1
|
Rout Y, Swain SS, Ghana M, Dash D, Nayak S. Perspectives of pteridophytes microbiome for bioremediation in agricultural applications. Open Life Sci 2024; 19:20220870. [PMID: 38840895 PMCID: PMC11151392 DOI: 10.1515/biol-2022-0870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 06/07/2024] Open
Abstract
The microbiome is the synchronised congregation of millions of microbial cells in a particular ecosystem. The rhizospheric, phyllospheric, and endospheric microbial diversity of lower groups of plants like pteridophytes, which includes the Ferns and Fern Allies, have also given numerous alternative opportunities to achieve greener and sustainable agriculture. The broad-spectrum bioactivities of these microorganisms, including bioremediation of heavy metals (HMs) in contaminated soil, have been drawing the attention of agricultural researchers for the preparation of bioformulations for applications in climate-resilient and versatile agricultural production systems. Pteridophytes have an enormous capacity to absorb HMs from the soil. However, their direct application in the agricultural field for HM absorption seems infeasible. At the same time, utilisation of Pteridophyte-associated microbes having the capacity for bioremediation have been evaluated and can revolutionise agriculture in mining and mineral-rich areas. In spite of the great potential, this group of microbiomes has been less studied. Under these facts, this prospective review was carried out to summarise the basic and applied research on the potential of Pteridophyte microbiomes for soil bioremediation and other agricultural applications globally. Gaps have also been indicated to present scopes for future research programmes.
Collapse
Affiliation(s)
- Yasaswinee Rout
- Central National Herbarium, Botanical Survey of India, 711103, Howrah, West Bengal, India
| | | | - Madhusmita Ghana
- Odisha Biodiversity Board, Nayapalli, Bhubaneswar, 751015, India
| | - Debabrata Dash
- Odisha Biodiversity Board, Nayapalli, Bhubaneswar, 751015, India
| | - Shubhransu Nayak
- Odisha Biodiversity Board, Nayapalli, Bhubaneswar, 751015, India
| |
Collapse
|
2
|
Huang D, Sun X, Ghani MU, Li B, Yang J, Chen Z, Kong T, Xiao E, Liu H, Wang Q, Sun W. Bacteria associated with Comamonadaceae are key arsenite oxidizer associated with Pteris vittata root. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123909. [PMID: 38582183 DOI: 10.1016/j.envpol.2024.123909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Pteris vittata (P. vittata), an arsenic (As) hyperaccumulator commonly used in the phytoremediation of As-contaminated soils, contains root-associated bacteria (RAB) including those that colonize the root rhizosphere and endosphere, which can adapt to As contamination and improve plant health. As(III)-oxidizing RAB can convert the more toxic arsenite (As(III)) to less toxic arsenate (As(V)) under As-rich conditions, which may promote plant survial. Previous studies have shown that microbial As(III) oxidation occurs in the rhizospheres and endospheres of P. vittata. However, knowledge of RAB of P. vittata responsible for As(III) oxidation remained limited. In this study, members of the Comamonadaceae family were identified as putative As(III) oxidizers, and the core microbiome associated with P. vittata roots using DNA-stable isotope probing (SIP), amplicon sequencing and metagenomic analysis. Metagenomic binning revealed that metagenome assembled genomes (MAGs) associated with Comamonadaceae contained several functional genes related to carbon fixation, arsenic resistance, plant growth promotion and bacterial colonization. As(III) oxidation and plant growth promotion may be key features of RAB in promoting P. vittata growth. These results extend the current knowledge of the diversity of As(III)-oxidizing RAB and provide new insights into improving the efficiency of arsenic phytoremediation.
Collapse
Affiliation(s)
- Duanyi Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Muhammad Usman Ghani
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jinchan Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Zhenyu Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Enzong Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
3
|
Anand U, Pal T, Yadav N, Singh VK, Tripathi V, Choudhary KK, Shukla AK, Sunita K, Kumar A, Bontempi E, Ma Y, Kolton M, Singh AK. Current Scenario and Future Prospects of Endophytic Microbes: Promising Candidates for Abiotic and Biotic Stress Management for Agricultural and Environmental Sustainability. MICROBIAL ECOLOGY 2023; 86:1455-1486. [PMID: 36917283 PMCID: PMC10497456 DOI: 10.1007/s00248-023-02190-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Globally, substantial research into endophytic microbes is being conducted to increase agricultural and environmental sustainability. Endophytic microbes such as bacteria, actinomycetes, and fungi inhabit ubiquitously within the tissues of all plant species without causing any harm or disease. Endophytes form symbiotic relationships with diverse plant species and can regulate numerous host functions, including resistance to abiotic and biotic stresses, growth and development, and stimulating immune systems. Moreover, plant endophytes play a dominant role in nutrient cycling, biodegradation, and bioremediation, and are widely used in many industries. Endophytes have a stronger predisposition for enhancing mineral and metal solubility by cells through the secretion of organic acids with low molecular weight and metal-specific ligands (such as siderophores) that alter soil pH and boost binding activity. Finally, endophytes synthesize various bioactive compounds with high competence that are promising candidates for new drugs, antibiotics, and medicines. Bioprospecting of endophytic novel secondary metabolites has given momentum to sustainable agriculture for combating environmental stresses. Biotechnological interventions with the aid of endophytes played a pivotal role in crop improvement to mitigate biotic and abiotic stress conditions like drought, salinity, xenobiotic compounds, and heavy metals. Identification of putative genes from endophytes conferring resistance and tolerance to crop diseases, apart from those involved in the accumulation and degradation of contaminants, could open new avenues in agricultural research and development. Furthermore, a detailed molecular and biochemical understanding of endophyte entry and colonization strategy in the host would better help in manipulating crop productivity under changing climatic conditions. Therefore, the present review highlights current research trends based on the SCOPUS database, potential biotechnological interventions of endophytic microorganisms in combating environmental stresses influencing crop productivity, future opportunities of endophytes in improving plant stress tolerance, and their contribution to sustainable remediation of hazardous environmental contaminants.
Collapse
Affiliation(s)
- Uttpal Anand
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreshet Ben-Gurion, Israel.
| | - Tarun Pal
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreshet Ben-Gurion, Israel
| | - Niraj Yadav
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8499000, Midreshet Ben-Gurion, Israel
| | - Vipin Kumar Singh
- Department of Botany, K.S. Saket P.G. College, Ayodhya affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya, 224123, Uttar Pradesh, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| | - Krishna Kumar Choudhary
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Awadhesh Kumar Shukla
- Department of Botany, K.S. Saket P.G. College, Ayodhya affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya, 224123, Uttar Pradesh, India
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Ajay Kumar
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, 7505101, Rishon, Lezion, Israel
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, Via Branze 38, 25123, Brescia, Italy.
| | - Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Max Kolton
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8499000, Midreshet Ben-Gurion, Israel
| | - Amit Kishore Singh
- Department of Botany, Bhagalpur National College (A constituent unit of Tilka Manjhi Bhagalpur University), Bhagalpur, 812007, Bihar, India.
| |
Collapse
|
4
|
Corzo Remigio A, Harris HH, Paterson DJ, Edraki M, van der Ent A. Chemical transformations of arsenic in the rhizosphere-root interface of Pityrogramma calomelanos and Pteris vittata. Metallomics 2023; 15:mfad047. [PMID: 37528060 PMCID: PMC10427965 DOI: 10.1093/mtomcs/mfad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
Pityrogramma calomelanos and Pteris vittata are cosmopolitan fern species that are the strongest known arsenic (As) hyperaccumulators, with potential to be used in the remediation of arsenic-contaminated mine tailings. However, it is currently unknown what chemical processes lead to uptake of As in the roots. This information is critical to identify As-contaminated soils that can be phytoremediated, or to improve the phytoremediation process. Therefore, this study identified the in situ distribution of As in the root interface leading to uptake in P. calomelanos and P. vittata, using a combination of synchrotron micro-X-ray fluorescence spectroscopy and X-ray absorption near-edge structure imaging to reveal chemical transformations of arsenic in the rhizosphere-root interface of these ferns. The dominant form of As in soils was As(V), even in As(III)-dosed soils, and the major form in P. calomelanos roots was As(III), while it was As(V) in P. vittata roots. Arsenic was cycled from roots growing in As-rich soil to roots growing in control soil. This study combined novel analytical approaches to elucidate the As cycling in the rhizosphere and roots enabling insights for further application in phytotechnologies to remediated As-polluted soils.
