1
|
Bi F, Bao Q, Liu H, Sun J, Dai W, Li A, Zhang J, He P. Molecular mechanisms underlying the effects of antibiotics on the growth and development of green tide algae Ulva prolifera. MARINE POLLUTION BULLETIN 2024; 209:117128. [PMID: 39432985 DOI: 10.1016/j.marpolbul.2024.117128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/28/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024]
Abstract
Different types of algae exhibit varied sensitivities to antibiotics, influencing their growth by eradicating epiphytic bacteria. This study explored the impact of co-culturing neomycin sulfate, polymyxin B, and penicillin G on the growth and development of Ulva prolifera gametophytes. The findings revealed a significant influence of antibiotics on the morphology, growth, chlorophyll fluorescence parameters, and CAT activity of U. prolifera. The 16S rDNA sequencing revealed a significant decrease in the abundance of Maribacter spp. after antibiotic treatment of U. prolifera. Antibiotic treatment caused up-regulation of genes related to cellulose synthase, tubulin, and ribosomal protein. Conversely, key genes in the DNA replication pathway, such as mcm and Polε, were down-regulated, influencing cell division and resulting in irregular algal shapes. The up-regulation of enzyme genes in the C3 and C4 pathways, CAT, and drug metabolism genes enhanced the antioxidant and photosynthetic capacities of U. prolifera, providing a certain resilience to stress.
Collapse
Affiliation(s)
- Fangling Bi
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qunjing Bao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hongtao Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jingyi Sun
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Dai
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Aiqin Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jianheng Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Leston S, Rosa J, Vila Pouca AS, Barbosa J, Pardal MA, Ramos F, Freitas A. Assessing pharmaceuticals in the green seaweed Ulva lactuca through a multi-residue UHPLC-ToF-MS strategy. MARINE POLLUTION BULLETIN 2023; 193:115266. [PMID: 37423080 DOI: 10.1016/j.marpolbul.2023.115266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Seaweeds have become an important asset in several sectors, including the food and feed industries, cosmetics, and pharmaceuticals, among others. Whether harvested or reared, interest in algae has been growing worldwide due to the resources they offer, including proteins, vitamins, minerals, carbohydrates, essential fatty acids, and dietary fiber, as well as sources of biologically active compounds. However, given their morphology and physiology, as well as their harvest and cultivation environments, algae are prone to the presence of hazards, including pharmaceuticals taken up from the water. Thus, to ensure human and animal safety as well as environmental health, monitoring is essential. Therefore, this work describes the development and validation of a sensitive screening and confirmatory analytical method based on ultra-high-performance liquid chromatography coupled with time-of-flight mass spectrometry (UHPLC-ToF-MS). This multi-residue method enables the determination of 62 pharmaceuticals distributed between 8 therapeutic classes and was fully validated according to Commission Implementing Regulation (EU) 2021/808.
Collapse
Affiliation(s)
- Sara Leston
- CFE - Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; REQUIMTE/LAQV, Rua D. Manuel II, Apartado, 55142 Porto, Portugal.
