1
|
Removal of Bromine from Polymer Blends with a Composition Simulating That Found in Waste Electric and Electronic Equipment through a Facile and Environmentally Friendly Method. Polymers (Basel) 2023; 15:polym15030709. [PMID: 36772010 PMCID: PMC9919020 DOI: 10.3390/polym15030709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The increasing volume of plastics from waste electric and electronic equipment (WEEE) nowadays is of major concern since the various toxic compounds that are formed during their handling enhance the difficulties in recycling them. To overcome these problems, this work examines solvent extraction as a pretreatment method, prior to thermochemical recycling by pyrolysis. The aim is to remove bromine from some polymeric blends, with a composition that simulates WEEE, in the presence of tetrabromobisphenol A (TBBPA). Various solvents-isopropanol, ethanol and butanol-as well as several extraction times, were investigated in order to find the optimal choice. Before and after the pretreatment, blends were analysed by X-ray fluorescence (XRF) to estimate the total bromine content. Blends were pyrolyzed before and after the soxhlet extraction in order to evaluate the derived products. FTIR measurements of the polymeric blends before and after the soxhlet extraction showed that their structure was maintained. From the results obtained, it was indicated that the reduction of bromine was achieved in all cases tested and it was ~34% for blend I and ~46% and 42% for blend II when applying a 6 h soxhlet with isopropanol and ethanol, respectively. When using butanol bromine was completely eliminated, since the reduction reached almost 100%. The latter finding is of great importance, since the complete removal of bromine enables the recycling of pure plastics. Therefore, the main contribution of this work to the advancement of knowledge lies in the use of a solvent (i.e., butanol) which is environmentally friendly and with a high dissolving capacity in brominated compounds, which can be used in a pretreatment stage of plastic wastes before it is recycled by pyrolysis.
Collapse
|
2
|
|
3
|
Charitopoulou MA, Kalogiannis KG, Lappas AA, Achilias DS. Novel trends in the thermo-chemical recycling of plastics from WEEE containing brominated flame retardants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59190-59213. [PMID: 32638300 DOI: 10.1007/s11356-020-09932-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/29/2020] [Indexed: 05/28/2023]
Abstract
The amount of plastics from waste electric and electronic equipment (WEEE) has enormously increased nowadays, due to the rapid expansion and consumption of electronic devices and their short lifespan. This, in combination with their non-biodegradability, led to the need to explore environmentally friendly solutions for their safe disposal. One main obstacle when recycling plastics from WEEE is that they usually comprise harmful additives such as brominated flame retardants (BFRs) that need to be removed before or during their recycling. This paper reviews existing techniques for the recycling of plastics from WEEE and focuses specifically on the advantages, disadvantages, and challenges of pyrolysis as an environmentally friendly method for the production of value-added materials (monomers, hydrocarbons, phenols, etc.). Current technological trends available for the recycling of plastics containing brominated flame retardants are reviewed in an attempt to provide insights for future research on the sustainable management of plastics from WEEE. Emphasis is given on conventional pyrolysis, where a pretreatment step for the debromination of products is applied. This is required since brominated compounds treated at high temperatures may result in the production of harmful to health compounds such as dioxins. All current pretreatment methods (solvent extraction, supercritical fluid technology, etc.) are presented and compared in detail. Co-pyrolysis is also investigated, as it seems to be a very interesting approach, since no catalysts or solvents are used, and at the same time, more plastic wastes can be consumed as feedstock. Furthermore, catalytic pyrolysis along with key parameters, such as the type of the catalyst or pyrolysis temperature, are fully analyzed. Catalysts affect the products' distribution and enhance the removal of bromine from pyrolysis oils. Finally, an emerging technique, that of microwave-assisted pyrolysis, is also highlighted, as it offers many advantages over conventional pyrolysis. Of course, there are some impediments, such as the operational costs or other difficulties as regards the industrial implementation of the mentioned techniques that need to be overcome through future works.