Collapse
Affiliation(s)
- Amelia Corzo Remigio
- Centre for Water in the Minerals Industry, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide, Australia
| | | | - Mansour Edraki
- Centre for Water in the Minerals Industry, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
- Laboratoire Sols et Environnement, INRAE, Université de Lorraine, Nancy, France
| |
Collapse
|
5
|
Wu Q, Lin X, Li S, Liang Z, Wang H, Tang T. Endophytic Bacillus sp. AP10 harboured in Arabis paniculata mediates plant growth promotion and manganese detoxification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115170. [PMID: 37354566 DOI: 10.1016/j.ecoenv.2023.115170] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/27/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Phytoremediation of heavy metal-polluted soils assisted by plant-associated endophytes, is a suitable method for plant growth and manganese (Mn) removal in contaminated soils. This investigation was conducted to evaluate the Mn-resistant endophytic resources of the Mn hyperaccumulator Arabis paniculata and their functions in the phytoremediation of Mn2+ toxicity. This study isolated an endophytic bacterium with high Mn resistance and indole-3-acetic acid (IAA) production form A. paniculata and identified it as Bacillus sp. AP10 using 16 S rRNA gene sequencing analysis. The effects of Bacillus sp. AP10 on the alleviation of Mn2+ toxicity in Arabidopsis thaliana seedlings and the molecular mechanisms were further investigated using biochemical tests and RNA-seq analysis. Under Mn2+ stress, Bacillus sp. AP10 increased the biomass, chlorophyll content and the translocation factor (TF) values of Mn in the aerial parts, while decreased the malondialdehyde (MDA) content of A. thaliana seedlings compared with that of control plants. The differentially expressed genes (DEGs) and enrichment analysis showed that Bacillus sp. AP10 could significantly increase the expression of key genes involved in cell-wall loosening, which may improve plant growth under Mn stress. Superoxide dismutase (SOD)-encoding genes were detected as DEGs after AP10 treatment. Moreover, AP10 regulated the expression of genes responsible for phenylpropanoid pathway, which may promote antioxidant flavonoids accumulation for reactive oxygen species (ROS) scavenging to improve Mn tolerance. The activation of ATP-binding cassette (ABC) transporter gene expression especially ABCB1 after AP10 stimulation, explained the elevation of metal ion binding or transport related to enhanced Mn accumulation in plants. Futhermore, AP10 might alleviate Mn toxicity through enhancing abscisic acid (ABA) responsive gene expression and ABA biosynthesis. These findings provide new insights into the functions and regulatory mechanism of Bacillus sp. AP10 in promoting plant growth, and tolerance, improving Mn accumulation and alleviating Mn2+ toxicity in plants. The application of Bacillus sp. AP10 as potential phytoremediators may be a promising strategy in Mn2+ contaminated fields. AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Qingtao Wu
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xianjing Lin
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shaoqing Li
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhenting Liang
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haihua Wang
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Ting Tang
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
6
|
Tiwari P, Bae H. Trends in Harnessing Plant Endophytic Microbiome for Heavy Metal Mitigation in Plants: A Perspective. PLANTS (BASEL, SWITZERLAND) 2023; 12:1515. [PMID: 37050141 PMCID: PMC10097340 DOI: 10.3390/plants12071515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Plant microbiomes represent dynamic entities, influenced by the environmental stimuli and stresses in the surrounding conditions. Studies have suggested the benefits of commensal microbes in improving the overall fitness of plants, besides beneficial effects on plant adaptability and survival in challenging environmental conditions. The concept of 'Defense biome' has been proposed to include the plant-associated microbes that increase in response to plant stress and which need to be further explored for their role in plant fitness. Plant-associated endophytes are the emerging candidates, playing a pivotal role in plant growth, adaptability to challenging environmental conditions, and productivity, as well as showing tolerance to biotic and abiotic stresses. In this article, efforts have been made to discuss and understand the implications of stress-induced changes in plant endophytic microbiome, providing key insights into the effects of heavy metals on plant endophytic dynamics and how these beneficial microbes provide a prospective solution in the tolerance and mitigation of heavy metal in contaminated sites.
Collapse
|
7
|
Jia P, Li F, Zhang S, Wu G, Wang Y, Li JT. Microbial community composition in the rhizosphere of Pteris vittata and its effects on arsenic phytoremediation under a natural arsenic contamination gradient. Front Microbiol 2022; 13:989272. [PMID: 36160214 PMCID: PMC9495445 DOI: 10.3389/fmicb.2022.989272] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Arsenic contamination causes numerous health problems for humans and wildlife via bioaccumulation in the food chain. Phytoremediation of arsenic-contaminated soils with the model arsenic hyperaccumulator Pteris vittata provides a promising way to reduce the risk, in which the growth and arsenic absorption ability of plants and the biotransformation of soil arsenic may be greatly affected by rhizosphere microorganisms. However, the microbial community composition in the rhizosphere of P. vittata and its functional role in arsenic phytoremediation are still poorly understood. To bridge this knowledge gap, we carried out a field investigation and pot experiment to explore the composition and functional implications of microbial communities in the rhizosphere of four P. vittata populations with a natural arsenic contamination gradient. Arsenic pollution significantly reduced bacterial and fungal diversity in the rhizosphere of P. vittata (p < 0.05) and played an important role in shaping the microbial community structure. The suitability of soil microbes for the growth of P. vittata gradually decreased following increased soil arsenic levels, as indicated by the increased abundance of pathogenic fungi and parasitic bacteria and the decrease in symbiotic fungi. The analysis of arsenic-related functional gene abundance with AsChip revealed the gradual enrichment of the microbial genes involved in As(III) oxidation, As(V) reduction, and arsenic methylation and demethylation in the rhizosphere of P. vittata following increased arsenic levels (p < 0.05). The regulation of indigenous soil microbes through the field application of fungicide, but not bactericide, significantly reduced the remediation efficiency of P. vittata grown under an arsenic contamination gradient, indicating the important role of indigenous fungal groups in the remediation of arsenic-contaminated soil. This study has important implications for the functional role and application prospects of soil microorganisms in the phytoremediation of arsenic-polluted soil.
Collapse
Affiliation(s)
- Pu Jia
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fenglin Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shengchang Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guanxiong Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yutao Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
- Dongli Planting and Farming Industrial Co., Ltd., Lianzhou, China
- *Correspondence: Yutao Wang,
| | - Jin-tian Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
8
|
Application of Exogenous Iron Alters the Microbial Community Structure and Reduces the Accumulation of Cadmium and Arsenic in Rice ( Oryza sativa L.). NANOMATERIALS 2022; 12:nano12081311. [PMID: 35458019 PMCID: PMC9028164 DOI: 10.3390/nano12081311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/07/2022]
Abstract
Cadmium (Cd) and arsenic (As) contamination of soil has been a public concern due to their potential accumulation risk through the food chain. This study was conducted to investigate the performance of ferrous sulfate (FeSO4) and ferric oxide (Fe2O3) nanoparticle (Nano-Fe) to stabilize the concentrations of Cd and As in paddy soil. Both Fe treatments led to low extractable Cd and the contents of specifically sorbed As contents, increased (p < 0.05) the Shannon index and decreased (p < 0.05) the Simpson diversity indices compared with the control. Nano-Fe increased the relative abundances of Firmicutes and Proteobacteria and decreased the abundances of Acidobacteria and Chloroflexi. Moreover, the addition of both forms of Fe promoted the formation of Fe plaque and decreased the translocation factor index (TFs) root/soil, TFs shoot/root, and TFs grain/shoot of Cd and As. These results suggest that exogenous Fe may modify the microbial community and decrease the soil available Cd and As contents, inhibit the absorption of Cd and As by the roots and decrease the transport of Cd and As in rice grains and the risk intake in humans. These findings demonstrate that soil amendment with exogenous Fe, particularly Nano-Fe, is a potential approach to simultaneously remediate the accumulation of Cd and As from the soil to rice grain systems.
Collapse
|
9
|
Husna, Hussain A, Shah M, Hamayun M, Qadir M, Iqbal A. Heavy metal tolerant endophytic fungi Aspergillus welwitschiae improves growth, ceasing metal uptake and strengthening antioxidant system in Glycine max L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15501-15515. [PMID: 34625902 DOI: 10.1007/s11356-021-16640-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
In modern agricultural practice, heavy metal (HM) contamination is one of the main abiotic stress threatening sustainable agriculture, crop productivity, and disturb natural soil microbiota. Different reclamation techniques are used to restore the contaminated site; however, they are either costly or unable to remove contaminant when concentration is very low. In such circumstances, bioremediation is used as a novel technique involving microbes for soil restoration. In the current project, Aspergillus welwitschiae(Bk) efficiently endure metal stress (i.e., Cr-VI and As-V in the form of K2Cr2O7 and Na3AsO4) up to 1200 μg/mL and enhanced the production of phytohormones, i.e., 54.83 μg/mL of indole acetic acid (IAA) compared to control 15.56 μg/mL, solubilized inorganic phosphate, and produced stress-related metabolites. The isolate Bk was able to enhance growth of soybean by showing higher root shoot length and fresh/dry weight under stress (p<0.05). Besides, the strain strengthened the antioxidant system of the host increasing enzymatic antioxidants, i.e., catalases (CAT) by 1.58 and 1.11 fold, ascorbic acid oxidase (AAO) by 6.75 and 7.94 fold, peroxidase activity (POD) by 1.12 and 1.37 fold, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) by 1.42 and 1.25 fold at 50 μg/mL of chromate and arsenate. Thus, actively scavenging the reactive oxygen species (ROS) produced results in lower ROS accumulation and high ROS scavenging. On the other hand, the isolates cut down Cr and As uptake by approximately 50% at 50 μg/mL from the medium while bio-transforming it, thereby stabilizing it and assisting the host to resume normal growth, thus avoiding phytotoxicity. It is evident from the current study that A. welwitschiae may potentially be used as a bioremediating agent for reclamation of Cr- and As-contaminated soil.
Collapse
Affiliation(s)
- Husna
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan.
| | - Mohib Shah
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Qadir
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Iqbal
- Department of Food Science and Technology, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
10
|
Abou-Shanab RAI, Santelli CM, Sadowsky MJ. Bioaugmentation with As-transforming bacteria improves arsenic availability and uptake by the hyperaccumulator plant Pteris vittata (L). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:420-428. [PMID: 34334062 DOI: 10.1080/15226514.2021.1951654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inorganic arsenic (As) is a toxic and carcinogenic pollutant that has long-term impacts on environmental quality and human health. Pteris vittata plants hyperaccumulate As from soils. Soil bacteria are critical for As-uptake by P. vittata. We examined the use of taxonomically diverse soil bacteria to modulate As speciation in soil and their effect on As-uptake by P. vittata. Aqueous media inoculated with Pseudomonas putida MK800041, P. monteilii MK344656, P. plecoglossicida MK345459, Ochrobactrum intermedium MK346993 or Agrobacterium tumefaciens MK346997 resulted in the oxidation of 5-30% As(III) and a 49-79% reduction of As(V). Soil inoculated with P. monteilii increased extractable As(III) and As(V) from 0.5 and 0.09 in controls to 0.9 and 0.39 mg As kg-1 soil dry weight, respectively. Moreover, and P. vittata plants inoculated with P. monteilii, P. plecoglossicida, O. intermedium strains, and A. tumefaciens strains MK344655, MK346994, MK346997, significantly increased As-uptake by 43, 32, 12, 18, 16, and 14%, respectively, compared to controls. The greatest As-accumulation (1.9 ± 0.04 g kg-1 frond Dwt) and bioconcentration factor (16.3 ± 0.35) was achieved in plants inoculated with P. monteilii. Our findings indicate that the tested bacterial strains can increase As-availability in soils, thus enhancing As-accumulation by P. vittata. Novelty statement Pteris vittata, a well-known As-hyperaccumulator, has the remarkable ability to accumulate higher levels of As in their above-ground biomass. The As-tolerant bacteria-plant interactions play a significant role in bioremediation by mediating As-redox and controlling As-availability and uptake by P. vittata. Our studies indicated that most of the tested bacterial strains isolated from As-impacted soil significantly enhanced As-uptake by P. vittata. P. monteilii oxidized 20% of As(III) and reduced 50% of As(V), increased As-extraction from soils, and increased As-uptake by 43% greater compared with control. Therefore, these strains associated with P. vittata can be used in large-scale field applications to remediate As-contaminated soil.