| | - João Rosa
- CFE - Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana Sofia Vila Pouca
- INIAV-LNIV, Instituto Nacional de Investigação Agrária e Veterinária, I.P. Quinta do Marquês, 2784-505 Oeiras, Portugal
| | - Jorge Barbosa
- REQUIMTE/LAQV, Rua D. Manuel II, Apartado, 55142 Porto, Portugal
| | - Miguel A Pardal
- CFE - Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Fernando Ramos
- REQUIMTE/LAQV, Rua D. Manuel II, Apartado, 55142 Porto, Portugal; Pharmacy Faculty, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Andreia Freitas
- REQUIMTE/LAQV, Rua D. Manuel II, Apartado, 55142 Porto, Portugal; INIAV-LNIV, Instituto Nacional de Investigação Agrária e Veterinária, I.P. Quinta do Marquês, 2784-505 Oeiras, Portugal
| |
Collapse
|
3
|
Couto E, Assemany PP, Assis Carneiro GC, Ferreira Soares DC. The potential of algae and aquatic macrophytes in the pharmaceutical and personal care products (PPCPs) environmental removal: a review. CHEMOSPHERE 2022; 302:134808. [PMID: 35508259 DOI: 10.1016/j.chemosphere.2022.134808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 04/02/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
The presence of emerging contaminants, such as pharmaceuticals and personal care products (PPCPs), in aquatic environments has received increasing attention in the last years due to the various possible impacts on the dynamics of the natural environment and human health. In global terms, around 771 active pharmaceutical substances or their transformation products have been detected at levels above their respective detection limit. Additionally, 528 different compounds have been detected in 159 countries. Seeking to overcome potential ecotoxicological problems, several studies have been conducted using different technologies for PPCPs removal. Recently, the use of macro, microalgae, and aquatic macrophytes has been highlighted due to the excellent bioremediation capacity of these organisms and easy acclimatization. Thus, the present review aims to outline a brief and well-oriented scenario concerning the knowledge about the bioremediation alternatives of PPCPs through the use of macro, microalgae, and aquatic macrophytes. The characteristics of PPCPs and the risks of these compounds to the environment and human health are also addressed. Moreover, the review indicates the opportunities and challenges for expanding the use of biotechnologies based on algae and aquatic macrophytes, such as studies dedicated to relate the operational criteria of these biotechnologies with the main PPCPs removal mechanisms. Finally, algae and macrophytes can compose green and ecological biotechnologies for wastewater treatment, having great contribution to PPCPs removal.
Collapse
Affiliation(s)
- Eduardo Couto
- Federal University of Itajuba, Institute of Pure and Applied Sciences, Campus Itabira. Rua Irmã Ivone Drumond, 200 Itabira, Minas Gerais, Brazil.
| | - Paula Peixoto Assemany
- Federal University of Lavras, Environmental Engineering Department, Campus Universitário, Lavras, Minas Gerais, Brazil
| | - Grazielle Cristina Assis Carneiro
- Federal University of Itajuba, Institute of Pure and Applied Sciences, Campus Itabira. Rua Irmã Ivone Drumond, 200 Itabira, Minas Gerais, Brazil
| | - Daniel Cristian Ferreira Soares
- Federal University of Itajuba, Institute of Pure and Applied Sciences, Campus Itabira. Rua Irmã Ivone Drumond, 200 Itabira, Minas Gerais, Brazil
| |
Collapse
|
4
|
Malea P, Emmanouilidis A, Kevrekidis DP, Moustakas M. Copper uptake kinetics and toxicological effects of ionic Cu and CuO nanoparticles on the seaweed Ulva rigida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57523-57542. [PMID: 35352227 DOI: 10.1007/s11356-022-19571-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Copper ion (Cu2+) and copper oxide (CuO) nanoparticle (NP) ecotoxicity are of increasing concern as they are considered to be a potential risk to marine systems. This study represents the first attempt to evaluate CuO NP impacts on the seaweeds and Cu2+ on the chlorophyte Ulva rigida. Effects on oxidative stress, antioxidant defence markers, photosystem II function, thalli growth, and cell viability in U. rigida exposed for 4 up 72 h to1 and 5 mg L-1 Cu2+ and CuO NPs were examined. Hydrogen peroxide (H2O2) generation, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and growth inhibition seemed to be reliable and early warning markers of toxicity. The most important variables of the principal component analysis (PCA): H2O2 generation, antioxidant stress markers, and growth-based toxicity index, were higher at 1 mg L-1 CuO NPs compared to CuSO4 and at 5 mg L-1 CuSO4 compared to CuO NPs. Intracellular uptake kinetics fit well to the Michaelis-Menten equation. The higher toxicity at 5 mg L-1 CuSO4 compared to 1 mg L-1 was due to the higher Cu uptake with increasing concentration, suggesting and higher accumulation ability. On the contrary, 1 mg L-1 CuO NPs induced more strongly toxicity effects than 5 mg L-1. The relatively stronger effect of CuO NPs at 1 mg L-1 than the respective CuSO4 concentration could be attributed to the higher rate of initial uptake (Vc) and the mean rate of Cu uptake [Cmax/(2 × Km)] at CuO NP treatment. The intracellular seaweed experimental threshold of Cu, which coincided with the onset of oxidative stress, was within the Cu concentration range recorded in Mediterranean Ulva spp., indicating that it may pose a substantial risk to marine environments.