Collapse
Affiliation(s)
- Maria Anna Charitopoulou
- Laboratory of Polymers and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Konstantinos G Kalogiannis
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, 57001 Thermi, Thessaloniki, Greece
| | - Angelos A Lappas
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, 57001 Thermi, Thessaloniki, Greece
| | - Dimitriοs S Achilias
- Laboratory of Polymers and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| |
Collapse
|
4
|
Tan F, Lu B, Liu Z, Chen G, Liu Y, Cheng F, Zhou Y. Identification and quantification of TBBPA and its metabolites in adult zebrafish by high resolution liquid chromatography tandem mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Han Q, Dong W, Wang H, Ma H, Gu Y, Tian Y. Degradation of tetrabromobisphenol A by a ferrate(vi)-ozone combination process: advantages, optimization, and mechanistic analysis. RSC Adv 2019; 9:41783-41793. [PMID: 35541608 PMCID: PMC9076470 DOI: 10.1039/c9ra07774j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/09/2019] [Indexed: 01/28/2023] Open
Abstract
This study systematically investigated the ferrate(vi)-ozone combination process for TBBPA degradation. Firstly, the advantages of a ferrate(vi)-ozone combination process were assessed as compared with a sole ozone and ferrate(vi) oxidation process. Then, the performance of the ferrate(vi)-ozone combination process was investigated under different experimental conditions, including the dosing orders of oxidants, dosing concentrations of oxidants, and the initial solution pH. At the same time, toxicity control (including the acute and chronic toxicity) and mineralization were analyzed after optimization. Finally, a mechanism was proposed about the synergetic effects of the ferrate(vi)-ozone combination process for decontamination. The ferrate(vi)-ozone combination process proved to be an efficient and promising technology for removing TBBPA from water. After being pre-oxidized by ferrate(vi) for 3 min and then co-oxidized by the two oxidants, TBBPA of 1.84 μmol L-1 could be completely degraded by dosing only 0.51 μmol L-1 of ferrate(vi) and 10.42 μmol L-1 of ozone within 10 min in wide ranges of pH (5.0-11.0). Up to 91.3% of debromination rate and 80.5% of mineralization rate were obtained, respectively. In addition, no bromate was detected and the acute and chronic toxicity were effectively controlled. The analysis of the proposed mechanism showed that there might exist a superposition effect of the oxidation pathways. In addition, the interactions between the two oxidants were beneficial for the oxidation efficiency of ferrate(vi) and ozone, including the catalytic effect of ferrate(vi) intermediates on ozone and the oxidation of low-valent iron compounds by ozone and the generated ·OH radical.
Collapse
Affiliation(s)
- Qi Han
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China +86 755 26033482 +86 755 26033482
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China +86 755 26033482 +86 755 26033482.,Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control Shenzhen 518055 China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China +86 755 26033482 +86 755 26033482.,Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control Shenzhen 518055 China
| | - Hang Ma
- School of Architecture, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Yurong Gu
- School of Construction and Environmental Engineering, Shenzhen Polytechnic Shenzhen 518055 China
| | - Yu Tian
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China +86 755 26033482 +86 755 26033482
| |
Collapse
|
6
|
Han Q, Dong W, Wang H, Ma H, Liu P, Gu Y, Fan H, Song X. Degradation of tetrabromobisphenol a by ozonation: Performance, products, mechanism and toxicity. CHEMOSPHERE 2019; 235:701-712. [PMID: 31279120 DOI: 10.1016/j.chemosphere.2019.06.204] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/05/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
This study systematically investigated the performance of ozonation on tetrabromobisphenol A (TBBPA) degradation under different ozone dosages (5.21-83.33 μmoL/L), initial solution pH (3.0-11.0) and temperatures (10-50 °C). At the same time, the generations of inorganic products (bromide ion and bromate) under different experimental conditions were evaluated and the organic products were also identified. Then, the possible mechanism was proposed and verified by the quantum chemical calculation. In addition, variations and controlling of the toxicity were also analyzed, including acute toxicity, chronic toxicity and genotoxicity. Ozonation was proved to be an efficient and promising technology for removing TBBPA from water. TBBPA of 1.84 μmoL/L could be completely degraded within 5 min under the ozone dosage of 41.67 μmoL/L in wide ranges of pH (3.0-11.0) and temperature (10-40 °C). During the degradation of TBBPA, over 65% of the average bromine ion was detected and nine products were identified. The proposed degradation pathways verified that TBBPA might undergo addition and stepwise oxidative debromination, the hydrogen extraction, and the deprotonation. The results of toxicity testing showed that ozonation could effectively control the acute and chronic toxicity of the water samples, although the toxicity increased in the initial reaction stage due to the accumulation of more toxic intermediates.