Collapse
Affiliation(s)
| | - Cara M Santelli
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
- Department of Soil, Water & Climate, University of Minnesota, St. Paul, MN, USA
- Department of Plant & Microbial Biology, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
11
|
Tashan H, Harighi B, Rostamzadeh J, Azizi A. Characterization of Arsenic-Resistant Endophytic Bacteria From Alfalfa and Chickpea Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:696750. [PMID: 34367218 PMCID: PMC8341903 DOI: 10.3389/fpls.2021.696750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/24/2021] [Indexed: 06/02/2023]
Abstract
The present investigation was carried out to isolate arsenic (As)-resistant endophytic bacteria from the roots of alfalfa and chickpea plants grown in arsenic-contamination soil, characterize their As tolerance ability, plant growth-promoting characteristics, and their role to induce As resistance by the plant. A total of four root endophytic bacteria were isolated from plants grown in As-contaminated soil (160-260-mg As kg-1 of soil). These isolates were studied for plant growth-promoting (PGP) characteristics through siderophore, phosphate solubilization, nitrogen fixation, protease, and lipase production, and the presence of the arsenate reductase (arsC) gene. Based on 16S rDNA sequence analysis, these isolates belong to the genera Acinetobacter, Pseudomonas, and Rahnella. All isolates were found As tolerant, of which one isolate, Pseudomonas sp. QNC1, showed the highest tolerance up to 350-mM concentration in the LB medium. All isolates exhibited phosphate solubilization activity. Siderophore production activity was shown by only Pseudomonas sp. QNC1, while nitrogen fixation activity was shown by only Rahnella sp. QNC2 isolate. Acinetobacter sp. QNA1, QNA2, and Rahnella sp. QNC2 exhibited lipase production, while only Pseudomonas sp. QNC1 was able to produce protease. The presence of the arsC gene was detected in all isolates. The effect of endophytic bacteria on biomass production of alfalfa and chickpea in five levels of arsenic concentrations (0-, 10-, 50-, 75-, and 100-mg kg-1 soil) was evaluated. The fresh and dry weights of roots of alfalfa and chickpea plants were decreased as the arsenic concentration of the soil was increased. Results indicate that the fresh and dry root weights of alfalfa and chickpea plants were significantly higher in endophytic bacteria-treated plants compared with non-treated plants. Inoculation of chickpea plants with Pseudomonas sp. QNC1 and Rahnella sp. QNC2 induced lower NPR3 gene expression in chickpea roots grown in soil with the final concentration of 100-mg kg-1 sodium arsenate compared with the non-endophyte-treated control. The same results were obtained in Acinetobacter sp. QNA2-treated alfalfa plants grown in the soil plus 50-mg kg-1 sodium arsenate. These results demonstrated that arsenic-resistant endophytic bacteria are potential candidates to enhance plant-growth promotion in As contamination soils. Characterization of bacterial endophytes with plant growth potential can help us apply them to improve plant yield under stress conditions.
Collapse
Affiliation(s)
- Hazhir Tashan
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Behrouz Harighi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Jalal Rostamzadeh
- Department of Animal Sciences, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Abdolbaset Azizi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
12
|
Mitigation of Nickel Toxicity and Growth Promotion in Sesame through the Application of a Bacterial Endophyte and Zeolite in Nickel Contaminated Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17238859. [PMID: 33260516 PMCID: PMC7730600 DOI: 10.3390/ijerph17238859] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
Nickel (Ni) bioavailable fraction in the soil is of utmost importance because of its involvement in plant growth and environmental feedbacks. High concentrations of Ni in the soil environment, especially in the root zone, may retard plant growth that ultimately results in reduced plant biomass and yield. However, endophytic microorganisms have great potential to reduce the toxicity of Ni, especially when applied together with zeolite. The present research work was conducted to evaluate the potential effects of an endophytic bacterium Caulobacter sp. MN13 in combination with zeolite on the physiology, growth, quality, and yield of sesame plant under normal and Ni stressed soil conditions through possible reduction of Ni uptake. Surface sterilized sesame seeds were sown in pots filled with artificially Ni contaminated soil amended with zeolite. Results revealed that plant agronomic attributes such as shoot root dry weight, total number of pods, and 1000-grains weight were increased by 41, 45, 54, and 65%, respectively, over control treatment, with combined application of bacteria and zeolite in Ni contaminated soil. In comparison to control, the gaseous exchange parameters (CO2 assimilation rate, transpiration rate, stomatal- sub-stomatal conductance, chlorophyll content, and vapor pressure) were significantly enhanced by co-application of bacteria and zeolite ranging from 20 to 49% under Ni stress. Moreover, the combined utilization of bacteria and zeolite considerably improved water relations of sesame plant, in terms of relative water content (RWC) and relative membrane permeability (RMP) along with improvement in biochemical components (protein, ash, crude fiber, fat), and micronutrients in normal as well as in Ni contaminated soil. Moreover, the same treatment modulated the Ni-stress in plants through improvement in antioxidant enzymes (AEs) activities along with improved Ni concentration in the soil and different plant tissues. Correlation and principal component analysis (PCA) further revealed that combined application of metal-tolerant bacterium Caulobacter sp. MN13 and zeolite is the most influential strategy in alleviating Ni-induced stress and subsequent improvement in growth, yield, and physio-biochemical attributes of sesame plant.
Collapse
|
13
|
Role of Microorganisms in the Remediation of Wastewater in Floating Treatment Wetlands: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12145559] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article provides useful information for understanding the specific role of microbes in the pollutant removal process in floating treatment wetlands (FTWs). The current literature is collected and organized to provide an insight into the specific role of microbes toward plants and pollutants. Several aspects are discussed, such as important components of FTWs, common bacterial species, rhizospheric and endophytes bacteria, and their specific role in the pollutant removal process. The roots of plants release oxygen and exudates, which act as a substrate for microbial growth. The bacteria attach themselves to the roots and form biofilms to get nutrients from the plants. Along the plants, the microbial community also influences the performance of FTWs. The bacterial community contributes to the removal of nitrogen, phosphorus, toxic metals, hydrocarbon, and organic compounds. Plant–microbe interaction breaks down complex compounds into simple nutrients, mobilizes metal ions, and increases the uptake of pollutants by plants. The inoculation of the roots of plants with acclimatized microbes may improve the phytoremediation potential of FTWs. The bacteria also encourage plant growth and the bioavailability of toxic pollutants and can alleviate metal toxicity.
Collapse
|
14
|
Abou-Shanab RAI, Mathai PP, Santelli C, Sadowsky MJ. Indigenous soil bacteria and the hyperaccumulator Pteris vittata mediate phytoremediation of soil contaminated with arsenic species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110458. [PMID: 32193021 DOI: 10.1016/j.ecoenv.2020.110458] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/20/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Arsenic (As) is a pollutant of major concern worldwide, posing as a threat to both human health and the environment. Phytoremediation has been proposed as a viable mechanism to remediate As-contaminated soil environments. Pot experiments were performed to evaluate the phytoextraction efficiency of As by Pteris vittata, a known As hyperaccumulating fern, from soil amended with different concentrations of arsenate [As(V)] and arsenite [As(III)], the more common, inorganic As forms in soil. The greatest accumulation of As (13.3 ± 0.36 g/kg Dwt) was found in fronds of plants grown in soil spiked with 1.0 g As(V)/kg. The maximum As-bioaccumulation factor (27.3 ± 1.9) was achieved by plants grown in soil amended with 0.05 g As(V)/kg. A total of 864 bacterial cultures were isolated and examined for their ability to enhance phytoremediation of As-contaminated soils. Traits examined included tolerance to As (III and V), production of siderophores, and/or ability to solubilize calcium phosphate and indole acetic acid (IAA) production. A culture-based survey shows greater numbers of viable and As-resistant bacteria were found in the rhizosphere of As-grown plants compared to bulk and unplanted soils. The percentage of bacteria resistant to As(V) was greater (P < 0.0001) than those resistant to As(III) in culture medium containing 0.5, 1, 1.5, and 2 g As/L. Higher (P < 0.0001) percentages of siderophore producing (77%) and phosphate solubilizing (61%) bacteria were observed among cultures isolated from unplanted soil. About 5% (44 of 864) of the isolates were highly resistant to both As (III) and As (V) (2 g/L), and were examined for their As-transformation ability and IAA production. A great proportion of the isolates produced IAA (82%) and promoted As (V)-reduction (95%) or As(III)-oxidation (73%), and 71% exhibited dual capacity for both As(V) reduction and As(III) oxidation. Phylogenetic analysis indicated that 67, 23, and 10% of these isolates belonged to Proteobacteria, Actinobacteria, and Firmicutes, respectively. Analysis of the 16S rRNA gene sequences confirmed that these isolates were closely related to 12 genera and 25 species of bacteria and were dominated by members of the genus Pseudomonas (39%). These results show that these isolates could potentially be developed as inocula for enhancing plant uptake during large scale phytoremediation of As-impacted soils.
Collapse
Affiliation(s)
| | - Prince P Mathai
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Cara Santelli
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA; Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA; Department of Soil, Water & Climate and Department of Plant & Microbial Biology, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
15
|
Yang C, Ho YN, Makita R, Inoue C, Chien MF. A multifunctional rhizobacterial strain with wide application in different ferns facilitates arsenic phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:134504. [PMID: 31831229 DOI: 10.1016/j.scitotenv.2019.134504] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Pteris vittata and Pteris multifida are widely studied As hyperaccumulators that absorb As mainly via roots. Hence, rhizobacteria exhibit promising potential in phytoextraction owing to their immense microbial diversity and interactions with plants. Pseudomonas vancouverensis strain m318 that contains aioA-like genes was screened from P. multifida's rhizosphere through the high As resistance (minimum inhibitory concentrations (MICs) against As(III): 16 mM; MICs against As(V): 320 mM), rapid As oxidation (98% oxidation by bacterial cultures (OD600nm = 1) from 200 μL of 0.1 mM As(III) within 24 h), predominant secretion of IAA (12.45 mg L-1) and siderophores (siderophore unit: 88%). Strain m318 showed significant chemotactic response and high colonization efficiency to P. vittata roots, which suggested its wide host affinity. Interestingly, inoculation with strain m318 enhanced the proportion of aioA-like genes in the rhizosphere. And in field trials, inoculation with strain m318 increased As accumulation in P. vittata by 48-146% and in P. multifida by 42-233%. Post-transplantation inoculations also increased As accumulation in both ferns. The abilities of the isolated multifunctional strain m318 and the increase in the rhizosphere microbial aioA-like genes are thus speculated to be involved in As transformation in the rhizospheres and roots of P. vittata and P. multifida.