Collapse
Affiliation(s)
- Paraskevi Malea
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Macedonia, Greece.
| | - Antonios Emmanouilidis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Macedonia, Greece
| | - Dimitrios Phaedon Kevrekidis
- Laboratory of Forensic Medicine and Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Macedonia, Greece
| |
Collapse
|
5
|
Areco MM, Salomone VN, Afonso MDS. Ulva lactuca: A bioindicator for anthropogenic contamination and its environmental remediation capacity. MARINE ENVIRONMENTAL RESEARCH 2021; 171:105468. [PMID: 34507027 DOI: 10.1016/j.marenvres.2021.105468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 05/27/2023]
Abstract
Coastal regions are subjected to degradation due to anthropogenic pollution. Effluents loaded with variable concentrations of heavy metal, persistent organic pollutant, as well as nutrients are discharged in coastal areas leading to environmental degradation. In the past years, many scientists have studied, not only the effect of different contaminants on coastal ecosystems but also, they have searched for organisms tolerant to pollutants that can be used as bioindicators or for biomonitoring purposes. Furthermore, many researchers have demonstrated the capacity of different marine organisms to remove heavy metals and persistent organic pollutants, as well as to reduce nutrient concentration, which may lead to eutrophication. In this sense, Ulva lactuca, a green macroalgae commonly found in coastal areas, has been extensively studied for its capacity to accumulate pollutants; as a bioindicator; as well as for its remediation capacity. This paper aims to review the information published regarding the use of Ulva lactuca in environmental applications. The review was focused on those studies that analyse the role of this macroalga as a biomonitor or in bioremediation experiments.
Collapse
Affiliation(s)
- María M Areco
- Instituto de Investigación e Ingeniería Ambiental -IIIA, UNSAM, CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. CONICET, Argentina.
| | - Vanesa N Salomone
- Instituto de Investigación e Ingeniería Ambiental -IIIA, UNSAM, CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. CONICET, Argentina
| | - María Dos Santos Afonso
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria Pabellón II 3er Piso, Int. Guiraldes, 2160, C1428EHA Ciudad Autónoma de, Buenos Aires, Argentina
| |
Collapse
|
6
|
Bhattacharyya P, Basak S, Chakrabarti S. Advancement towards Antibiotic Remediation: Heterostructure and Composite materials. ChemistrySelect 2021. [DOI: 10.1002/slct.202100436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Puja Bhattacharyya
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| | - Sanchari Basak
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| | - Sandip Chakrabarti
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| |
Collapse
|
7
|
Mohammad W, Mohammed T, El-Wakeil KA, Hassan MM. Effects of combined treatment of cadmium and oxytetracycline on the terrestrial isopod Porcellio leavis. BRAZ J BIOL 2021; 82:e246979. [PMID: 34133578 DOI: 10.1590/1519-6984.246979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/01/2021] [Indexed: 11/22/2022] Open
Abstract
The influence of pharmaceutical residues and heavy metals on living organisms has received global attention. The present study assessed the interactive effect of antibiotic residues and heavy metals in soil, as contaminated food with cadmium (Cd) and oxytetracycline (OTC) on the isopod Porcellio leavis. It was fed on fresh plant leaves contaminated with different concentrations of cadmium, Cd+OTC1000 ppm, Cd+OTC2000 ppm and Cd+OTC3000 ppm for 4 weeks. The changes in the feeding patterns, protein, lipid peroxidation (LPO), catalase activity (CAT), and total free amino acids (TFAA) were recorded. There were significant differences in the obtained results where Cd reduced the egestion ratio (ER) however, OTC enhanced this ratio. Biochemical analysis illustrated that combination between OTC and Cd inhibits the toxic effects of Cd at low concentration (1000 ppm), while at high concentration (3000 ppm) raise the toxicity. Detailed studies are required for further understanding of the interaction between OTC and heavy metals, and also its impact on soil animals and for improving soil risk evaluation.