Collapse
Affiliation(s)
- Qi Han
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China.
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China.
| | - Hang Ma
- School of Architecture, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Peng Liu
- School of Environmental and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Yurong Gu
- School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Hongkai Fan
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Xin Song
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
7
|
Evangelopoulos P, Arato S, Persson H, Kantarelis E, Yang W. Reduction of brominated flame retardants (BFRs) in plastics from waste electrical and electronic equipment (WEEE) by solvent extraction and the influence on their thermal decomposition. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 94:165-171. [PMID: 29925487 DOI: 10.1016/j.wasman.2018.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/21/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Consumption of electronics increases due to modern society's growing needs, which leads to increasing generation of waste electrical and electronic equipment (WEEE). Recycling of WEEE has been a global concern during the last few decades because of the toxic compounds that are produced during recycling. Different recycling techniques have been adapted on a commercial scale in order to overcome this issue, but the recycling of WEEE still lacks the technology to treat different kinds of feedstocks and to maximise the recycling rates. Pyrolysis is an alternative that has not been commercialised yet. One of the challenges for the implementation of this technology is the toxic brominated organic compounds that can be found in the pyrolysis oils. In this study, tetrabromobisphenol A (TBBPA), one of the major flame retardants, is reduced in three different WEEE fractions through solvent extraction as a treatment prior to pyrolysis. Two solvents have been experimentally investigated: isopropanol and toluene, the latter of which can be derived from pyrolysis oil. The results indicate that TBBPA was extracted during pre-treatment. Moreover, the total bromine content of WEEE material was reduced after the treatment with a maximum reduction of 36.5%. The pyrolysis experiments indicate that reduction of several brominated organic compounds was achieved in almost all the tested cases, and two brominated compounds (2,4,6-tribromophenol and 2,5-Dibromobenzo(b)thiophene) reached complete removal. Also, the thermal decomposition behaviour of the raw samples and the treated was investigated, showing that the reduction of TBBPA influences the decomposition by shifting the starting decomposition temperature.
Collapse
Affiliation(s)
- Panagiotis Evangelopoulos
- Royal Institute of Technology (KTH), Department of Material Science and Engineering, Brinellvägen 23, 100 44 Stockholm, Sweden.
| | - Samantha Arato
- The City College of the City Universities of New York (CUNY), Department of Mechanical Engineering, New York, NY, USA
| | - Henry Persson
- Royal Institute of Technology (KTH), Department of Material Science and Engineering, Brinellvägen 23, 100 44 Stockholm, Sweden
| | - Efthymios Kantarelis
- Royal Institute of Technology (KTH), Department of Chemical Engineering, Teknikringen 42, 100 44 Stockholm, Sweden
| | - Weihong Yang
- Royal Institute of Technology (KTH), Department of Material Science and Engineering, Brinellvägen 23, 100 44 Stockholm, Sweden
| |
Collapse
|
8
|
Liu A, Zhao Z, Qu G, Shen Z, Liang X, Shi J, Jiang G. Identification of transformation/degradation products of tetrabromobisphenol A and its derivatives. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Zhong Y, Li D, Zhu X, Huang W, Peng P. Solvent effects on quantitative analysis of brominated flame retardants with Soxhlet extraction. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:1955-1964. [PMID: 28523590 DOI: 10.1007/s10653-017-9979-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Reliable quantifications of brominated flame retardants (BFRs) not only ensure compliance with laws and regulations on the use of BFRs in commercial products, but also is key for accurate risk assessments of BFRs. Acetone is a common solvent widely used in the analytical procedure of BFRs, but our recent study found that acetone can react with some BFRs. It is highly likely that such reactions can negatively affect the quantifications of BFRs in environmental samples. In this study, the effects of acetone on the extraction yields of three representative BFRs [i.e., decabrominated diphenyl ether (decaBDE), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA)] were evaluated in the Soxhlet extraction (SE) system. The results showed that acetone-based SE procedure had no measureable effect for the recovery efficiencies of decaBDE but could substantially lower the extraction yields for both TBBPA and HBCD. After 24 h of extraction, the recovery efficiencies of TBBPA and HBCD by SE were 93 and 78% with acetone, 47 and 70% with 3:1 acetone:n-hexane, and 82 and 94% with 1:1 acetone:n-hexane, respectively. After 72 h of extraction, the extraction efficiencies of TBBPA and HBCD decreased to 68 and 55% with acetone, 0 and 5% with 3:1 acetone/n-hexane mixtures, and 0 and 13% with 1:1 acetone/n-hexane mixtures, respectively. The study suggested that the use of acetone alone or acetone-based mixtures should be restricted in the quantitative analysis of HBCD and TBBPA. We further evaluated nine alternative solvents for the extraction of the three BFRs. The result showed that diethyl ether might be reactive with HBCD and may not be considered as the alternative to acetone used solvents for the extraction of HBCD.
