capture is one of the most researched applications of membrane contactors. Membrane contactors have the potential to minimize the energy consumption and capital cost of traditional CO2 absorptions columns. In a membrane contactor, CO2 regeneration can take place below the solvent boiling point, resulting into lower consumption of energy. Various polymeric as well as ceramic membrane materials have been employed in gas liquid membrane contactors along with several solvents including amino acids, ammonia, amines etc. This review article provides detailed introduction of membrane contactors in terms of CO2 removal. It also discusses that the main challenge that is faced by membrane contactors is membrane pore wetting caused by solvent that in turn can reduce the mass transfer coefficient. Other potential challenges such as selection of suitable solvent and membrane pair as well as fouling are also discussed in this review and are followed by potential ways to reduce them. Furthermore, both membrane gas separation and membrane contactor technologies are analysed and compared in this study on the basis of their characteristics, CO2 separation performances and techno economical transvaluation. Consequently, this review provides an opportunity to thoroughly understand the working principle of membrane contactors along its comparison with membrane-based gas separation technology. It also provides a clear understanding of latest innovations in membrane contactor module designs as well as challenges encountered by membrane contactors along with possible solutions to overcome these challenges. Finally, semi commercial and commercial implementation of membrane contactors has been highlighted.
Collapse
Affiliation(s)
- Aniqa Imtiaz
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Facultyof Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Facultyof Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - Asim Jilani
- Centre of Nanotechnology, King Abdul-Aziz University, 21589, Jeddah, Saudi Arabia.
| | - Imran Ullah Khan
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochshule, Institute of Applied Sciences &Technology, Khanpur Road, Mang, Haripur, 22650, Pakistan
| | - Roziana Kamaludin
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Facultyof Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Muhammad Ayub
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Facultyof Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Ojo Samuel
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Facultyof Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | | | - NurAwanis Hashim
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Hafiz Puteh
- Faculty of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| |
Collapse
|
3
|
Jiménez-Robles R, Izquierdo M, Martínez-Soria V, Martí L, Monleón A, Badia JD. Stability of Superhydrophobicity and Structure of PVDF Membranes Treated by Vacuum Oxygen Plasma and Organofluorosilanisation. MEMBRANES 2023; 13:314. [PMID: 36984700 PMCID: PMC10054235 DOI: 10.3390/membranes13030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Superhydrophobic poly(vinylidene fluoride) (PVDF) membranes were obtained by a surface treatment consisting of oxygen plasma activation followed by functionalisation with a mixture of silica precursor (SiP) (tetraethyl-orthosilicate [TEOS] or 3-(triethoxysilyl)-propylamine [APTES]) and a fluoroalkylsilane (1H,1H,2H,2H-perfluorooctyltriethoxysilane), and were benchmarked with coated membranes without plasma activation. The modifications acted mainly on the surface, and the bulk properties remained stable. From a statistical design of experiments on surface hydrophobicity, the type of SiP was the most relevant factor, achieving the highest water contact angles (WCA) with the use of APTES, with a maximum WCA higher than 155° for membranes activated at a plasma power discharge of 15 W during 15 min, without membrane degradation. Morphological changes were observed on the membrane surfaces treated under these plasma conditions, showing a pillar-like structure with higher surface porosity. In long-term stability tests under moderate water flux conditions, the WCA of coated membranes which were not activated by oxygen plasma decreased to approximately 120° after the first 24 h (similar to the pristine membrane), whilst the WCA of plasma-treated membranes was maintained around 130° after 160 h. Thus, plasma pre-treatment led to membranes with a superhydrophobic performance and kept a higher hydrophobicity after long-term operations.