Collapse
Affiliation(s)
- W Mohammad
- New valley University, Faculty of Science, Zoology Department, New valley, Egypt
| | - T Mohammed
- Assiut University, Zoology and Entomology Department, Faculty of Science, Assiut, Egypt
| | - K A El-Wakeil
- Assiut University, Zoology and Entomology Department, Faculty of Science, Assiut, Egypt
| | - M M Hassan
- Taif University, Faculty of Science, Department of Biology, Taif, Saudi Arabia.,Ain Shams University, Faculty of Science, Zoology Department, Cairo, Egypt
| |
Collapse
|
8
|
González A, Espinoza D, Vidal C, Moenne A. Benzopyrene induces oxidative stress and increases expression and activities of antioxidant enzymes, and CYP450 and GST metabolizing enzymes in Ulva lactuca (Chlorophyta). PLANTA 2020; 252:107. [PMID: 33206238 DOI: 10.1007/s00425-020-03508-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Benzopyrene is rapidly incorporated and metabolized, and induces oxidative stress and activation of antioxidant enzymes, and CYP450 and GST metabolizing enzymes in Ulva lactuca. To analyze absorption and metabolism of benzo[a]pyrene (BaP) in Ulva lactuca, the alga was cultivated with 5 µM of BaP for 72 h. In the culture medium, BaP level rapidly decreased reaching a minimal level at 12 h and, in the alga, BaP level increased until 6 h, remained stable until 24 h, and decreased until 72 h indicating that BaP is being metabolized in U. lactuca. In addition, BaP induced an initial increase in hydrogen peroxide decreasing until 24 h, superoxide anions level that remained high until 72 h, and lipoperoxides that initially increased and decreased until 72 h, showing that BaP induced oxidative stress. Activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (AP), glutathione reductase (GR) and glutathione peroxidase (GP) were increased, whereas dehydroascorbate reductase (DHAR) activity was unchanged. The level of transcripts encoding these antioxidant enzymes was increased, but transcripts encoding DHAR remained unchanged. Interestingly, the activity of glutathione-S-transferase (GST) was also increased, and inhibitors of cytochrome P450 (CYP450) and GST activities enhanced the level of BaP in algal tissue, suggesting that these enzymes participate in BaP metabolism.
Collapse
Affiliation(s)
- Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago, Chile
| | - Daniela Espinoza
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago, Chile
| | - Constanza Vidal
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago, Chile.
| |
Collapse
|
9
|
From Laboratory Tests to the Ecoremedial System: The Importance of Microorganisms in the Recovery of PPCPs-Disturbed Ecosystems. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The presence of a wide variety of emerging pollutants in natural water resources is an important global water quality challenge. Pharmaceuticals and personal care products (PPCPs) are known as emerging contaminants, widely used by modern society. This objective ensures availability and sustainable management of water and sanitation for all, according to the 2030 Agenda. Wastewater treatment plants (WWTP) do not always mitigate the presence of these emerging contaminants in effluents discharged into the environment, although the removal efficiency of WWTP varies based on the techniques used. This main subject is framed within a broader environmental paradigm, such as the transition to a circular economy. The research and innovation within the WWTP will play a key role in improving the water resource management and its surrounding industrial and natural ecosystems. Even though bioremediation is a green technology, its integration into the bio-economy strategy, which improves the quality of the environment, is surprisingly rare if we compare to other corrective techniques (physical and chemical). This work carries out a bibliographic review, since the beginning of the 21st century, on the biological remediation of some PPCPs, focusing on organisms (or their by-products) used at the scale of laboratory or scale-up. PPCPs have been selected on the basics of their occurrence in water resources. The data reveal that, despite the advantages that are associated with bioremediation, it is not the first option in the case of the recovery of systems contaminated with PPCPs. The results also show that fungi and bacteria are the most frequently studied microorganisms, with the latter being more easily implanted in complex biotechnological systems (78% of bacterial manuscripts vs. 40% fungi). A total of 52 works has been published while using microalgae and only in 7% of them, these organisms were used on a large scale. Special emphasis is made on the advantages that are provided by biotechnological systems in series, as well as on the need for eco-toxicological control that is associated with any process of recovery of contaminated systems.