Collapse
Affiliation(s)
- Chongyang Yang
- Graduate School of Environmental Studies, Tohoku University, Aramaki, Aoba-ku, 6-6-20 Aoba, Sendai 980-8579, Japan
| | - Ying-Ning Ho
- Graduate School of Environmental Studies, Tohoku University, Aramaki, Aoba-ku, 6-6-20 Aoba, Sendai 980-8579, Japan; Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan
| | - Ryota Makita
- Graduate School of Environmental Studies, Tohoku University, Aramaki, Aoba-ku, 6-6-20 Aoba, Sendai 980-8579, Japan
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Aramaki, Aoba-ku, 6-6-20 Aoba, Sendai 980-8579, Japan
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, Aramaki, Aoba-ku, 6-6-20 Aoba, Sendai 980-8579, Japan.
| |
Collapse
|
16
|
Xiu W, Lloyd J, Guo H, Dai W, Nixon S, Bassil NM, Ren C, Zhang C, Ke T, Polya D. Linking microbial community composition to hydrogeochemistry in the western Hetao Basin: Potential importance of ammonium as an electron donor during arsenic mobilization. ENVIRONMENT INTERNATIONAL 2020; 136:105489. [PMID: 31991235 DOI: 10.1016/j.envint.2020.105489] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/06/2020] [Accepted: 01/12/2020] [Indexed: 05/25/2023]
Abstract
Various functional groups of microorganisms and related biogeochemical processes are likely to control arsenic (As) mobilization in groundwater systems. However, spatially-dependent correlations between microbial community composition and geochemical zonation along groundwater flow paths are not fully understood, especially with respect to arsenic mobility. The western Hetao Basin was selected as the study area to address this limitation, where groundwater flows from a proximal fan (geochemical-group I: low As, oxidizing), through a transition area (geochemical-group II: moderate As, moderately-reducing) and then to a flat plain (geochemical-group III: high As, reducing). High-throughput Illumina 16S rRNA gene sequencing showed that the microbial community structure in the proximal fan included bacteria affiliated with organic carbon degradation and nitrate-reduction or even nitrate-dependant Fe(II)-oxidation, mainly resulting in As immobilization. In contrast, for the flat plain, high As groundwater contained Fe(III)- and As(V)-reducing bacteria, consistent with current models on As mobilization driven via reductive dissolution of Fe(III)/As(V) mineral assemblages. However, Spearman correlations between hydrogeochemical data and microbial community compositions indicated that ammonium as a possible electron donor induced reduction of Fe oxide minerals, suggesting a wider range of metabolic pathways (including ammonium oxidation coupled with Fe(III) reduction) driving As mobilization in high As groundwater systems.
Collapse
Affiliation(s)
- Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jonathan Lloyd
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, the University of Manchester, Manchester, United Kingdom
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Wei Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Sophie Nixon
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, the University of Manchester, Manchester, United Kingdom
| | - Naji M Bassil
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, the University of Manchester, Manchester, United Kingdom
| | - Cui Ren
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Chaoran Zhang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Tiantian Ke
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - David Polya
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, the University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Shahid MJ, Ali S, Shabir G, Siddique M, Rizwan M, Seleiman MF, Afzal M. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water. CHEMOSPHERE 2020; 243:125353. [PMID: 31765899 DOI: 10.1016/j.chemosphere.2019.125353] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/04/2019] [Accepted: 11/10/2019] [Indexed: 05/18/2023]
Abstract
Here we compared the performance of four macrophytes namely Brachia mutica, Typha domingensis, Phragmites australis and Leptochala fusca, in bacterially assisted floating treatment wetlands (FTWs) for the clean-up of five trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water. The river water was artificially spiked with reagent grade chemicals to increase the trace metal pollution. The macrophytes were planted in a polystyrene sheet to prepare FTWs, which were placed over the metal-contaminated river water. The consortium of five rhizospheric and endophytic bacterial strains, i.e., Aeromonas salmonicida, Pseudomonas indoloxydans, Bacillus cerus, Pseudomonas gessardii, and Rhodococcus sp., was inoculated support the natural remediation ability. We found a significant reduction in the metal content by all four macrophytes and the removal was significantly enhanced when bacterial inoculum was applied. The maximum removal was observed in FTWs planted with P. australis and inoculated with bacteria. In this treatment (T6) the Fe, Mn, Ni, Pb and Cr contents were reduced to 0.53, 0.20, 0.09, 1.04 and 0.07 mg L-1 after five weeks retention time. The bacterial inoculation sufficiently increased the plant biomass. All macrophytes depicted potential to uptake and translocate trace metals in the roots instead of shoots. The bacterial inoculation acclimatize the plants roots followed by shoots and enhanced the uptake of metals by macrophytes. This study emphasized the usefulness of macrophytes-bacteria mutualism in FTWs system for the remediation of trace metals. The similar systems may provide practical solutions for the remediation of trace metals of polluted river water.
Collapse
Affiliation(s)
- Munazzam Jawad Shahid
- Department of Environmental Sciences and Engineering, Government College University, 38000, Faisalabad, Pakistan; Soil and Environmental Biotechnology Division, National Institute of Biotechnology and Genetic Engineering, 38000, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, 38000, Faisalabad, Pakistan; Department of Biological Sciences and Technology, China Medical University (CMU), Taiwan.
| | - Ghulam Shabir
- Soil and Environmental Biotechnology Division, National Institute of Biotechnology and Genetic Engineering, 38000, Faisalabad, Pakistan
| | - Muhammad Siddique
- Department of Environmental Sciences and Engineering, Government College University, 38000, Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, 38000, Faisalabad, Pakistan
| | - Mahmoud F Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Crop Sciences, Faculty of Agriculture, Menoufia University, 32514, Shibin El-kom, Egypt
| | - Muhammad Afzal
- Soil and Environmental Biotechnology Division, National Institute of Biotechnology and Genetic Engineering, 38000, Faisalabad, Pakistan.
| |
Collapse
|
18
|
Asaf S, Numan M, Khan AL, Al-Harrasi A. Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Crit Rev Biotechnol 2020; 40:138-152. [PMID: 31906737 DOI: 10.1080/07388551.2019.1709793] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The species belonging to the Sphingomonas genus possess multifaceted functions ranging from remediation of environmental contaminations to producing highly beneficial phytohormones, such as sphingan and gellan gum. Recent studies have shown an intriguing role of Sphingomonas species in the degradation of organometallic compounds. However, the actual biotechnological potential of this genus requires further assessment. Some of the species from the genus have also been noted to improve plant-growth during stress conditions such as drought, salinity, and heavy metals in agricultural soil. This role has been attributed to their potential to produce plant growth hormones e.g. gibberellins and indole acetic acid. However, the current literature is scattered, and some of the important areas, such as taxonomy, phylogenetics, genome mapping, and cellular transport systems, are still being overlooked in terms of elucidation of the mechanisms behind stress-tolerance and bioremediation. In this review, we elucidated the prospective role and function of this genus for improved utilization during environmental biotechnology.
Collapse
Affiliation(s)
- Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Muhammad Numan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
19
|
Amelioration effect of chromium-tolerant bacteria on growth, physiological properties and chromium mobilization in chickpea (Cicer arietinum) under chromium stress. Arch Microbiol 2020; 202:887-894. [PMID: 31893290 DOI: 10.1007/s00203-019-01801-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 02/03/2023]
Abstract
In this study, chromium (Cr)-tolerant bacteria were test for their efficiency in alleviating Cr stress in Cicer arietinum plants. On the basis of 16S rRNA gene analysis, the isolates were identified belonging to genus Stenotrophomonas maltophilia, Bacillus thuringiensis B. cereus, and B. subtilis. The strains produced a considerable amount of indole-3-acetic acid in a medium supplemented with tryptophan. The strains also showed siderophore production (S2VWR5 and S3VKR17), phosphorus production (S1VKR11, S3VKR2, S3VKR16, and S2VWR5), and potassium solubilization (S3VKR2, S2VWR5, and S3VKR17). Furthermore, the strains were evaluated in pot experiments to assess the growth promotion of C. arietinum in the presence of chromium salts. Bacterization improved higher root and shoot length considerably to 6.25%-60.41% and 11.3%-59.6% over the control. The plants also showed increase in their fresh weight and dry weight in response to inoculation with Cr-tolerant strains. The accumulation of Cr was higher in roots compared to shoots in both control and inoculated plants, indicating phytostabilization of Cr by C. arietinum. However, phytostabilization was found to be improved manifold in inoculated plants. Apart from the plant attributes, the amendment of soil with Cr and Cr-tolerant bacteria significantly increased the content of total chlorophyll and carotenoids, suggesting the inoculant's role in protecting plants from deleterious effects. This work suggests that the combined activity of Cr-tolerant and plant growth-promoting (PGP) properties of the tested strains could be exploited for bioremediation of Cr and to enhance the C. arietinum cultivation in Cr-contaminated soils.
Collapse
|
20
|
Draft Genome Sequence of Bacillus subtilis TLO3, Isolated from Olive Tree Rhizosphere Soil. Microbiol Resour Announc 2018; 7:MRA00852-18. [PMID: 30533650 PMCID: PMC6256673 DOI: 10.1128/mra.00852-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/21/2018] [Indexed: 11/20/2022] Open
Abstract
In this paper, we report Bacillus subtilis TLO3, which was isolated from olive tree rhizosphere and exhibits high amylolytic activity. The genome of Bacillus subtilis TLO3 contains 4,071 protein-coding sequences carried on one chromosome (4,232,155 bp) with an average G+C content of 44.1% and 119 RNA molecules. The gene encoding α-amylase was detected, as well as other genes related to starch and cellulose hydrolysis, making the strain a potential candidate for industrial treatment of starch and lignocellulose biomasses.