Collapse
Affiliation(s)
- Yin Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou, 510640, China.
| | - Dan Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xifen Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14, College Farm Road, New Brunswick, NJ, 08901, USA
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou, 510640, China
| |
Collapse
|
10
|
Han Q, Dong W, Wang H, Liu T, Tian Y, Song X. Degradation of tetrabromobisphenol A by ferrate(VI) oxidation: Performance, inorganic and organic products, pathway and toxicity control. CHEMOSPHERE 2018; 198:92-102. [PMID: 29421765 DOI: 10.1016/j.chemosphere.2018.01.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
This study systematically investigated the degradation of tetrabromobisphenol A (TBBPA) by ferrate (VI) oxidation. The reaction kinetics between ferrate (VI) with TBBPA were studied under pseudo-first-order conditions in the pH range 5.5-10.5. Then, a series of batch experiments were carried out to investigate other factors, including the ferrate (VI) dosage, temperature and interfering ions. Additionally, the generation of inorganic products (bromide ion and bromate) was evaluated. The organic intermediates were identified, and possible pathways were proposed. In addition, the toxicity variation was analyzed with marine luminous bacteria (V. fischeri). Degradation of TBBPA by ferrate (VI) oxidation was confirmed to be an effective and environmentally friendly technique. The reaction was fitted with a second-order rate model. With a ferrate (VI) dosage of 25.25 μmol/L, TBBPA concentration of 1.84 μmol/L, an initial pH of 7.0, and a temperature of 25 °C, a 99.06% TBBPA removal was achieved within 30 min. The evaluation of inorganic products showed that the capacity of ferrate (VI) oxidation to yield bromide ions was relatively strong and could prevent the formation of bromate compared to photocatalytic and mechanochemical techniques. Eleven intermediates were identified, and the proposed degradation pathway indicated that TBBPA might undergo debromination, beta scission, substitution, deprotonation and oxidation. The results of toxicity testing showed that ferrate (VI) could effectively control the toxicity of the treated samples, although the toxicity increased in the initial reaction stage due to the accumulation and destruction of more toxic intermediates.
Collapse
Affiliation(s)
- Qi Han
- School of Civil and Environment Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Wenyi Dong
- School of Civil and Environment Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China.
| | - Hongjie Wang
- School of Civil and Environment Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China.