Collapse
Affiliation(s)
- Ramón Jiménez-Robles
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain
| | - Marta Izquierdo
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain
| | - Vicente Martínez-Soria
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain
| | - Laura Martí
- Decarbonisation Department, Plastic Technology Institute (AIMPLAS), C/Gustave Eiffel 4, 46980 Paterna, Spain
| | - Alicia Monleón
- Decarbonisation Department, Plastic Technology Institute (AIMPLAS), C/Gustave Eiffel 4, 46980 Paterna, Spain
- Department of Organic Chemistry, School of Chemistry, University of Valencia, Dr Moliner 50, 46100 Burjassot, Spain
| | - José David Badia
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain
| |
Collapse
|
4
|
Ho CD, Chang H, Chen YH, Chew TL, Ke JW. Investigation on the Performance of CO 2 Absorption in Ceramic Hollow-Fiber Gas/Liquid Membrane Contactors. MEMBRANES 2023; 13:249. [PMID: 36837752 PMCID: PMC9963623 DOI: 10.3390/membranes13020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The absorption efficiencies of CO2 in ceramic hollow-fiber membrane contactors using monoethanolamine (MEA) absorbent under both cocurrent- and countercurrent-flow operations were investigated theoretically and experimentally; various MEA absorbent flow rates, CO2 feed flow rates, and inlet CO2 concentrations were used as parameters. Theoretical predictions of the CO2 absorption flux were analyzed by developing the mathematical formulations based on Happel's free surface model in terms of mass transfer resistances in series. The experiments of the CO2 absorption were conducted by using alumina (Al2O3) hollow-fiber membranes to confirm the accuracy of the theoretical predictions. The simplified expression of the Sherwood number was formulated to calculate the mass transfer coefficient of the CO2 absorption incorporating experimental data. The data were obtained numerically using the fourth-order Runge-Kutta method to predict the concentration distribution and absorption rate enhancement under various fiber packing configurations accomplished by the CO2/N2 stream passing through the fiber cells. The operations of the hollow-fiber membrane contactor encapsulating N = 7 fiber cells and N = 19 fiber cells of different packing densities were fabricated in this work to examine the device performance. The accuracy derivation between experimental results and theoretical predictions for cocurrent- and countercurrent-flow operations were 1.31×10-2≤E≤4.35×10-2 and 3.90×10-3≤E≤2.43×10-2, respectively. A maximum of 965.5% CO2 absorption rate enhancement was found in the module with embedding multiple fiber cells compared with that in the device with inserting single-fiber cell. Implementing more fiber cells offers an inexpensive method of improving the absorption efficiency, and thus the operations of the ceramic hollow-fiber membrane contactor with implementing more fiber cells propose a low-priced design to improve the absorption rate enhancement. The higher overall CO2 absorption rate was achieved in countercurrent-flow operations than that in cocurrent-flow operations.
Collapse
Affiliation(s)
- Chii-Dong Ho
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei 251301, Taiwan
| | - Hsuan Chang
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei 251301, Taiwan
| | - Yu-Han Chen
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei 251301, Taiwan
| | - Thiam Leng Chew
- Department of Chemical Engineering, Faculty of Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
- CO2 Research Center (CO2RES), Institute of Contaminant Management, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
| | - Jui-Wei Ke
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei 251301, Taiwan
| |
Collapse
|
5
|
Fattah IMR, Farhan ZA, Kontoleon KJ, kianfar E, Hadrawi SK. Hollow fiber membrane contactor based carbon dioxide absorption − stripping: a review. Macromol Res 2023. [DOI: 10.1007/s13233-023-00113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
6
|
RASOULI H, ILIUTA I, BOUGIE F, GARNIER A, ILIUTA MC. Hybrid enzymatic CO2 capture process in intensified flat sheet membrane contactors with immobilized carbonic anhydrase. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Theoretical and Experimental Studies of CO2 Absorption in Double-Unit Flat-Plate Membrane Contactors. MEMBRANES 2022; 12:membranes12040370. [PMID: 35448341 PMCID: PMC9026699 DOI: 10.3390/membranes12040370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022]