Collapse
|
21
|
Wu K, Luo J, Li J, An Q, Yang X, Liang Y, Li T. Endophytic bacterium Buttiauxella sp. SaSR13 improves plant growth and cadmium accumulation of hyperaccumulator Sedum alfredii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21844-21854. [PMID: 29796886 DOI: 10.1007/s11356-018-2322-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Inoculation with endophytic bacterium has been considered as a prospective application to improve the efficiency of phytoextraction. In this study, the effect of Buttiauxella sp. SaSR13 (SaSR13), a novel endophytic bacterium isolated from the root of hyperaccumulator Sedum alfredii, on plant growth and cadmium (Cd) accumulation in S. alfredii was investigated. Laser scanning confocal microscopic (LSCM) images showed that SaSR13 was mainly colonized in the root elongation and mature zones. The inoculation with SaSR13 to Cd-treated plants significantly enhanced plant growth (by 39 and 42% for shoot and root biomass, respectively), chlorophyll contents (by 38%), and Cd concentration in the shoot and root (by 32 and 22%, respectively). SaSR13 stimulated the development of roots (increased root length, surface area, and root tips number) due to an increase in the indole-3-acid (IAA) concentrations and a decrease in the concentrations of superoxide anion (O2.-) in plants grown under Cd stress. Furthermore, inoculation with SaSR13 enhanced the release of root exudates, especially malic acid and oxalic acid, which might have facilitated the uptake of Cd by S. alfredii. It is suggested that inoculation with endophytic bacterium SaSR13 is a promising bioaugmentation method to enhance the Cd phytoextraction efficiency by S. alfredii.
Collapse
Affiliation(s)
- Keren Wu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qianli An
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Nayak AK, Panda SS, Basu A, Dhal NK. Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:682-691. [PMID: 29723050 DOI: 10.1080/15226514.2017.1413332] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bioremediation of Cr (VI), Fe, and other heavy metals (HMs) through plant-microbes interaction is one of the efficient strategies due to its high efficiency, low cost, and ecofriendly nature. The aim of the study was to isolate, characterize, and assess the potential of rhizospheric bacteria to enhance growth and metal accumulation by the chromium hyperaccumulator Vetiveria zizanoides. The bacterial strain isolated from mine tailings was identified to be Bacillus cereus (T1B3) strain exhibited plant growth-promoting traits including, 1-aminocyclopropane-1-carboxylate deaminase, indole acetic acid, and siderophores production, nitrogen fixation, and P solubilization. Removal capacity (mg L-1) of T1B3 strain was 82% for Cr+6 (100), 92% for Fe (100), 67% for Mn(50), 36% for Zn (50), 31% for Cd (30), 25% for Cu (30), and 43% for Ni (50) during the active growth cycle in HM-amended, extract medium. Results indicate that inoculating the native V. zizanioides with T1B3 strain improves its phytoremediation efficiency of HMs. The mineralogical characteristics of chromite ore tailings and soil were also confirmed by X-ray diffraction, Fourier Transform Infrared, scanning electron microscope-energy dispersive spectroscopy analysis.
Collapse
Affiliation(s)
- A K Nayak
- a Environment and Sustainability Department , CSIR-Institute of Minerals and Materials Technology , Bhubaneswar , Odisha , India
| | - S S Panda
- a Environment and Sustainability Department , CSIR-Institute of Minerals and Materials Technology , Bhubaneswar , Odisha , India
| | - A Basu
- a Environment and Sustainability Department , CSIR-Institute of Minerals and Materials Technology , Bhubaneswar , Odisha , India
| | - N K Dhal
- a Environment and Sustainability Department , CSIR-Institute of Minerals and Materials Technology , Bhubaneswar , Odisha , India
| |
Collapse
|
23
|
Gu Y, Wang Y, Sun Y, Zhao K, Xiang Q, Yu X, Zhang X, Chen Q. Genetic diversity and characterization of arsenic-resistant endophytic bacteria isolated from Pteris vittata, an arsenic hyperaccumulator. BMC Microbiol 2018; 18:42. [PMID: 29739310 PMCID: PMC5941679 DOI: 10.1186/s12866-018-1184-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/30/2018] [Indexed: 11/17/2022] Open
Abstract
Background Alleviating arsenic (As) contamination is a high-priority environmental issue. Hyperaccumulator plants may harbor endophytic bacteria able to detoxify As. Therefore, we investigated the distribution, diversity, As (III) resistance levels, and resistance-related functional genes of arsenite-resistant bacterial endophytes in Pteris vittata L. growing in a lead-zinc mining area with different As contamination levels. Results A total of 116 arsenite-resistant bacteria were isolated from roots of P. vittata with different As concentrations. Based on the 16S rRNA gene sequence analysis of representative isolates, the isolates belonged to Proteobacteria, Actinobacteria, and Firmicutes. Major genera found were Agrobacterium, Stenotrophomonas, Pseudomonas, Rhodococcus, and Bacillus. The most highly arsenite-resistant bacteria (minimum inhibitory concentration > 45 mM) were isolated from P. vittata with high As concentrations and belonged to the genera Agrobacterium and Bacillus. The strains with high As tolerance also showed high levels of indole-3-acetic acid (IAA) production and carried arsB/ACR3(2) genes. The arsB and ACR3(2) were most likely horizontally transferred among the strains. Conclusion The results of this study suggest that P. vittata plants with high As concentrations may select diverse arsenite-resistant bacteria; this diversity might, at least partly, be a result of horizontal gene transfer. These diverse endophytic bacteria are potential candidates to enhance phytoremediation techniques.
Collapse
Affiliation(s)
- Yunfu Gu
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yingyan Wang
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yihao Sun
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ke Zhao
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Quanju Xiang
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiumei Yu
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Chen
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
24
|
Mukherjee G, Saha C, Naskar N, Mukherjee A, Mukherjee A, Lahiri S, Majumder AL, Seal A. An Endophytic Bacterial Consortium modulates multiple strategies to improve Arsenic Phytoremediation Efficacy in Solanum nigrum. Sci Rep 2018; 8:6979. [PMID: 29725058 PMCID: PMC5934359 DOI: 10.1038/s41598-018-25306-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Endophytic microbes isolated from plants growing in contaminated habitats possess specialized properties that help their host detoxify the contaminant/s. The possibility of using microbe-assisted phytoremediation for the clean-up of Arsenic (As) contaminated soils of the Ganga-Brahmaputra delta of India, was explored using As-tolerant endophytic microbes from an As-tolerant plant Lantana camara collected from the contaminated site and an intermediate As-accumulator plant Solanum nigrum. Endophytes from L. camara established within S. nigrum as a surrogate host. The microbes most effectively improved plant growth besides increasing bioaccumulation and root-to-shoot transport of As when applied as a consortium. Better phosphate nutrition, photosynthetic performance, and elevated glutathione levels were observed in consortium-treated plants particularly under As-stress. The consortium maintained heightened ROS levels in the plant without any deleterious effect and concomitantly boosted distinct antioxidant defense mechanisms in the shoot and root of As-treated plants. Increased consortium-mediated As(V) to As(III) conversion appeared to be a crucial step in As-detoxification/translocation. Four aquaporins were differentially regulated by the endophytes and/or As. The most interesting finding was the strong upregulation of an MRP transporter in the root by the As + endophytes, which suggested a major alteration of As-detoxification/accumulation pattern upon endophyte treatment that improved As-phytoremediation.
Collapse
Affiliation(s)
- Gairik Mukherjee
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Chinmay Saha
- Department of Endocrinology & Metabolism, Institute Of Post Graduate Medical Education & Research and SSKM Hospital, Room No. 9A, 4th Floor, Ronald Ross Building, 244, AJC Bose Road, Kolkata, 700020, India
| | - Nabanita Naskar
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
- Saha Institute of Nuclear Physics, Sector - 1, Block - AF Bidhannagar, Kolkata, 700064, India
| | - Abhishek Mukherjee
- Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Arghya Mukherjee
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Susanta Lahiri
- Saha Institute of Nuclear Physics, Sector - 1, Block - AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Arun Lahiri Majumder
- Division of Plant Biology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Anindita Seal
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
25
|
Román-Ponce B, Ramos-Garza J, Arroyo-Herrera I, Maldonado-Hernández J, Bahena-Osorio Y, Vásquez-Murrieta MS, Wang ET. Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production. Arch Microbiol 2018; 200:883-895. [PMID: 29476206 DOI: 10.1007/s00203-018-1495-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/25/2018] [Accepted: 02/15/2018] [Indexed: 10/18/2022]
Abstract
Arsenic contamination is an important environmental problem around the world since its high toxicity, and bacteria resist to this element serve as valuable resource for its bioremediation. Aiming at searching the arsenic-resistant bacteria and determining their resistant mechanism, a total of 27 strains isolated from roots of Prosopis laevigata and Spharealcea angustifolia grown in a heavy metal-contaminated region in Mexico were investigated. The minimum inhibitory concentration (MIC) and transformation abilities of arsenate (As5+) and arsenite (As3+), arsenophore synthesis, arsenate uptake, and cytoplasmatic arsenate reductase (arsC), and arsenite transporter (arsB) genes were studied for these strains. Based on these results and the 16S rDNA sequence analysis, these isolates were identified as arsenic-resistant endophytic bacteria (AREB) belonging to the genera Arthrobacter, Bacillus, Brevibacterium, Kocuria, Microbacterium, Micrococcus, Pseudomonas, and Staphylococcus. They could tolerate high concentrations of arsenic with MIC from 20 to > 100 mM for As5+ and 10-20 mM for As3+. Eleven isolates presented dual abilities of As5+ reduction and As3+ oxidation. As the most effective strains, Micrococcus luteus NE2E1 reduced 94% of the As5+ and Pseudomonas zhaodongensis NM2E7 oxidized 46% of As3+ under aerobic condition. About 70 and 44% of the test strains produced arsenophores to chelate As5+ and As3+, respectively. The AREB may absorb arsenate via the same receptor of phosphate uptake or via other way in some case. The cytoplasmic arsenate reductase and alternative arsenate reduction pathways exist in these AREB. Therefore, these AREB could be candidates for the bioremediation process.