| | - Tongzhou Liu
- School of Civil and Environment Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China
| | - Yu Tian
- School of Civil and Environment Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xin Song
- School of Civil and Environment Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
11
|
Li D, Zhu X, Zhong Y, Huang W, Peng P. Abiotic transformation of hexabromocyclododecane by sulfidated nanoscale zerovalent iron: Kinetics, mechanism and influencing factors. WATER RESEARCH 2017; 121:140-149. [PMID: 28527388 DOI: 10.1016/j.watres.2017.05.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Recent studies showed that sulfidated nanoscale zerovalent iron (S-nZVI) is a better reducing agent than nanoscale zerovalen iron (nZVI) alone for reductive dechlorination of several organic solvents such as trichloroethylene (TCE) due to the catalytic role of iron sulfide (FeS). We measured the rates of transformation of hexabromocyclododecane (HBCD) by S-nZVI and compared them to those by FeS, nZVI, and reduced sulfur species. The results showed that: i) HBCD (20 mg L-1) was almost completely transformed by S-nZVI (0.5 g L-1) within 12 h; ii) the reaction with β-HBCD was much faster than with α- and γ-HBCD, suggesting the diastereoisomeric selectivity for the reaction by S-nZVI; and iii) the reaction with S-nZVI was 1.4-9.3 times faster than with FeS, S2- and nZVI, respectively. The study further showed that the HBCD reaction by S-nZVI was likely endothermic, with the optimal solution pH of 5.0, and could be slowed in the presence of Ca2+, Mg2+, NO3-, HCO3- and Cl-, and by increasing ionic strength, solvent content and initial HBCD concentration, or decreasing the S-nZVI dosage. GC-MS analysis showed that tetrabromocyclododecene and dibromocyclododecadiene were the products. XPS spectra indicated that both Fe(II) and S(-II) on the S-nZVI surface were oxidized during the reaction, suggesting that FeS might act as both catalyst and reactant. The study not only demonstrated the superiority of S-nZVI over other well-known reactive reagents, but also provided insight to the mechanisms of the reaction.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xifen Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China.
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China
| |
Collapse
|
12
|
Yu Y, Li L, Li H, Yu X, Zhang Y, Wang Q, Zhou Z, Gao D, Ye H, Lin B, Ma R. In vivo assessment of dermal adhesion, penetration, and bioavailability of tetrabromobisphenol A. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:305-310. [PMID: 28550799 DOI: 10.1016/j.envpol.2017.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Individuals are exposed to brominated flame retardants (BFRs), including tetrabromobisphenol A (TBBPA), on a daily basis because of their widespread usage. These compounds may have adverse effects on human health. In the present study, dermal absorption experiments were conducted in vivo to predict the adhesion, penetration, and bioavailability of TBBPA. TBBPA was administered to Wistar rats for 6 h by repeated dermal exposure at doses of 20, 60, 200, and 600 mg of TBBPA per kg of body weight (bw). The skin adhesion coefficient (AC) was calculated using a difference-value method and ranged from 0.12 to 3.25 mg/cm2 and 0.1 to 2.56 mg/cm2 for the male and female rats, respectively. The adhesion rate was 70.92%. According to Fick's first law of diffusion, the diffusion constant (D) was 1.4 × 10-4 cm2/h and the permeation coefficient (Kp) was 1.26 × 10-5 cm/h for TBBPA. TBBPA levels in the blood, urine, and feces of the male rats were significantly higher than those in the female rats. The dermal bioavailability of TBBPA was 24.71% for male rats and 20.05% for female rats 24 h after exposure.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, MEP, Guangzhou 510535, China.
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, MEP, Guangzhou 510535, China
| | - Hongyan Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, MEP, Guangzhou 510535, China
| | - Xiaowei Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, MEP, Guangzhou 510535, China
| | - Yanping Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Environmental Health and Related Product Safety, China CDC, Beijing 100021, China
| | - Zhixiang Zhou
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Dandan Gao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, MEP, Guangzhou 510535, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hao Ye
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, MEP, Guangzhou 510535, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bigui Lin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, MEP, Guangzhou 510535, China
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, MEP, Guangzhou 510535, China
| |
Collapse
|
13
|
He M, Li X, Zhang S, Sun J, Cao H, Wang W. Mechanistic and kinetic investigation on OH-initiated oxidation of tetrabromobisphenol A. CHEMOSPHERE 2016; 153:262-269. [PMID: 27018518 DOI: 10.1016/j.chemosphere.2016.03.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/17/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Detailed mechanism of the OH-initiated transformation of tetrabromobisphenol A (TBBPA) has been investigated by quantum chemical methods in this paper. Abstraction reactions of hydrogen atoms from the OH groups and CH3 groups of TBBPA are the dominant pathways of the initial reactions. The produced phenolic-type radical and alkyl-type radical may transfer to 4,4'-(ethene-1,1-diyl)bis(2,6-dibromophenol), 4-acetyl-2,6-dibromophenol and 2,6-dibromobenzoquinone at high temperature. In water, major products are 2,6-dibromo-p-hydroquinone, 4-isopropylene-2,6-dibromophenol and 4-(2-hydroxyisopropyl)-2,6-dibromophenol resulting from the addition reactions. Total rate constants of the initial reaction are 1.02 × 10(-12) cm(3) molecule(-1) s(-1) in gas phase and 1.93 × 10(-12) cm(3) molecule(-1) s(-1) in water at 298 K.