Collapse
|
10
|
|
11
|
Banach JL, Hoek‐van den Hil EF, Fels‐Klerx HJ. Food safety hazards in the European seaweed chain. Compr Rev Food Sci Food Saf 2020; 19:332-364. [DOI: 10.1111/1541-4337.12523] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/19/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023]
Affiliation(s)
- J. L. Banach
- Wageningen Food Safety ResearchWageningen University and Research Wageningen The Netherlands
| | - E. F. Hoek‐van den Hil
- Wageningen Food Safety ResearchWageningen University and Research Wageningen The Netherlands
| | - H. J. Fels‐Klerx
- Wageningen Food Safety ResearchWageningen University and Research Wageningen The Netherlands
| |
Collapse
|
12
|
Wang L, Zhang W, Wang J, Zhu L, Wang J, Yan S, Ahmad Z. Toxicity of enrofloxacin and cadmium alone and in combination to enzymatic activities and microbial community structure in soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2593-2606. [PMID: 31073945 DOI: 10.1007/s10653-019-00307-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Antibiotics and heavy metals have long-term potential toxicity to the environment, and their residuals in agricultural soils are receiving more and more attention. To evaluate the ecotoxicological effects of enrofloxacin and cadmium on soil enzymatic activities and microbial community structure, soil samples were exposed to individual and combined contaminants over 28 days. The results indicated that the toxic effects of enrofloxacin alone on soil enzymatic activities were relatively small and showed no concentration dependence. In contrast, significant inhibition of soil enzymatic activities was observed upon cadmium contamination by itself. Overall, the combination of two contaminants also has toxic effect on enzymatic activities; an antagonism between enrofloxacin and cadmium was observed. On 14 and 21 days, individual enrofloxacin and cadmium reduced average well color development (AWCD), Shannon, McIntosh, Simpson indices, and substrate utilization, except for Shannon, McIntosh, Simpson indices of the cadmium 0.4 mmol/kg treatment were higher than the control on 21 days. In general, combined treatments led to higher value of these microbial diversity indicators than those found under separate contamination, although there were some exceptions. With the increase in enrofloxacin concentration, the utilization of any carbon source by the microorganisms gradually decreased. In addition, the AWCD value and substrate utilization decreased as time increased. In the separate and combined contaminant treatments, the order of substrate utilization by soil microorganisms was aliphatics > amino acids > saccharides > metabolites. Thus, enrofloxacin and cadmium had a variable but generally negative influence on soil enzymatic activities and microbial community structure.
Collapse
Affiliation(s)
- Lanjun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Wenjie Zhang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China.
| | - Lusheng Zhu
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Jun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Saihong Yan
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Zulfiqar Ahmad
- State Key Laboratory of Water Resources and Water Hydropower Engineering Science, Wuhan University, Hubei, 430072, People's Republic of China
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| |
Collapse
|
13
|
Rosa J, Leston S, Freitas A, Vila Pouca AS, Barbosa J, Lemos MFL, Pardal MA, Ramos F. Oxytetracycline accumulation in the macroalgae Ulva: Potential risks for IMTA systems. CHEMOSPHERE 2019; 226:60-66. [PMID: 30913428 DOI: 10.1016/j.chemosphere.2019.03.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Oxytetracycline (OTC) is one of the most used antibiotics in aquaculture. With the development of Integrated Multitrophic Aquaculture (IMTA) systems in order to mitigate some aquacultures' adverse effects, attention needs to be shifted to other co-cultured species that can also accumulate such pharmaceuticals and pose a risk to human consumption. Therefore, the present work evaluated the exposure of the seaweed Ulva to OTC at two realistic concentrations (0.040 and 0.120 mg L-1). Oxytetracycline degradation rates in seawater were dependent on the initial concentration but were not influenced by the presence of Ulva. The macroalgae presented good assimilation rates of OTC, with internal concentrations reaching 40.9934 ng g-1 WW for the lowest concentration tested and 108.6787 ng g-1 WW for the highest, with a steep decrease after 48 and 24 h, respectively. Nonetheless, concentrations were still half of the Maximum Residue Limit set for fish (100 μg kg-1) 48 h after C2 treatment. The highest dosage tested stimulated growth 96 h after the beginning of the trial, although some signs of decay could also be found in Ulva's fronds.