Collapse
Affiliation(s)
- Brenda Román-Ponce
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación Carpio y Plan de Ayala s/n, Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340, Mexico City, Mexico.,Departamento de Microbiología y Genética, Edificio Departamental, Lab. 214, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Juan Ramos-Garza
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación Carpio y Plan de Ayala s/n, Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340, Mexico City, Mexico.,Universidad del Valle de México, Campus Chapultepec, Laboratorio 305, Observatorio No. 400, Col. 16 de Septiembre, Del. Miguel Hidalgo, C.P. 11810, Mexico City, Mexico
| | - Ivan Arroyo-Herrera
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación Carpio y Plan de Ayala s/n, Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340, Mexico City, Mexico
| | - Jessica Maldonado-Hernández
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación Carpio y Plan de Ayala s/n, Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340, Mexico City, Mexico
| | - Yanelly Bahena-Osorio
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación Carpio y Plan de Ayala s/n, Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340, Mexico City, Mexico
| | - María Soledad Vásquez-Murrieta
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación Carpio y Plan de Ayala s/n, Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340, Mexico City, Mexico.
| | - En Tao Wang
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación Carpio y Plan de Ayala s/n, Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340, Mexico City, Mexico.
| |
Collapse
|
26
|
|
27
|
Wang L, Lin H, Dong Y, He Y, Liu C. Isolation of vanadium-resistance endophytic bacterium PRE01 from Pteris vittata in stone coal smelting district and characterization for potential use in phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2018; 341:1-9. [PMID: 28759788 DOI: 10.1016/j.jhazmat.2017.07.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/29/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
This study investigates the V-resistant endophytic bacteria isolated from V-accumulator Pteris vittata grown on stone coal smelting district. Among all the ten isolates, the strain PRE01 identified as Serratia marcescens ss marcescens by Biolog GEN III MicroPlate™ was screened out by ranking first in terms of heavy metal resistance and plant growth promoting traits. The S. marcescens PRE01 had strong V, Cr and Cd resistance especially for V up to 1500mg/L. In addition, it exhibited ACC deaminase activity, siderophore production and high indoleacetic acid production (60.14mg/L) and solubilizing P potential (336.41mg/L). For heavy metal detoxification tests, PRE01 could specifically assimilate 97.6%, 21.7% and 6.6% of Cd(II), Cr(VI) and V(V) within 72h incubation. Despite the poor absorption of the two anions, most V(V) and Cr(VI) were detoxified and reduced to lower valence states by the strain. Furthermore, the isolate had the potential to facilitate the metals uptake of their hosts by changing heavy metal speciation. Our research may open up further scope of utilizing the endophyte for enhancing phytoextraction of vanadium industry contaminated soils.
Collapse
Affiliation(s)
- Liang Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Yinhai He
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| |
Collapse
|
28
|
Han YH, Jia MR, Liu X, Zhu Y, Cao Y, Chen DL, Chen Y, Ma LQ. Bacteria from the rhizosphere and tissues of As-hyperaccumulator Pteris vittata and their role in arsenic transformation. CHEMOSPHERE 2017; 186:599-606. [PMID: 28813694 DOI: 10.1016/j.chemosphere.2017.08.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/28/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
Arsenic (As)-resistant bacteria are abundant in the rhizosphere and tissues of As-hyperaccumulator Pteris vittata. However, little is known about their roles in As transformation and As uptake in P. vittata. In this study, the impacts of P. vittata tissue extracts with or without surface sterilization on As transformation in solutions containing 100 μg L-1 AsIII or AsV were investigated. After 48 h incubation, the sterilized and unsterilized root extracts resulted in 45% and 73% oxidation of AsIII, indicating a role of both rhizobacteria and endobacteria. In contrast, AsV reduction was only found in rhizome and frond extracts at 3.7-24% of AsV. A total of 37 strains were isolated from the tissue extracts, which are classified into 18 species based on morphology and 16S rRNA. Phylogenic analysis showed that ∼44% isolates were Firmicutes and others were Proteobacteria except for one strain belonging to Bacteroidetes. While most endobacteria were Firmicutes, most rhizobacteria were Proteobacteria. All isolated bacteria belonged to AsV reducers except for an As-sensitive strain and one AsIII- oxidizer PVR-YHB6-1. Since As transformation was not observed in solutions after filtrating or boiling, we concluded that both rhizobacteria and endobacteria were involved in As transformation in the rhizosphere and tissues of P. vittata.
Collapse
Affiliation(s)
- Yong-He Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China; Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou, Fujian, 326801, China
| | - Meng-Ru Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Xue Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Ying Zhu
- Fujian Center for Disease Control & Prevention, Fuzhou, Fujian, 350001, China
| | - Yue Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Deng-Long Chen
- Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou, Fujian, 326801, China
| | - Yanshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China; Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
29
|
Gatheru Waigi M, Sun K, Gao Y. Sphingomonads in Microbe-Assisted Phytoremediation: Tackling Soil Pollution. Trends Biotechnol 2017; 35:883-899. [DOI: 10.1016/j.tibtech.2017.06.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/18/2017] [Accepted: 06/22/2017] [Indexed: 12/24/2022]
|
30
|
Shah A, Hassan QP, Mushtaq S, Shah AM, Hussain A. Chemoprofile and functional diversity of fungal and bacterial endophytes and role of ecofactors - A review. J Basic Microbiol 2017; 57:814-826. [PMID: 28737000 DOI: 10.1002/jobm.201700275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/18/2017] [Accepted: 06/25/2017] [Indexed: 11/08/2022]
Abstract
Endophytes represent a hidden world within plants. Almost all plants that are studied harbor one or more endophytes, which help their host to survive against pathogens and changing adverse environmental conditions. Fungal and bacterial endophytes with distinct ecological niches show important biological activities and ecological functions. Their unique physiological and biochemical characteristics lead to the production of niche specific secondary metabolites that may have pharmacological potential. Identification of specific secondary metabolites in adverse environment can also help us in understanding mechanisms of host tolerance against stress condition such as biological invasions, salt, drought, temperature. These metabolites include micro as well as macromolecules, which they produce through least studied yet surprising mechanisms like xenohormesis, toxin-antitoxin system, quorum sensing. Therefore, future studies should focus on unfolding all the underlying molecular mechanisms as well as the impact of physical and biochemical environment of a specific host over endophytic function and metabolite elicitation. Need of the hour is to reshape the focus of research over endophytes and scientifically drive their ecological role toward prospective pharmacological as well as eco-friendly biological applications. This may help to manage these endophytes especially from untapped ecoregions as a useful undying biological tool to meet the present challenges as well as lay a strong and logical basis for any impending challenges.
Collapse
Affiliation(s)
- Aiyatullah Shah
- Biotechnology Division, Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, India
| | - Qazi Parvaiz Hassan
- Biotechnology Division, Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, India
| | - Saleem Mushtaq
- Biotechnology Division, Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, India
| | - Aabid Manzoor Shah
- Biotechnology Division, Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, India
| | - Aehtesham Hussain
- Biotechnology Division, Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, India
| |
Collapse
|
31
|
Teng Y, Feng S, Ren W, Zhu L, Ma W, Christie P, Luo Y. Phytoremediation of diphenylarsinic-acid-contaminated soil by Pteris vittata associated with Phyllobacterium myrsinacearum RC6b. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:463-469. [PMID: 27739905 DOI: 10.1080/15226514.2016.1244166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A pot experiment was conducted to explore the phytoremediation of a diphenylarsinic acid (DPAA)-spiked soil using Pteris vittata associated with exogenous Phyllobacterium myrsinacearum RC6b. Removal of DPAA from the soil, soil enzyme activities, and the functional diversity of the soil microbial community were evaluated. DPAA concentrations in soil treated with the fern or the bacterium were 35-47% lower than that in the control and were lowest in soil treated with P. vittata and P. myrsinacearum together. The presence of the bacterium added in the soil significantly increased the plant growth and DPAA accumulation. In addition, the activities of dehydrogenase and fluorescein diacetate hydrolysis and the average well-color development values increased by 41-91%, 37-78%, and 35-73%, respectively, in the treatments with P. vittata and/or P. myrsinacearum compared with the control, with the highest increase in the presence of P. vittata and P. myrsinacearum together. Both fern and bacterium alone greatly enhanced the removal of DPAA and the recovery of soil ecological function and these effects were further enhanced by P. vittata and P. myrsinacearum together. Our findings provide a new strategy for remediation of DPAA-contaminated soil by using a hyperaccumulator/microbial inoculant alternative to traditional physicochemical method or biological degradation.
Collapse
Affiliation(s)
- Ying Teng
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing , China
| | - Shijiang Feng
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing , China
| | - Wenjie Ren
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing , China
| | - Lingjia Zhu
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing , China
| | - Wenting Ma
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing , China
| | - Peter Christie
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing , China
| | - Yongming Luo
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing , China
| |
Collapse
|
32
|
Sarathambal C, Khankhane PJ, Gharde Y, Kumar B, Varun M, Arun S. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:360-370. [PMID: 27592507 DOI: 10.1080/15226514.2016.1225289] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this study, plant growth-promoting potential isolates from rhizosphere of 10 weed species grown in heavy metal-contaminated areas were identified and their effect on growth, antioxidant enzymes, and cadmium (Cd) uptake in Arundo donax L. was explored. Plant growth-promoting traits of isolates were also analyzed. These isolates were found to produce siderophores and enzymes such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and aid in solubilization of mineral nutrients and modulate plant growth and development. Based on the presence of multiple plant growth-promoting traits, isolates were selected for molecular characterization and inoculation studies. Altogether, 58 isolates were obtained and 20% of them were able to tolerate Cd up to 400 ppm. The sequence analysis of the 16S rRNA genes indicates that the isolates belong to the phylum Firmicutes. Bacillus sp. along with mycorrhizae inoculation significantly improves the growth, the activity of antioxidants enzymes, and the Cd uptake in A. donax than Bacillus alone. Highly significant correlations were observed between Cd uptake, enzymatic activities, and plant growth characteristics at 1% level of significance. The synergistic interaction effect between these organisms helps to alleviate Cd effects on soil. Heavy metal-tolerant isolate along with arbuscular mycorrhizae (AM) could be used to improve the phytoremedial potential of plants.