Collapse
Affiliation(s)
- Maoxia He
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| | - Xin Li
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| | - Shiqing Zhang
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| | - Jianfei Sun
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| | - Haijie Cao
- Environment Research Institute, Shandong University, Jinan, 250100, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| |
Collapse
|
14
|
Development of a low-density-solvent dispersive liquid-liquid microextraction with gas chromatography and mass spectrometry method for the quantitation of tetrabromobisphenol-A from dust. J Sep Sci 2015; 38:2503-9. [DOI: 10.1002/jssc.201500205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/30/2015] [Accepted: 04/21/2015] [Indexed: 11/07/2022]
|
15
|
Wang X, Hu X, Zhang H, Chang F, Luo Y. Photolysis Kinetics, Mechanisms, and Pathways of Tetrabromobisphenol A in Water under Simulated Solar Light Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6683-6690. [PMID: 25936366 DOI: 10.1021/acs.est.5b00382] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The photolysis of tetrabromobisphenol A (TBBPA) in aqueous solution under simulated solar light irradiation was studied under different conditions to find out mechanisms and pathways that control the transformation of TBBPA during photoreaction. Particular attention was paid to the identification of intermediates and elucidation of the photolysis mechanism of TBBPA by UPLC, LC/MS, FT-ICR-MS, NMR, ESR, and stable isotope techniques ((13)C and (18)O). The results showed that the photolysis of TBBPA could occur under simulated solar light irradiation in both aerated and deaerated conditions. A magnetic isotope effect (MIE)-hydrolysis transformation was proposed as the predominant pathway for TBBPA photolysis in both cases. 2,6-Dibromophenol and two isopropylphenol derivatives were identified as photooxidation products of TBBPA by singlet oxygen. Reductive debromination products tribromobisphenol A and dibromobisphenol A were also observed. This is the first report of a photolysis pathway involving the formation of hydroxyl-tribromobisphenol A.
Collapse
Affiliation(s)
- Xiaowen Wang
- †Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China
- ‡University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xuefeng Hu
- †Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China
- ‡University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hua Zhang
- †Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China
- ‡University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Fei Chang
- §School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Yongming Luo
- †Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China
- ‡University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
16
|
Cruz R, Cunha SC, Casal S. Brominated flame retardants and seafood safety: a review. ENVIRONMENT INTERNATIONAL 2015; 77:116-31. [PMID: 25700249 DOI: 10.1016/j.envint.2015.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 12/29/2014] [Accepted: 01/04/2015] [Indexed: 05/13/2023]
Abstract
Brominated flame retardants (BFRs), frequently applied to industrial and household products to make them less flammable, are highly persistent in the environment and cause multi-organ toxicity in human and wildlife. Based on the review of BFRs presence in seafood published from 2004 to 2014, it is clear that such pollutants are not ideally controlled as the surveys are too restricted, legislation inexistent for some classes, the analytical methodologies diversified, and several factors as food processing and eating habits are generally overlooked. Indeed, while a seafood rich diet presents plenty of nutritional benefits, it can also represent a potential source of these environmental contaminants. Since recent studies have shown that dietary intake constitutes a main route of human exposure to BFRs, it is of major importance to review and enhance these features, since seafood constitutes a chief pathway for human exposure and biomagnification of priority environmental contaminants. In particular, more objective studies focused on the variability factors behind contamination levels, and subsequent human exposure, are necessary to support the necessity for more restricted legislation worldwide.