Collapse
Affiliation(s)
- João Rosa
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; REQUIMTE/LAQV, Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Sara Leston
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; REQUIMTE/LAQV, Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Andreia Freitas
- REQUIMTE/LAQV, Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; INIAV, Portuguese National Institute for Agricultural and Veterinary Research, I.P., Rua dos Lagidos, Lugar da Madalena, 4485-655, Vairão, Vila do Conde, Portugal.
| | - Ana Sofia Vila Pouca
- INIAV, Portuguese National Institute for Agricultural and Veterinary Research, I.P., Rua dos Lagidos, Lugar da Madalena, 4485-655, Vairão, Vila do Conde, Portugal.
| | - Jorge Barbosa
- REQUIMTE/LAQV, Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; INIAV, Portuguese National Institute for Agricultural and Veterinary Research, I.P., Rua dos Lagidos, Lugar da Madalena, 4485-655, Vairão, Vila do Conde, Portugal.
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal.
| | - Miguel A Pardal
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Fernando Ramos
- REQUIMTE/LAQV, Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
14
|
Wang J, Wang L, Zhu L, Wang J. Individual and combined effects of enrofloxacin and cadmium on soil microbial biomass and the ammonia-oxidizing functional gene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:900-907. [PMID: 29274613 DOI: 10.1016/j.scitotenv.2017.12.096] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
The negative effects of residues from antibiotics and heavy metals in agricultural soils are becoming an increasingly frequent concern. To evaluate the toxicity and interaction of antibiotics and heavy metals, enrofloxacin (ENR) and cadmium (Cd) were used as targets to study the individual effects of ENR (0.025, 0.1, 0.4mmol/kg) and Cd (0.4mmol/kg) and their combined effects (mole ratios of ENR to Cd of 1: 1, 1: 4 and 1: 16) on soil microbial biomass and function on days 7, 14, 21 and 28 of the study. The results demonstrated that microbial populations, which were counted during 4 sampling periods, were mainly in the order of bacteria>actinomycetes>fungi. The ammonia monooxygenase (amoA) gene copies of ammonia-oxidizing archaea (AOA) were more abundant than ammonia-oxidizing bacteria (AOB) on days 14 and 21. Soil bacteria, fungi, and actinomycetes numbers and amoA gene abundances of AOB and AOA in soils were inhibited to varying degrees by the single and combined effects of ENR and Cd; the higher the concentration of the treatments, the stronger the inhibition. The combined toxicity of ENR and Cd on soil microbes and AOA- and AOB-amoA genes was stronger than when either chemical was used alone; the interaction effects of ENR and Cd were mainly antagonistic. Moreover, the ratios of bacteria/fungi declined significantly on days 14, 21 and 28; the proportions of AOA- and AOB-amoA were altered with the addition of ENR and Cd. Thus, ENR and Cd had significant negative effects on the soil microbial community, especially when both contaminants were present.
Collapse
Affiliation(s)
- Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China.
| | - Lanjun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
15
|
Wang L, Wang J, Zhu L, Wang J. Toxic effects of oxytetracycline and copper, separately or combined, on soil microbial biomasses. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:763-776. [PMID: 29027092 DOI: 10.1007/s10653-017-0022-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
The production of commercial livestock and poultry often involves using with antibiotics and feed additives, such as oxytetracycline (OTC) and copper (Cu). These are often excreted into the soil by animal feces; hence, combined pollutants may contaminate the soil. To evaluate single and combined toxic effects of OTC and Cu on the soil ecology, changes in quantities of bacteria, fungi, and actinomycetes in the soil were studied over a 28-d incubation period by a plate count method, microbes numbers counted on days 7, 14, 21, and 28. Abundances of ammonia monooxygenase (amoA) gene expression by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in soil samples also were tested by real-time polymerase chain reactions (RT-PCRs) on day 21. The results revealed that the numbers of bacteria, fungi and actinomycetes and amoA genes copies of AOA and AOB were reduced seriously by exposure to Cu (1.60 mmol/kg). Similarly, the combined pollution treatments (mole ratios of OTC: Cu was 1:2, 1:8, and 1:32) also had inhibitory effect on bacteria, fungi, and actinomycetes numbers and amoA gene copies of AOA and AOB; the inhibitory rate was on obvious growth trend with the increasing mole ratios. Effects from single OTC pollution were found on bacteria (days 7 and 14), fungi (days 7, 14, 21, and 28), and AOA-amoA gene copies (day 21), with promotion at a low concentration (0.05 mmol/kg) and suppression at higher concentrations (0.2 and 0.8 mmol/kg). Also, numbers of bacteria, fungi, and actinomycetes decreased with longer culture times. Combining OTC and Cu led to a higher inhibition of soil microbes than when either chemical was used alone. However, there was no significant relationship between single and combined toxic chemicals because of their complicated interactions, either antagonistic or synergistic. The results also indicated the sensitivity of bacteria, fungi, actinomycetes on toxic chemicals existed difference and that the AOA were more tolerant than the AOB to these chemicals.