Abstract
Theoretical predictions of carbon dioxide absorption flux were analyzed by developing one-dimensional mathematical modeling using the chemical absorption theory based on mass-transfer resistances in series. The CO2 absorption into monoethanolamine (MEA) solutions was treated as chemical absorption, accompanied by a large equilibrium constant. The experimental work of the CO2 absorption flux using MEA solution was conducted in double-unit flat-plate membrane contactors with embedded 3D turbulence promoters under various absorbent flow rates, CO2 feed flow rates, and inlet CO2 concentrations in the gas feed stream for both concurrent and countercurrent flow operations. A more compact double-unit module with embedded 3D turbulence promoters could increase the membrane stability to prevent flow-induced vibration and enhance the CO2 absorption rate by overwhelming the concentration polarization on the membrane surfaces. The measured absorption fluxes with a near pseudo-first-order reaction were in good agreement with the theoretical predictions for the CO2 absorption efficiency in aqueous MEA solutions, which was shown to be substantially larger than the physical absorption in water. By embedding 3D turbulence promoters in the MEA feed channel, the new design accomplishes a considerable CO2 absorption flux compared with an empty channel as well as the single unit module. This demonstrates the value and originality of the present study regarding the technical feasibility. The absorption flux enhancement for the double-unit module with embedded 3D turbulence promoters could provide a maximum relative increase of up to 40% due to the diminution in the concentration polarization effect. The correlated equation of the average Sherwood number was obtained numerically using the fourth Runge–Kutta method in a generalized and simplified expression to calculate the mass transfer coefficient of the CO2 absorption in the double-unit flat-plate membrane contactor with turbulence promoter channels.
Collapse
|
8
|
Ho CD, Chang H, Lin GH, Chew TL. Enhancing Absorption Performance of CO 2 by Amine Solution through the Spiral Wired Channel in Concentric Circular Membrane Contactors. MEMBRANES 2021; 12:4. [PMID: 35054530 PMCID: PMC8779793 DOI: 10.3390/membranes12010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
The CO2 absorption rate by using a Monoethanolamide (MEA) solution through the spiral wired channel in concentric circular membrane contactors under both concurrent-flow and countercurrent-flow operations was investigated experimentally and theoretically. The one-dimensional mathematical modeling equation developed for predicting the absorption rate and concentration distributions was solved numerically using the fourth Runge-Kutta method under various absorbent flow rate, CO2 feed flow rate and inlet CO2 concentration in the gas feed. An economical viewpoint of the spiral wired module was examined by assessing both absorption flux improvement and power consumption increment. Meanwhile, the correlated average Sherwood number to predict the mass-transfer coefficient of the CO2 absorption mechanisms in a concentric circular membrane contactor with the spiral wired annulus channel is also obtained in a generalized and simplified expression. The theoretical predictions of absorption flux improvement were validated by experimental results in good agreements. The amine solution flowing through the annulus of a concentric circular tube, which was inserted in a tight-fitting spiral wire in a small annular spacing, could enhance the CO2 absorption flux improvement due to reduction of the concentration polarization effect. A larger concentration polarization coefficient (CPC) was achieved in the countercurrent-flow operations than that in concurrent-flow operations for various operations conditions and spiral-wire pitches. The absorption flux improvement for inserting spiral wire in the concentric circular module could provide the maximum relative increment up to 46.45%.
Collapse
Affiliation(s)
- Chii-Dong Ho
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei 251, Taiwan; (H.C.); (G.-H.L.)
| | - Hsuan Chang
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei 251, Taiwan; (H.C.); (G.-H.L.)
| | - Guan-Hong Lin
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei 251, Taiwan; (H.C.); (G.-H.L.)