Collapse
Affiliation(s)
- Rebeca Cruz
- REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sara C Cunha
- REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Susana Casal
- REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
17
|
Zhong Y, Li D, Mao Z, Huang W, Peng P, Chen P, Mei J. Kinetics of tetrabromobisphenol A (TBBPA) reactions with H₂SO₄, HNO₃ and HCl: implication for hydrometallurgy of electronic wastes. JOURNAL OF HAZARDOUS MATERIALS 2014; 270:196-201. [PMID: 24594840 DOI: 10.1016/j.jhazmat.2014.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 06/03/2023]
Abstract
Hydrometallurgy is an acid leaching based process widely used for recovering precious metals from electronic wastes (e-wastes). The effects of acid leaching on the fate of brominated flame retardants (BFRs) in typical hydrometallurgical processes remain largely unknown. This study was aimed at evaluating the fate of tetrabromobisphenol A (TBBPA), a commonly used BFR, in three acid leaching reagents (i.e. H2SO4, HNO3, and HCl) commonly used in hydrometallurgy. It was found that the reactions of TBBPA with concentrated H2SO4 followed a pseudo-zero-order rate and the reaction rates declined rapidly as the concentrations of H2SO4 decreased. In contrast, TBBPA could be easily transformed in less concentrated HNO3 solutions (<21.7 wt%) and the reactions followed a pseudo-first-order rate. The reaction products identified by GC-MS indicated different transformation pathways of TBBPA in H2SO4 and HNO3. HCl or HCl/H2SO4 mixtures (3:1, v/v) did not appear to react with TBBPA, while aqua regia (3:1 HCl/HNO3, v/v) reacted violently with TBBPA and led to almost complete disappearance of TBBPA within a minute. It suggested that HNO3 significantly affected the fate of TBBPA and the use of HNO3 as leaching reagents in hydrometallurgy of e-wastes should be carefully evaluated. Collectively, our findings of distinct fate of TBBPA in different acid leaching reagents provided fundamental information for design of hydrometallurgical treatment of e-wastes to minimize acid reactions with BFRs within plastics matrix and to maximize acid leaching efficiency for metals recycling processes.
Collapse
Affiliation(s)
- Yin Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China
| | - Dan Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Mao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick 08901, NJ, USA
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China.
| | - Pei Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Mei
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China; Department of Chemistry, Guangdong Medical College, Dongguan 523808, China
| |
Collapse
|
18
|
Huang Q, Liu W, Peng P, Huang W. Reductive dechlorination of tetrachlorobisphenol A by Pd/Fe bimetallic catalysts. JOURNAL OF HAZARDOUS MATERIALS 2013; 262:634-641. [PMID: 24121629 DOI: 10.1016/j.jhazmat.2013.09.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 08/28/2013] [Accepted: 09/07/2013] [Indexed: 06/02/2023]
Abstract
The Pd/Fe bimetallic catalysts of micron sizes were synthesized and the rates of tetrachlorobisphenol A (TCBPA) degradation were measured under various conditions using a batch reactor system. The results showed that TCBPA was rapidly dechlorinated to tri-, di- and mono-chlorobisphenol A and to bisphenol A (BPA). The observed rate constants (k(obs)) were found to increase as functions of the Pd coverage on the Fe particles and the dosages of the catalysts within the reactors. The k(obs) value decreased as the initial TCBPA concentration increased, suggesting that the TCBPA dechlorination may follow a surface-site limiting Langmuir-Hinshelwood rate model. The weakly acidic solution, especially at or near pH 6.0, also favored the dechlorination of TCBPA. At pH 6.0, Pd coverage of 0.04 4 wt% and catalyst dosage of 5 g L(-1), TCBPA with an initial concentration of 20 μM was completely transformed within 60 min, and BPA was detected as the major product through the reaction time. Meanwhile, the k(obs) values measured at constant solution pH correlated linearly with the mass of particle-bound Pd introduced to the reactors, regardless of Pd/Fe catalyst dosage or Pd surface coverage. This study suggested that Pd/Fe catalysts could be potentially employed to rapidly degrade TCBPA in the contaminated environment.
Collapse
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States
| | | | | | | |
Collapse
|