Collapse
Affiliation(s)
- Lanjun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China.
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| |
Collapse
|
16
|
Liu L, Wu W, Zhang J, Lv P, Xu L, Yan Y. Progress of research on the toxicology of antibiotic pollution in aquatic organisms. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.chnaes.2018.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Yeom JR, Yoon SU, Kim CG. Quantification of residual antibiotics in cow manure being spread over agricultural land and assessment of their behavioral effects on antibiotic resistant bacteria. CHEMOSPHERE 2017; 182:771-780. [PMID: 28535485 DOI: 10.1016/j.chemosphere.2017.05.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/09/2017] [Accepted: 05/13/2017] [Indexed: 06/07/2023]
Abstract
Antibiotic resistant bacteria (ARB) in livestock manure used as fertilizer and spread over agriculture land, may pose a threat to the health of humans. Considering this, the concentrations of tetracycline (TC), oxytetracycline (OTC), and sulfathiazole (STZ) in the surface soil were quantified using LC-MS. These antibiotics have been used in livestock and are found in fertilizer produced from livestock excretions. Species of ABR were identified using 16S rDNA. Soil samples were collected at depths of 0, 7, and 15 cm from farmland in Incheon (South Korea). In the surface soil, three compounds were detected: TC (17.74 μg/kg), OTC (0.78 μg/kg), and STZ (0.23 μg/kg). However, except for STZ, antibiotics were not detected in the deeper samples. Overall, TC can form a chelated complex with cations, which consequently enhances its adsorption to the organic matter and metals in soil. This property can significantly reduce the mobility of TC (to lower than that of STZ). The result of 16S rDNA gene analysis indicated that Pseudomonas spp., Arthrobacter spp., and Rhodococcus spp. showed persistent resistance to the three antibiotics tested. DNA quantification results revealed strong resistance of Pseudomonas spp. to STZ, whereas Arthrobacter spp. and Rhodococcus spp. had resistance to TC and OTC. Antibiotics biodegradation suggested ability of ARB to grow in soil samples in presence of residual antibiotics during 13 days incubation. The concentrations of STZ, TC, and OTC reduced as much as 23.53, 35.60 and 66.88%, respectively.
Collapse
Affiliation(s)
- Ji-Ran Yeom
- Department of Environment Engineering, INHA University, Incheon, South Korea
| | - Soon-Uk Yoon
- Department of Environment Engineering, INHA University, Incheon, South Korea
| | - Chang-Gyun Kim
- Department of Environment Engineering, INHA University, Incheon, South Korea.