| | - Thiam Leng Chew
- Department of Chemical Engineering, Faculty of Engineering, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia;
- CO2 Research Centre (COSRES), Institute of Contaminant Management, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
| |
Collapse
|
9
|
Augmenting CO 2 Absorption Flux through a Gas-Liquid Membrane Module by Inserting Carbon-Fiber Spacers. MEMBRANES 2020; 10:membranes10110302. [PMID: 33105658 PMCID: PMC7690431 DOI: 10.3390/membranes10110302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
We investigated the insertion of eddy promoters into a parallel-plate gas–liquid polytetrafluoroethylene (PTFE) membrane contactor to effectively enhance carbon dioxide absorption through aqueous amine solutions (monoethanolamide—MEA). In this study, a theoretical model was established and experimental work was performed to predict and to compare carbon dioxide absorption efficiency under concurrent- and countercurrent-flow operations for various MEA feed flow rates, inlet CO2 concentrations, and channel design conditions. A Sherwood number’s correlated expression was formulated, incorporating experimental data to estimate the mass transfer coefficient of the CO2 absorption in MEA flowing through a PTFE membrane. Theoretical predictions were calculated and validated through experimental data for the augmented CO2 absorption efficiency by inserting carbon-fiber spacers as an eddy promoter to reduce the concentration polarization effect. The study determined that a higher MEA feed rate, a lower feed CO2 concentration, and wider carbon-fiber spacers resulted in a higher CO2 absorption rate for concurrent- and countercurrent-flow operations. A maximum of 80% CO2 absorption efficiency enhancement was found in the device by inserting carbon-fiber spacers, as compared to that in the empty channel device. The overall CO2 absorption rate was higher for countercurrent operation than that for concurrent operation. We evaluated the effectiveness of power utilization in augmenting the CO2 absorption rate by inserting carbon-fiber spacers in the MEA feed channel and concluded that the higher the flow rate, the lower the power utilization’s effectiveness. Therefore, to increase the CO2 absorption flux, widening carbon-fiber spacers was determined to be more effective than increasing the MEA feed flow rate.
Collapse
|
10
|
Jiménez-Meneses P, Bañuls MJ, Puchades R, Maquieira Á. Novel and rapid activation of polyvinylidene fluoride membranes by UV light. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Lin YF, Lin YJ, Lee CC, Lin KYA, Chung TW, Tung KL. Synthesis of mechanically robust epoxy cross-linked silica aerogel membranes for CO 2 capture. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Nogalska A, Ammendola M, Tylkowski B, Ambrogi V, Garcia-Valls R. Ambient CO 2 adsorption via membrane contactors – Value of assimilation from air as nature stomata. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Zhao S, Feron PH, Deng L, Favre E, Chabanon E, Yan S, Hou J, Chen V, Qi H. Status and progress of membrane contactors in post-combustion carbon capture: A state-of-the-art review of new developments. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.03.051] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Performance evaluation and mass transfer study of CO2 absorption in flat sheet membrane contactor using novel porous polysulfone membrane. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-015-0027-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Bougie F, Iliuta I, Iliuta MC. Flat sheet membrane contactor (FSMC) for CO 2 separation using aqueous amine solutions. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.10.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
|
17
|
|
18
|
Mosadegh-Sedghi S, Rodrigue D, Brisson J, Iliuta MC. Wetting phenomenon in membrane contactors – Causes and prevention. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2013.09.055] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Ultra-hydrophobic modification of TiO2 nanoparticles via thermal decomposition of polytetrafluoroethylene. POWDER TECHNOL 2014. [DOI: 10.1016/j.powtec.2013.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Lin YF, Wang CS, Ko CC, Chen CH, Chang KS, Tung KL, Lee KR. Polyvinylidene fluoride/siloxane nanofibrous membranes for long-term continuous CO2 -capture with large absorption-flux enhancement. CHEMSUSCHEM 2014; 7:604-609. [PMID: 24194500 DOI: 10.1002/cssc.201300578] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/23/2013] [Indexed: 06/02/2023]
Abstract
In a CO2 membrane contactor system, CO2 passes through a hydrophobic porous membrane in the gas phase to contact the amine absorbent in the liquid phase. Consequently, additional CO2 gas is absorbed by amine absorbents. This study examines highly porous polyvinylidene fluoride (PVDF)/siloxane nanofibrous layers that are modified with hydrophobic fluoroalkylsilane (FAS) functional groups and successfully coated onto a macroporous Al2 O3 membrane. The performance of these materials in a membrane contactor system for CO2 absorption is also investigated. Compared with pristine PVDF nanofibrous membranes, the PVDF/siloxane nanofibrous membranes exhibit greater solvent resistance and mechanical strength, making them more suitable for use in CO2 capture by the membrane contactor. The PVDF/siloxane nanofibrous layer in highly porous FAS-modified membranes can prevent the wetting of the membrane by the amine absorbent; this extends the periods of continuous CO2 absorption and results in a high CO2 absorption flux with a minimum of 500 % enhancement over that of the uncoated membranes. This study suggests the potential use of an FAS-modified PVDF/siloxane nanofibrous membrane in a membrane contactor system for CO2 absorption. The resulting hydrophobic membrane contactor also demonstrates the potential for large-scale CO2 absorption during post-combustion processes in power plants.