Collapse
Affiliation(s)
| | | | - Yogita Gharde
- a ICAR-Directorate of Weed Research , Jabalpur , Madhya Pradesh , India
| | - Bhumesh Kumar
- a ICAR-Directorate of Weed Research , Jabalpur , Madhya Pradesh , India
| | - Mayank Varun
- b Department of Botany , St. John's College , Agra , Uttar Pradesh , India
| | - Sellappan Arun
- c Department of Soil Science and Agricultural Chemistry , Tamil Nadu Agricultural University , Coimbatore , Tamil Nadu , India
| |
Collapse
|
33
|
Wan X, Lei M, Chen T, Yang J. Intercropped Pteris vittata L. and Morus alba L. presents a safe utilization mode for arsenic-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1467-1475. [PMID: 27908626 DOI: 10.1016/j.scitotenv.2016.11.148] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Intercropping technology provides income for owners of contaminated soil without increasing environmental risk. Therefore, intercropping of arsenic (As) hyperaccumulator Pteris vittata L. with economic crops is now widely utilized in slightly or moderately As-contaminated farmlands. However, the mechanisms for As mobilization and absorption within the intercropping system are still unclear. To clarify As mobilization and absorption within an intercropping system, portable X-ray fluorescence spectrometry and sequential extraction were utilized to detect the spatial distribution and speciation of As in an intercropped system of P. vittata and cash crop mulberry (Morus alba L.). Compared with the P. vittata monoculture, P. vittata intercropping had higher As concentration, which may have been caused by the efficient exploitation of a greater As source in soil. Compared with the M. alba monoculture, M. alba intercropping had lower As concentration, which may have been caused by the As depletion by P. vittata roots. Spatial distribution of As in the soil indicated a "valley" around the P. vittata roots in both monocultured and intercropped systems, implying that As was depleted around the P. vittata roots. Continuous As extraction confirmed that both P. vittata monoculture and P. vittata and M. alba intercropping can efficiently control the risk of As soil contamination. Moreover, the properties of M. alba leaves were further studied. Mulberry leaves in the intercropping system satisfied the national feed standards. Therefore, intercropping presents a safe utilization mode for As-contaminated soil and can increase the income from silkworm-rearing M. alba leaves, without extra environmental risk.
Collapse
Affiliation(s)
- Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Junxing Yang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
34
|
Wan X, Lei M, Chen T, Ma J. Micro-distribution of arsenic species in tissues of hyperaccumulator Pteris vittata L. CHEMOSPHERE 2017; 166:389-399. [PMID: 27705826 DOI: 10.1016/j.chemosphere.2016.09.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 09/18/2016] [Accepted: 09/24/2016] [Indexed: 06/06/2023]
Abstract
Arsenic (As) contamination and its harmful consequences have gained increasing attention in research. Phytoextraction, which uses the As hyperaccumulator Pteris vittata L., is a well-established technology adopted in many countries. However, the hyperaccumulation mechanisms of this plant remain controversial. This study investigated the species and the micro-distribution of As species in three P. vittata L. ecotypes after exposure to arsenite (AsIII) and arsenate (AsV) for 7d. Arsenic-accumulating abilities and preferences to As species varied among different ecotypes. The reduction of AsV into AsIII, oxidation of AsIII into AsV, and chelation of AsIII with thiols were all observed in P. vittata. The reduction of As mainly occurred in the rhizoid, whereas oxidation and chelation mainly occurred in the aboveground parts. Correlation analyses showed that the As concentration in pinna was significantly correlated with the AsV percentage in paraxial and abaxial epidermis (positive), AsIII-GSH percentage in paraxial epidermis (positive), and AsIII percentage in paraxial and abaxial epidermis (negative). Results indicated that oxidation and chelation reactions contributed to the accumulation of As in P. vittata.
Collapse
Affiliation(s)
- Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jie Ma
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China
| |
Collapse
|
35
|
Govarthanan M, Mythili R, Selvankumar T, Kamala-Kannan S, Rajasekar A, Chang YC. Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens. 3 Biotech 2016; 6:242. [PMID: 28330314 PMCID: PMC5234529 DOI: 10.1007/s13205-016-0560-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/01/2016] [Indexed: 11/04/2022] Open
Abstract
The aim of the present study was to assess the bioremediation potential of endophytic bacteria isolated from roots of Tridax procumbens plant. Five bacterial endophytes were isolated and subsequently tested for minimal inhibitory concentration (MIC) against different heavy metals. Amongst the five isolates, strain RM exhibited the highest resistance to copper (750 mg/l), followed by zinc (500 mg/l), lead (450 mg/l), and arsenic (400 mg/l). Phylogenetic analysis of the 16S rDNA sequence suggested that strain RM was a member of genus Paneibacillus. Strain RM also had the capacity to produce secondary metabolites, indole acetic acid, siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and biosurfactant and solubilize phosphate. The growth kinetics of strain RM was altered slightly in the presence of metal stress. Temperature and pH influenced the metal removal rate. The results suggest that strain RM can survive under the high concentration of heavy metals and has been identified as a potential candidate for application in bioremediation of heavy metals in contaminated environments.
Collapse
|
36
|
Tiwari S, Sarangi BK, Thul ST. Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 180:359-65. [PMID: 27257820 DOI: 10.1016/j.jenvman.2016.05.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 05/09/2023]
Abstract
Mitigation of arsenic (As) pollution is a topical environmental issue of high R&D priority. The present investigation was carried out to isolate As resistant endophytes from the roots of Indian ecotype Pteris vittata and characterize their As transformation and tolerance ability, plant growth promoting characteristics and their role to facilitate As uptake by the plant. A total of 8 root endophytes were isolated from plants grown in As amended soil (25 mg As kg(-1)). These isolates were studied for minimum inhibitory concentration (MIC), arsenite As(III) - arsenate As(V) transformation ability, plant growth promoting (PGP) characteristics through siderophore, indole acetic acid (IAA) production, phosphatase, ACC deaminase activity, and presence of arsenite oxidase (aox) and arsenite transporter (arsB) genes. On the basis of 16S rDNA sequence analysis, these isolates belong to Proteobacteria, Firmicutes and Bacteroidetes families under the genera Bacillus, Enterobacter, Stenotrophomonas and Rhizobium. All isolates were found As tolerant, of which one isolates showed highest tolerance up to 1000 mg L(-1) concentration in SLP medium. Five isolates were IAA positive with highest IAA production up to 60 mg/L and two isolates exhibited siderophore activity. Phosphatase activity was shown by only one isolate while ACC deaminase activity was absent in all the isolates. The As transformation study by silver nitrate test showed that only two strains had dual characteristics of As(III) oxidation and As (V) reduction, four strains exhibited either of the characteristics while other two didn't confirmed any of the two characteristics. Presence of aox gene was detected in two strains and arsB gene in six isolates. The strain with highest As tolerance also showed highest IAA production and occurrence of arsB gene. Present investigation may open up further scope of utilizing these endophytes for up gradation of phytoextraction process.
Collapse
Affiliation(s)
- Sarita Tiwari
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research, Nehru Marg, Nagpur 440020, India
| | - Bijaya Ketan Sarangi
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research, Nehru Marg, Nagpur 440020, India.
| | - Sanjog T Thul
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research, Nehru Marg, Nagpur 440020, India
| |
Collapse
|
37
|
Cultivable endophytic bacteria from heavy metal(loid)-tolerant plants. Arch Microbiol 2016; 198:941-956. [PMID: 27290648 DOI: 10.1007/s00203-016-1252-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/22/2016] [Accepted: 06/01/2016] [Indexed: 01/28/2023]
Abstract
To evaluate the interactions among endophytes, plants and heavy metal/arsenic contamination, root endophytic bacteria of Prosopis laevigata (Humb and Bonpl. ex Willd) and Sphaeralcea angustifolia grown in a heavy metal(loid)-contaminated zone in San Luis Potosi, Mexico, were isolated and characterized. Greater abundance and species richness were found in Prosopis than in Sphaeralcea and in the nutrient Pb-Zn-rich hill than in the poor nutrient and As-Cu-rich mine tailing. The 25 species identified among the 60 isolates formed three groups in the correspondence analysis, relating to Prosopis/hill (11 species), Prosopis/mine tailing (4 species) and Sphaeralcea/hill (4 species), with six species ungrouped. Most of the isolates showed high or extremely high resistance to arsenic, such as ≥100 mM for As(V) and ≥20 mM for As(III), in mineral medium. These results demonstrated that the abundance and community composition of root endophytic bacteria were strongly affected by the concentration and type of the heavy metals and metalloids (arsenic), as well as the plant species.
Collapse
|
38
|
Ma Y, Rajkumar M, Zhang C, Freitas H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 174:14-25. [PMID: 26989941 DOI: 10.1016/j.jenvman.2016.02.047] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 02/20/2016] [Accepted: 02/26/2016] [Indexed: 05/10/2023]
Abstract
Phytoremediation is an emerging technology that uses plants and their associated microbes to clean up pollutants from the soil, water and air. In recent years, phytoremediation assisted by bacterial endophytes has been highly recommended for cleaning up of metal polluted soils since endophytic bacteria can alleviate metal toxicity in plant through their own metal resistance system and facilitate plant growth under metal stress. Endophytic bacteria improve plant growth in metal polluted soils in two different ways: 1) directly by producing plant growth beneficial substances including solubilization/transformation of mineral nutrients (phosphate, nitrogen and potassium), production of phytohormones, siderophores and specific enzymes; and 2) indirectly through controlling plant pathogens or by inducing a systemic resistance of plants against pathogens. Besides, they also alter metal accumulation capacity in plants by excreting metal immobilizing extracellular polymeric substances, as well as metal mobilizing organic acids and biosurfactants. The present work aims to review the progress of recent research on the isolation, identification and diversity of metal resistant endophytic bacteria and illustrate various mechanisms responsible for plant growth promotion and heavy metal detoxification/phytoaccumulation/translocation in plants.
Collapse
Affiliation(s)
- Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Mani Rajkumar
- Department of Life Sciences, Central University of Tamil Nadu, Tiruvarur, 610101, India
| | | | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
39
|
Han YH, Fu JW, Chen Y, Rathinasabapathi B, Ma LQ. Arsenic uptake, arsenite efflux and plant growth in hyperaccumulator Pteris vittata: Role of arsenic-resistant bacteria. CHEMOSPHERE 2016; 144:1937-42. [PMID: 26547029 DOI: 10.1016/j.chemosphere.2015.10.096] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 05/15/2023]
Abstract
Bacteria-mediated arsenic (As) transformation and their impacts on As and P uptake and plant growth in As-hyperaccumulator Pteris vittata (PV) were investigated under sterile condition. All As-resistant bacteria (9 endophytic and 6 rhizospheric) were As-reducers except one As-oxidizer. After growing two months in media with 37.5 mg kg(-1) AsV, As concentrations in the fronds and roots were 3655-5389 (89-91% AsIII) and 971-1467 mg kg(-1) (41-73% AsIII), corresponding to 22-52% decrease in the As in the media. Bacterial inoculation enhanced As and P uptake by up to 47 and 69%, and PV growth by 20-74%, which may be related to elevated As and P in plants (r = 0.88-0.97, p < 0.05). Though AsV was supplied, 95% of the As in the bacteria-free media was AsIII, suggesting efficient efflux of AsIII by PV roots (120 µg g(-1) root fw). This was supported by the fact that no AsV was detected in media inoculated with As-reducers while 95% of AsV was detected with As-oxidizer. Our data showed that, under As-stress, PV reduced As toxicity by efficient AsIII efflux into media and AsIII translocation to the fronds, and bacteria benefited PV growth probably via enhanced As and P uptake.