| |
Collapse
|
18
|
A multiresidue approach for the simultaneous quantification of antibiotics in macroalgae by ultra-high performance liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:361-367. [DOI: 10.1016/j.jchromb.2016.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/15/2016] [Accepted: 09/06/2016] [Indexed: 01/31/2023]
|
19
|
Borecka M, Białk-Bielińska A, Haliński ŁP, Pazdro K, Stepnowski P, Stolte S. The influence of salinity on the toxicity of selected sulfonamides and trimethoprim towards the green algae Chlorella vulgaris. JOURNAL OF HAZARDOUS MATERIALS 2016; 308:179-186. [PMID: 26835894 DOI: 10.1016/j.jhazmat.2016.01.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
This paper presents the investigation of the influence of salinity variations on the toxicity of sulfapyridine, sulfamethoxazole, sulfadimethoxine and trimethoprim towards the green algae Chlorella vulgaris after exposure times of 48 and 72 h. In freshwater the EC50 values ranged from 0.98 to 123.22 mg L(-1) depending on the compound. The obtained results revealed that sulfamethoxazole and sulfapyridine were the most toxic, while trimethoprim was the least toxic pharmaceutical to the selected organism. Deviations between the nominal and real test concentrations were determined via instrumental analysis to support the interpretation of ecotoxicological data. The toxicity effects were also tested in saline water (3, 6 and 9 PSU). The tendency that the toxicity of selected pharmaceuticals decreases with increasing salinity was observed. Higher salinity implies an elevated concentration of inorganic monovalent cations that are capable of binding with countercharges available on algal surfaces (hydroxyl functional groups). Hence it can reduce the permeability of pharmaceuticals through the algal cell walls, which could be the probable reason for the observed effect. Moreover, for the classification of the mode of toxic action, the toxic ratio concept was applied, which indicated that the effects of the investigated drugs towards algae are caused by the specific mode of toxic action.
Collapse
Affiliation(s)
- Marta Borecka
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Łukasz P Haliński
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Ksenia Pazdro
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Stefan Stolte
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; Center for Environmental Research and Sustainable Technology, University of Bremen, LeobenerStraße, D-28359 Bremen, Germany
| |
Collapse
|
20
|
Du Y, Zhang S, Guo R, Chen J. Understanding the algal contribution in combined UV-algae treatment to remove antibiotic cefradine. RSC Adv 2015. [DOI: 10.1039/c5ra10806c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of this study is to investigate the algal contribution in a combined UV-algae treatment to remove the commonly used antibiotic cefradine.
Collapse
Affiliation(s)
- Yingxiang Du
- China Pharmaceutical University
- Nanjing
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)
- Nanjing 210009
| | | | - Ruixin Guo
- China Pharmaceutical University
- Nanjing
- China
| | | |
Collapse
|
21
|
Du Y, Feng Y, Guo R, Chen J. Enhancement by the artificial controlled culture for the algal treatment of antibiotic ceftazidime: a three-step response performance and high-removal efficiency. RSC Adv 2015. [DOI: 10.1039/c5ra06855j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The improved activity of alga is critical for the biological enhanced treatment to remove contamination.
Collapse
Affiliation(s)
- Yingxiang Du
- China Pharmaceutical University
- Key Laboratory of Drug Quality Control and Pharmacovigilance
- Nanjing 210009
- China
- State Key Laboratory of Natural Medicines
| | - Yunqing Feng
- China Pharmaceutical University
- Key Laboratory of Drug Quality Control and Pharmacovigilance
- Nanjing 210009
- China
| | - Ruixin Guo
- China Pharmaceutical University
- Key Laboratory of Drug Quality Control and Pharmacovigilance
- Nanjing 210009
- China
| | - Jianqiu Chen
- China Pharmaceutical University
- Key Laboratory of Drug Quality Control and Pharmacovigilance
- Nanjing 210009
- China
| |
Collapse
|
22
|
Li H, Pan Y, Wang Z, Chen S, Guo R, Chen J. An algal process treatment combined with the Fenton reaction for high concentrations of amoxicillin and cefradine. RSC Adv 2015. [DOI: 10.1039/c5ra21508k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The goal of the current study was to create a combined technique for the removal of two common antibiotics (amoxicillin and cefradine) using Fenton and an algal action process.
Collapse
Affiliation(s)
- Haitao Li
- Research Institute of Nanjing Chemical Industry Group
- Nanjing
- China
| | - Yu Pan
- Department of Environmental Science
- China Pharmaceutical University
- Nanjing
- China
| | - Zhizhi Wang
- Department of Environmental Science
- China Pharmaceutical University
- Nanjing
- China
| | - Shan Chen
- Department of Environmental Science
- China Pharmaceutical University
- Nanjing
- China
| | - Ruixin Guo
- Department of Environmental Science
- China Pharmaceutical University
- Nanjing
- China
| | - Jianqiu Chen
- Department of Environmental Science
- China Pharmaceutical University
- Nanjing
- China
| |
Collapse
|