Collapse
Affiliation(s)
- Yi-Feng Lin
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, 32023, Taiwan (R.O.C), Fax: (+886) 3-2654199.
| | | | | | | | | | | | | |
Collapse
|
21
|
Analysis of Laplace–Young equation parameters and their influence on efficient CO2 capture in membrane contactors. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.08.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Lin YF, Chen CH, Tung KL, Wei TY, Lu SY, Chang KS. Mesoporous fluorocarbon-modified silica aerogel membranes enabling long-term continuous CO2 capture with large absorption flux enhancements. CHEMSUSCHEM 2013; 6:437-442. [PMID: 23417984 DOI: 10.1002/cssc.201200837] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/27/2012] [Indexed: 06/01/2023]
Abstract
The use of a membrane contactor combined with a hydrophobic porous membrane and an amine absorbent has attracted considerable attention for the capture of CO2 because of its extensive use, low operational costs, and low energy consumption. The hydrophobic porous membrane interface prevents the passage of the amine absorbent but allows the penetration of CO2 molecules that are captured by the amine absorbent. Herein, highly porous SiO2 aerogels modified with hydrophobic fluorocarbon functional groups (CF3 ) were successfully coated onto a macroporous Al2 O3 membrane; their performance in a membrane contactor for CO2 absorption is discussed. The SiO2 aerogel membrane modified with CF3 functional groups exhibits the highest CO2 absorption flux and can be continuously operated for CO2 absorption for extended periods of time. This study suggests that a SiO2 aerogel membrane modified with CF3 functional groups could potentially be used in a membrane contactor for CO2 absorption. Also, the resulting hydrophobic SiO2 aerogel membrane contactor is a promising technology for large-scale CO2 absorption during the post-combustion process in power plants.
Collapse
Affiliation(s)
- Yi-Feng Lin
- Department of Chemical Engineering and R&D, Center for Membrane Technology, Chung Yuan Christian University, Chungli, 32023, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
23
|
Park JM, Kim M, Lee HJ, Jang A, Min J, Kim YH. Enhancing the Production of Rhodobacter sphaeroides-Derived Physiologically Active Substances Using Carbonic Anhydrase-Immobilized Electrospun Nanofibers. Biomacromolecules 2012; 13:3780-6. [DOI: 10.1021/bm3012264] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jae-Min Park
- Departmet of Microbiology, Chungbuk National University, 52 Naesudong-Ro, Heungduk-Gu,
Cheongju 361-763, South Korea
| | - Mina Kim
- Departmet of Microbiology, Chungbuk National University, 52 Naesudong-Ro, Heungduk-Gu,
Cheongju 361-763, South Korea
| | - Hyun Jeong Lee
- Graduate School of Semiconductor
and Chemical Engineering, Chonbuk National University, 664-14 Deokjin-dong, 1Ga Deokjin-Gu Jeonju 561-756, South Korea
| | - Am Jang
- School of Civil and Environmental
Engineering, SungKyunKwan University, Suwon
440-746, South Korea
| | - Jiho Min
- Graduate School of Semiconductor
and Chemical Engineering, Chonbuk National University, 664-14 Deokjin-dong, 1Ga Deokjin-Gu Jeonju 561-756, South Korea
| | - Yang-Hoon Kim
- Departmet of Microbiology, Chungbuk National University, 52 Naesudong-Ro, Heungduk-Gu,
Cheongju 361-763, South Korea
| |
Collapse
|