Collapse
Affiliation(s)
- Yong-He Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Jing-Wei Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Yanshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Bala Rathinasabapathi
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, United States
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China; Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, United States.
| |
Collapse
|
40
|
Xu JY, Han YH, Chen Y, Zhu LJ, Ma LQ. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata. CHEMOSPHERE 2016; 144:1233-40. [PMID: 26469935 DOI: 10.1016/j.chemosphere.2015.09.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 09/18/2015] [Accepted: 09/30/2015] [Indexed: 05/20/2023]
Abstract
The ability of As-resistant endophytic bacteria in As transformation and plant growth promotion was determined. The endophytes were isolated from As-hyperaccumulator Pteris vittata (PV) after growing for 60 d in a soil containing 200 mg kg(-1) arsenate (AsV). They were isolated in presence of 10 mM AsV from PV roots, stems, and leaflets, representing 4 phyla and 17 genera. All endophytes showed at least one plant growth promoting characteristics including IAA synthesis, siderophore production and P solubilization. The root endophytes had higher P solubilization ability than the leaflet (60.0 vs. 18.3 mg L(-1)). In presence of 10 mM AsV, 6 endophytes had greater growth than the control, suggesting As-stimulated growth. Furthermore, root endophytes were more resistant to AsV while the leaflet endophytes were more tolerant to arsenite (AsIII), which corresponded to the dominant As species in PV tissues. Bacterial As resistance was positively correlated to their ability in AsV reduction but not AsIII oxidation. The roles of those endophytes in promoting plant growth and As resistance in P. vittata warrant further investigation.
Collapse
Affiliation(s)
- Jia-Yi Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China; Geological Survey of Jiangsu Province, Jiangsu 210018, China
| | - Yong-He Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Yanshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Ling-Jia Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
41
|
Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 156:62-9. [PMID: 25796039 DOI: 10.1016/j.jenvman.2015.03.024] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 05/08/2023]
Abstract
Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas Bacillus sp. E1S2 significantly enhanced the accumulation of Zn (18%) in plants compared with non-inoculated controls. The inoculated strains also showed high levels of colonization in rhizosphere and plant tissues. Results demonstrate the potential to improve phytoextraction of soils contaminated with multiple heavy metals by inoculating metal hyperaccumulating plants with their own selected functional endophytic bacterial strains.
Collapse
Affiliation(s)
- Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Rui S Oliveira
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal; Research Centre on Health and Environment, School of Allied Health Sciences, Polytechnic Institute of Porto, Rua Valente Perfeito, 322, 4400-330 Vila Nova de Gaia, Portugal
| | - Fengjiao Nai
- Soil Science Agricultural College, Guizhou University, Guiyang 550025, China
| | - Mani Rajkumar
- Department of Life Sciences, Central University of Tamil Nadu, Collectorate Annexe, Thanjavur Road, Thiruvarur 610 004, Tamil Nadu, India
| | - Yongming Luo
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Inês Rocha
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
42
|
Visioli G, D'Egidio S, Sanangelantoni AM. The bacterial rhizobiome of hyperaccumulators: future perspectives based on omics analysis and advanced microscopy. FRONTIERS IN PLANT SCIENCE 2014; 5:752. [PMID: 25709609 PMCID: PMC4285865 DOI: 10.3389/fpls.2014.00752] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/08/2014] [Indexed: 05/20/2023]
Abstract
Hyperaccumulators are plants that can extract heavy metal ions from the soil and translocate those ions to the shoots, where they are sequestered and detoxified. Hyperaccumulation depends not only on the availability of mobilized metal ions in the soil, but also on the enhanced activity of metal transporters and metal chelators which may be provided by the plant or its associated microbes. The rhizobiome is captured by plant root exudates from the complex microbial community in the soil, and may colonize the root surface or infiltrate the root cortex. This community can increase the root surface area by inducing hairy root proliferation. It may also increase the solubility of metals in the rhizosphere and promote the uptake of soluble metals by the plant. The bacterial rhizobiome, a subset of specialized microorganisms that colonize the plant rhizosphere and endosphere, makes an important contribution to the hyperaccumulator phenotype. In this review, we discuss classic and more recent tools that are used to study the interactions between hyperaccumulators and the bacterial rhizobiome, and consider future perspectives based on the use of omics analysis and microscopy to study plant metabolism in the context of metal accumulation. Recent data suggest that metal-resistant bacteria isolated from the hyperaccumulator rhizosphere and endosphere could be useful in applications such as phytoextraction and phytoremediation, although more research is required to determine whether such properties can be transferred successfully to non-accumulator species.
Collapse
Affiliation(s)
- Giovanna Visioli
- *Correspondence: Giovanna Visioli, Department of Life Sciences, University of Parma, Parco Area delle Scienze 33/A, 43124 Parma, Italy e-mail:
| | | | | |
Collapse
|
43
|
Ma Y, Rajkumar M, Rocha I, Oliveira RS, Freitas H. Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. FRONTIERS IN PLANT SCIENCE 2014; 5:757. [PMID: 25601876 PMCID: PMC4283507 DOI: 10.3389/fpls.2014.00757] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/09/2014] [Indexed: 05/20/2023]
Abstract
The aim of this study was to assess the effects of inoculation of rhizosphere or endophytic bacteria (Psychrobacter sp. SRS8 and Pseudomonas sp. A3R3, respectively) isolated from a serpentine environment on the plant growth and the translocation and accumulation of Ni, Zn, and Fe by Brassica juncea and Ricinus communis on a multi-metal polluted serpentine soil (SS). Field collected SS was diluted to 0, 25, 50, and 75% with pristine soil in order to obtain a range of heavy metal concentrations and used in microcosm experiments. Regardless of inoculation with bacteria, the biomass of both plant species decreased with increase of the proportion of SS. Inoculation of plants with bacteria significantly increased the plant biomass and the heavy metal accumulation compared with non-inoculated control in the presence of different proportion of SS, which was attributed to the production of plant growth promoting and/or metal mobilizing metabolites by bacteria. However, SRS8 showed a maximum increase in the biomass of the test plants grown even in the treatment of 75% SS. In turn, A3R3 showed maximum effects on the accumulation of heavy metals in both plants. Regardless of inoculation of bacteria and proportion of SS, both plant species exhibited low values of bioconcentration factor (<1) for Ni and Fe. The inoculation of both bacterial strains significantly increased the translocation factor (TF) of Ni while decreasing the TF of Zn in both plant species. Besides this contrasting effect, the TFs of all metals were <1, indicating that all studied bacteria-plant combinations are suitable for phytostabilization. This study demonstrates that the bacterial isolates A3R3 and SRS8 improved the growth of B. juncea and R. communis in SS soils and have a great potential to be used as inoculants in phytostabilization scenarios of multi-metal contaminated soils.
Collapse
Affiliation(s)
- Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
- *Correspondence: Ying Ma, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal e-mail:
| | - Mani Rajkumar
- Department of Life Sciences, Central University of Tamil NaduThiruvarur, India
| | - Inês Rocha
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| | - Rui S. Oliveira
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica PortuguesaPorto, Portugal
- Research Centre on Health and Environment, School of Allied Health Sciences, Polytechnic Institute of PortoVila Nova de Gaia, Portugal
| | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| |
Collapse
|
44
|
Khan MU, Sessitsch A, Harris M, Fatima K, Imran A, Arslan M, Shabir G, Khan QM, Afzal M. Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. FRONTIERS IN PLANT SCIENCE 2014; 5:755. [PMID: 25610444 PMCID: PMC4284999 DOI: 10.3389/fpls.2014.00755] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/09/2014] [Indexed: 05/04/2023]
Abstract
Prosopis juliflora is characterized by distinct and profuse growth even in nutritionally poor soil and environmentally stressed conditions and is believed to harbor some novel heavy metal-resistant bacteria in the rhizosphere and endosphere. This study was performed to isolate and characterize Cr-resistant bacteria from the rhizosphere and endosphere of P. juliflora growing on the tannery effluent contaminated soil. A total of 5 and 21 bacterial strains were isolated from the rhizosphere and endosphere, respectively, and were shown to tolerate Cr up to 3000 mg l(-1). These isolates also exhibited tolerance to other toxic heavy metals such as, Cd, Cu, Pb, and Zn, and high concentration (174 g l(-1)) of NaCl. Moreover, most of the isolated bacterial strains showed one or more plant growth-promoting activities. The phylogenetic analysis of the 16S rRNA gene showed that the predominant species included Bacillus, Staphylococcus and Aerococcus. As far as we know, this is the first report analyzing rhizo- and endophytic bacterial communities associated with P. juliflora growing on the tannery effluent contaminated soil. The inoculation of three isolates to ryegrass (Lolium multiflorum L.) improved plant growth and heavy metal removal from the tannery effluent contaminated soil suggesting that these bacteria could enhance the establishment of the plant in contaminated soil and also improve the efficiency of phytoremediation of heavy metal-degraded soils.
Collapse
Affiliation(s)
- Muhammad U. Khan
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Angela Sessitsch
- Bioresources Unit, Austrian Institute of Technology GmbHTulln, Austria
| | - Muhammad Harris
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Kaneez Fatima
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Asma Imran
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Muhammad Arslan
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
- Earth Sciences Department, King Fahd University of Petroleum and MineralsDhahran, Saudi Arabia
| | - Ghulam Shabir
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Qaiser M. Khan
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Muhammad Afzal
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
- *Correspondence: Muhammad Afzal, Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, PO Box 577, Jhang Road, Faisalabad 38000, Pakistan e-mail: ;
| |
Collapse
|